pmap.h revision 1.80 1 /* $NetBSD: pmap.h,v 1.80 2007/02/21 22:59:38 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #include <arm/cpufunc.h>
77 #include <uvm/uvm_object.h>
78 #endif
79
80 /*
81 * a pmap describes a processes' 4GB virtual address space. this
82 * virtual address space can be broken up into 4096 1MB regions which
83 * are described by L1 PTEs in the L1 table.
84 *
85 * There is a line drawn at KERNEL_BASE. Everything below that line
86 * changes when the VM context is switched. Everything above that line
87 * is the same no matter which VM context is running. This is achieved
88 * by making the L1 PTEs for those slots above KERNEL_BASE reference
89 * kernel L2 tables.
90 *
91 * The basic layout of the virtual address space thus looks like this:
92 *
93 * 0xffffffff
94 * .
95 * .
96 * .
97 * KERNEL_BASE
98 * --------------------
99 * .
100 * .
101 * .
102 * 0x00000000
103 */
104
105 /*
106 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
107 * A bucket size of 16 provides for 16MB of contiguous virtual address
108 * space per l2_dtable. Most processes will, therefore, require only two or
109 * three of these to map their whole working set.
110 */
111 #define L2_BUCKET_LOG2 4
112 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
113
114 /*
115 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
116 * of l2_dtable structures required to track all possible page descriptors
117 * mappable by an L1 translation table is given by the following constants:
118 */
119 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
120 #define L2_SIZE (1 << L2_LOG2)
121
122 #ifndef _LOCORE
123
124 struct l1_ttable;
125 struct l2_dtable;
126
127 /*
128 * Track cache/tlb occupancy using the following structure
129 */
130 union pmap_cache_state {
131 struct {
132 union {
133 u_int8_t csu_cache_b[2];
134 u_int16_t csu_cache;
135 } cs_cache_u;
136
137 union {
138 u_int8_t csu_tlb_b[2];
139 u_int16_t csu_tlb;
140 } cs_tlb_u;
141 } cs_s;
142 u_int32_t cs_all;
143 };
144 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
145 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
146 #define cs_cache cs_s.cs_cache_u.csu_cache
147 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
148 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
149 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
150
151 /*
152 * Assigned to cs_all to force cacheops to work for a particular pmap
153 */
154 #define PMAP_CACHE_STATE_ALL 0xffffffffu
155
156 /*
157 * This structure is used by machine-dependent code to describe
158 * static mappings of devices, created at bootstrap time.
159 */
160 struct pmap_devmap {
161 vaddr_t pd_va; /* virtual address */
162 paddr_t pd_pa; /* physical address */
163 psize_t pd_size; /* size of region */
164 vm_prot_t pd_prot; /* protection code */
165 int pd_cache; /* cache attributes */
166 };
167
168 /*
169 * The pmap structure itself
170 */
171 struct pmap {
172 u_int8_t pm_domain;
173 bool pm_remove_all;
174 struct l1_ttable *pm_l1;
175 union pmap_cache_state pm_cstate;
176 struct uvm_object pm_obj;
177 #define pm_lock pm_obj.vmobjlock
178 struct l2_dtable *pm_l2[L2_SIZE];
179 struct pmap_statistics pm_stats;
180 LIST_ENTRY(pmap) pm_list;
181 };
182
183 typedef struct pmap *pmap_t;
184
185 /*
186 * Physical / virtual address structure. In a number of places (particularly
187 * during bootstrapping) we need to keep track of the physical and virtual
188 * addresses of various pages
189 */
190 typedef struct pv_addr {
191 SLIST_ENTRY(pv_addr) pv_list;
192 paddr_t pv_pa;
193 vaddr_t pv_va;
194 } pv_addr_t;
195
196 /*
197 * Determine various modes for PTEs (user vs. kernel, cacheable
198 * vs. non-cacheable).
199 */
200 #define PTE_KERNEL 0
201 #define PTE_USER 1
202 #define PTE_NOCACHE 0
203 #define PTE_CACHE 1
204 #define PTE_PAGETABLE 2
205
206 /*
207 * Flags that indicate attributes of pages or mappings of pages.
208 *
209 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
210 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
211 * pv_entry's for each page. They live in the same "namespace" so
212 * that we can clear multiple attributes at a time.
213 *
214 * Note the "non-cacheable" flag generally means the page has
215 * multiple mappings in a given address space.
216 */
217 #define PVF_MOD 0x01 /* page is modified */
218 #define PVF_REF 0x02 /* page is referenced */
219 #define PVF_WIRED 0x04 /* mapping is wired */
220 #define PVF_WRITE 0x08 /* mapping is writable */
221 #define PVF_EXEC 0x10 /* mapping is executable */
222 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
223 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
224 #define PVF_NC (PVF_UNC|PVF_KNC)
225
226 /*
227 * Commonly referenced structures
228 */
229 extern struct pmap kernel_pmap_store;
230 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
231
232 /*
233 * Macros that we need to export
234 */
235 #define pmap_kernel() (&kernel_pmap_store)
236 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
237 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
238
239 #define pmap_remove(pmap,sva,eva) pmap_do_remove((pmap),(sva),(eva),0)
240
241 #define pmap_is_modified(pg) \
242 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
243 #define pmap_is_referenced(pg) \
244 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
245
246 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
247
248 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
249
250 /*
251 * Functions that we need to export
252 */
253 void pmap_procwr(struct proc *, vaddr_t, int);
254 void pmap_remove_all(pmap_t);
255 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
256
257 #define PMAP_NEED_PROCWR
258 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
259
260 /* Functions we use internally. */
261 void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
262
263 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
264 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
265 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
266 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
267 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
268
269 void pmap_debug(int);
270 void pmap_postinit(void);
271
272 void vector_page_setprot(int);
273
274 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
275 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
276
277 /* Bootstrapping routines. */
278 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
279 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
280 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
281 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
282 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
283 void pmap_devmap_register(const struct pmap_devmap *);
284
285 /*
286 * Special page zero routine for use by the idle loop (no cache cleans).
287 */
288 bool pmap_pageidlezero(paddr_t);
289 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
290
291 /*
292 * The current top of kernel VM
293 */
294 extern vaddr_t pmap_curmaxkvaddr;
295
296 /*
297 * Useful macros and constants
298 */
299
300 /* Virtual address to page table entry */
301 static inline pt_entry_t *
302 vtopte(vaddr_t va)
303 {
304 pd_entry_t *pdep;
305 pt_entry_t *ptep;
306
307 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
308 return (NULL);
309 return (ptep);
310 }
311
312 /*
313 * Virtual address to physical address
314 */
315 static inline paddr_t
316 vtophys(vaddr_t va)
317 {
318 paddr_t pa;
319
320 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
321 return (0); /* XXXSCW: Panic? */
322
323 return (pa);
324 }
325
326 /*
327 * The new pmap ensures that page-tables are always mapping Write-Thru.
328 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
329 * on every change.
330 *
331 * Unfortunately, not all CPUs have a write-through cache mode. So we
332 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
333 * and if there is the chance for PTE syncs to be needed, we define
334 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
335 * the code.
336 */
337 extern int pmap_needs_pte_sync;
338 #if defined(_KERNEL_OPT)
339 /*
340 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
341 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
342 * this at compile time.
343 */
344 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
345 #define PMAP_NEEDS_PTE_SYNC 1
346 #define PMAP_INCLUDE_PTE_SYNC
347 #elif (ARM_MMU_SA1 == 0)
348 #define