pmap.h revision 1.79.30.1 1 /* $NetBSD: pmap.h,v 1.79.30.1 2007/11/10 02:56:42 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * armv6 and VIPT cache support by 3am Software Foundry,
70 * Copyright (c) 2007 Danger Inc
71 */
72
73 #ifndef _ARM32_PMAP_H_
74 #define _ARM32_PMAP_H_
75
76 #ifdef _KERNEL
77
78 #include <arm/cpuconf.h>
79 #include <arm/arm32/pte.h>
80 #ifndef _LOCORE
81 #include <arm/cpufunc.h>
82 #include <uvm/uvm_object.h>
83 #endif
84
85 /*
86 * a pmap describes a processes' 4GB virtual address space. this
87 * virtual address space can be broken up into 4096 1MB regions which
88 * are described by L1 PTEs in the L1 table.
89 *
90 * There is a line drawn at KERNEL_BASE. Everything below that line
91 * changes when the VM context is switched. Everything above that line
92 * is the same no matter which VM context is running. This is achieved
93 * by making the L1 PTEs for those slots above KERNEL_BASE reference
94 * kernel L2 tables.
95 *
96 * The basic layout of the virtual address space thus looks like this:
97 *
98 * 0xffffffff
99 * .
100 * .
101 * .
102 * KERNEL_BASE
103 * --------------------
104 * .
105 * .
106 * .
107 * 0x00000000
108 */
109
110 /*
111 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
112 * A bucket size of 16 provides for 16MB of contiguous virtual address
113 * space per l2_dtable. Most processes will, therefore, require only two or
114 * three of these to map their whole working set.
115 */
116 #define L2_BUCKET_LOG2 4
117 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
118
119 /*
120 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
121 * of l2_dtable structures required to track all possible page descriptors
122 * mappable by an L1 translation table is given by the following constants:
123 */
124 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
125 #define L2_SIZE (1 << L2_LOG2)
126
127 #ifndef _LOCORE
128
129 struct l1_ttable;
130 struct l2_dtable;
131
132 /*
133 * Track cache/tlb occupancy using the following structure
134 */
135 union pmap_cache_state {
136 struct {
137 union {
138 u_int8_t csu_cache_b[2];
139 u_int16_t csu_cache;
140 } cs_cache_u;
141
142 union {
143 u_int8_t csu_tlb_b[2];
144 u_int16_t csu_tlb;
145 } cs_tlb_u;
146 } cs_s;
147 u_int32_t cs_all;
148 };
149 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
150 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
151 #define cs_cache cs_s.cs_cache_u.csu_cache
152 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
153 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
154 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
155
156 /*
157 * Assigned to cs_all to force cacheops to work for a particular pmap
158 */
159 #define PMAP_CACHE_STATE_ALL 0xffffffffu
160
161 /*
162 * This structure is used by machine-dependent code to describe
163 * static mappings of devices, created at bootstrap time.
164 */
165 struct pmap_devmap {
166 vaddr_t pd_va; /* virtual address */
167 paddr_t pd_pa; /* physical address */
168 psize_t pd_size; /* size of region */
169 vm_prot_t pd_prot; /* protection code */
170 int pd_cache; /* cache attributes */
171 };
172
173 /*
174 * The pmap structure itself
175 */
176 struct pmap {
177 u_int8_t pm_domain;
178 boolean_t pm_remove_all;
179 struct l1_ttable *pm_l1;
180 union pmap_cache_state pm_cstate;
181 struct uvm_object pm_obj;
182 #define pm_lock pm_obj.vmobjlock
183 struct l2_dtable *pm_l2[L2_SIZE];
184 struct pmap_statistics pm_stats;
185 LIST_ENTRY(pmap) pm_list;
186 };
187
188 typedef struct pmap *pmap_t;
189
190 /*
191 * Physical / virtual address structure. In a number of places (particularly
192 * during bootstrapping) we need to keep track of the physical and virtual
193 * addresses of various pages
194 */
195 typedef struct pv_addr {
196 SLIST_ENTRY(pv_addr) pv_list;
197 paddr_t pv_pa;
198 vaddr_t pv_va;
199 } pv_addr_t;
200
201 /*
202 * Determine various modes for PTEs (user vs. kernel, cacheable
203 * vs. non-cacheable).
204 */
205 #define PTE_KERNEL 0
206 #define PTE_USER 1
207 #define PTE_NOCACHE 0
208 #define PTE_CACHE 1
209 #define PTE_PAGETABLE 2
210
211 /*
212 * Flags that indicate attributes of pages or mappings of pages.
213 *
214 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
215 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
216 * pv_entry's for each page. They live in the same "namespace" so
217 * that we can clear multiple attributes at a time.
218 *
219 * Note the "non-cacheable" flag generally means the page has
220 * multiple mappings in a given address space.
221 */
222 #define PVF_MOD 0x01 /* page is modified */
223 #define PVF_REF 0x02 /* page is referenced */
224 #define PVF_WIRED 0x04 /* mapping is wired */
225 #define PVF_WRITE 0x08 /* mapping is writable */
226 #define PVF_EXEC 0x10 /* mapping is executable */
227 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
228 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
229 #define PVF_COLORED 0x80 /* page has a color */
230 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
231 #define PVF_NC (PVF_UNC|PVF_KNC)
232
233 /*
234 * Commonly referenced structures
235 */
236 extern struct pmap kernel_pmap_store;
237 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
238
239 /*
240 * Macros that we need to export
241 */
242 #define pmap_kernel() (&kernel_pmap_store)
243 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
244 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
245
246 #define pmap_remove(pmap,sva,eva) pmap_do_remove((pmap),(sva),(eva),0)
247
248 #define pmap_is_modified(pg) \
249 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
250 #define pmap_is_referenced(pg) \
251 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
252 #define pmap_is_page_colored_p(pg) \
253 (((pg)->mdpage.pvh_attrs & PVF_COLORED) != 0)
254
255 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
256
257 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
258
259 /*
260 * Functions that we need to export
261 */
262 void pmap_procwr(struct proc *, vaddr_t, int);
263 void pmap_remove_all(pmap_t);
264 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
265
266 #define PMAP_NEED_PROCWR
267 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
268
269 #if ARM_MMU_V6 > 0
270 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
271 void pmap_prefer(vaddr_t, vaddr_t *, int);
272 #endif
273
274 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
275
276 /* Functions we use internally. */
277 void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
278
279 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
280 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
281 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
282 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
283 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
284
285 void pmap_debug(int);
286 void pmap_postinit(void);
287
288 void vector_page_setprot(int);
289
290 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
291 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
292
293 /* Bootstrapping routines. */
294 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
295 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
296 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
297 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
298 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
299 void pmap_devmap_register(const struct pmap_devmap *);
300
301 /*
302 * Special page zero routine for use by the idle loop (no cache cleans).
303 */
304 boolean_t pmap_pageidlezero(paddr_t);
305 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
306
307 /*
308 * The current top of kernel VM
309 */
310 extern vaddr_t pmap_curmaxkvaddr;
311
312 /*
313 * Useful macros and constants
314 */
315
316 /* Virtual address to page table entry */
317 static inline pt_entry_t *
318 vtopte(vaddr_t va)
319 {
320 pd_entry_t *pdep;
321 pt_entry_t *ptep;
322
323 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
324 return (NULL);
325 return (ptep);
326 }
327
328 /*
329 * Virtual address to physical address
330 */
331 static inline paddr_t
332 vtophys(vaddr_t va)
333 {
334 paddr_t pa;
335
336 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
337 return (0); /* XXXSCW: Panic? */
338
339 return (pa);
340 }
341
342 /*
343 * The new pmap ensures that page-tables are always mapping Write-Thru.
344 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
345 * on every change.
346 *
347 * Unfortunately, not all CPUs have a write-through cache mode. So we
348 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
349 * and if there is the chance for PTE syncs to be needed, we define
350 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
351 * the code.
352 */
353 extern int pmap_needs_pte_sync;
354 #if defined(_KERNEL_OPT)
355 /*
356 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
357 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
358 * this at compile time.
359 */
360 #if (ARM_MMU_SA1 == 1 || ARM_MMU_V6 == 1) && (ARM_NMMUS == 1)
361 #define PMAP_NEEDS_PTE_SYNC 1
362 #define PMAP_INCLUDE_PTE_SYNC
363 #elif (ARM_MMU_SA1 == 0)
364 #define PMAP_NEEDS_PTE_SYNC 0
365 #endif
366 #endif /* _KERNEL_OPT */
367
368 /*
369 * Provide a fallback in case we were not able to determine it at
370 * compile-time.
371 */
372 #ifndef PMAP_NEEDS_PTE_SYNC
373 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
374 #define PMAP_INCLUDE_PTE_SYNC
375 #endif
376
377 #define PTE_SYNC(pte) \
378 do { \
379 if (PMAP_NEEDS_PTE_SYNC) \
380 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
381 } while (/*CONSTCOND*/0)
382
383 #define PTE_SYNC_RANGE(pte, cnt) \
384 do { \
385 if (PMAP_NEEDS_PTE_SYNC) { \
386 cpu_dcache_wb_range((vaddr_t)(pte), \
387 (cnt) << 2); /* * sizeof(pt_entry_t) */ \
388 } \
389 } while (/*CONSTCOND*/0)
390
391 #define l1pte_valid(pde) ((pde) != 0)
392 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
393 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
394 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
395
396 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
397 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
398 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
399 #define l2pte_minidata(pte) (((pte) & \
400 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
401 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
402
403 /* L1 and L2 page table macros */
404 #define pmap_pde_v(pde) l1pte_valid(*(pde))
405 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
406 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
407 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
408
409 #define pmap_pte_v(pte) l2pte_valid(*(pte))
410 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
411
412 /* Size of the kernel part of the L1 page table */
413 #define KERNEL_PD_SIZE \
414 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
415
416 /************************* ARM MMU configuration *****************************/
417
418 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
419 void pmap_copy_page_generic(paddr_t, paddr_t);
420 void pmap_zero_page_generic(paddr_t);
421
422 void pmap_pte_init_generic(void);
423 #if defined(CPU_ARM8)
424 void pmap_pte_init_arm8(void);
425 #endif
426 #if defined(CPU_ARM9)
427 void pmap_pte_init_arm9(void);
428 #endif /* CPU_ARM9 */
429 #if defined(CPU_ARM10)
430 void pmap_pte_init_arm10(void);
431 #endif /* CPU_ARM10 */
432 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
433
434 #if ARM_MMU_SA1 == 1
435 void pmap_pte_init_sa1(void);
436 #endif /* ARM_MMU_SA1 == 1 */
437
438 #if ARM_MMU_XSCALE == 1
439 void pmap_copy_page_xscale(paddr_t, paddr_t);
440 void pmap_zero_page_xscale(paddr_t);
441
442 void pmap_pte_init_xscale(void);
443
444 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
445
446 #define PMAP_UAREA(va) pmap_uarea(va)
447 void pmap_uarea(vaddr_t);
448 #endif /* ARM_MMU_XSCALE == 1 */
449
450 extern pt_entry_t pte_l1_s_cache_mode;
451 extern pt_entry_t pte_l1_s_cache_mask;
452
453 extern pt_entry_t pte_l2_l_cache_mode;
454 extern pt_entry_t pte_l2_l_cache_mask;
455
456 extern pt_entry_t pte_l2_s_cache_mode;
457 extern pt_entry_t pte_l2_s_cache_mask;
458
459 extern pt_entry_t pte_l1_s_cache_mode_pt;
460 extern pt_entry_t pte_l2_l_cache_mode_pt;
461 extern pt_entry_t pte_l2_s_cache_mode_pt;
462
463 extern pt_entry_t pte_l2_s_prot_u;
464 extern pt_entry_t pte_l2_s_prot_w;
465 extern pt_entry_t pte_l2_s_prot_mask;
466
467 extern pt_entry_t pte_l1_s_proto;
468 extern pt_entry_t pte_l1_c_proto;
469 extern pt_entry_t pte_l2_s_proto;
470
471 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
472 extern void (*pmap_zero_page_func)(paddr_t);
473
474 #endif /* !_LOCORE */
475
476 /*****************************************************************************/
477
478 /*
479 * tell MI code whether the cache is virtually-indexed and virtually-tagged
480 * or vitually-indexed and physically tagged.
481 */
482 #if ARM_MMU_V6 > 0
483 #define PMAP_CACHE_VIPT
484 #else
485 #define PMAP_CACHE_VIVT
486 #endif
487
488 /*
489 * Definitions for MMU domains
490 */
491 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
492 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
493
494 /*
495 * These macros define the various bit masks in the PTE.
496 *
497 * We use these macros since we use different bits on different processor
498 * models.
499 */
500 #define L1_S_PROT_U (L1_S_AP(AP_U))
501 #define L1_S_PROT_W (L1_S_AP(AP_W))
502 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
503
504 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
505 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
506
507 #define L2_L_PROT_U (L2_AP(AP_U))
508 #define L2_L_PROT_W (L2_AP(AP_W))
509 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
510
511 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
512 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
513
514 #define L2_S_PROT_U_generic (L2_AP(AP_U))
515 #define L2_S_PROT_W_generic (L2_AP(AP_W))
516 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
517
518 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
519 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
520 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
521
522 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
523 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
524
525 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
526 #define L1_S_PROTO_xscale (L1_TYPE_S)
527
528 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
529 #define L1_C_PROTO_xscale (L1_TYPE_C)
530
531 #define L2_L_PROTO (L2_TYPE_L)
532
533 #define L2_S_PROTO_generic (L2_TYPE_S)
534 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
535
536 /*
537 * User-visible names for the ones that vary with MMU class.
538 */
539
540 #if ARM_NMMUS > 1
541 /* More than one MMU class configured; use variables. */
542 #define L2_S_PROT_U pte_l2_s_prot_u
543 #define L2_S_PROT_W pte_l2_s_prot_w
544 #define L2_S_PROT_MASK pte_l2_s_prot_mask
545
546 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
547 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
548 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
549
550 #define L1_S_PROTO pte_l1_s_proto
551 #define L1_C_PROTO pte_l1_c_proto
552 #define L2_S_PROTO pte_l2_s_proto
553
554 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
555 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
556 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
557 #define L2_S_PROT_U L2_S_PROT_U_generic
558 #define L2_S_PROT_W L2_S_PROT_W_generic
559 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
560
561 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
562 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
563 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
564
565 #define L1_S_PROTO L1_S_PROTO_generic
566 #define L1_C_PROTO L1_C_PROTO_generic
567 #define L2_S_PROTO L2_S_PROTO_generic
568
569 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
570 #define pmap_zero_page(d) pmap_zero_page_generic((d))
571 #elif ARM_MMU_XSCALE == 1
572 #define L2_S_PROT_U L2_S_PROT_U_xscale
573 #define L2_S_PROT_W L2_S_PROT_W_xscale
574 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
575
576 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
577 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
578 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
579
580 #define L1_S_PROTO L1_S_PROTO_xscale
581 #define L1_C_PROTO L1_C_PROTO_xscale
582 #define L2_S_PROTO L2_S_PROTO_xscale
583
584 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
585 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
586 #endif /* ARM_NMMUS > 1 */
587
588 /*
589 * These macros return various bits based on kernel/user and protection.
590 * Note that the compiler will usually fold these at compile time.
591 */
592 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
593 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
594
595 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
596 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
597
598 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
599 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
600
601 /*
602 * Macros to test if a mapping is mappable with an L1 Section mapping
603 * or an L2 Large Page mapping.
604 */
605 #define L1_S_MAPPABLE_P(va, pa, size) \
606 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
607
608 #define L2_L_MAPPABLE_P(va, pa, size) \
609 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
610
611 /*
612 * Hooks for the pool allocator.
613 */
614 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
615
616 #endif /* _KERNEL */
617
618 #endif /* _ARM32_PMAP_H_ */
619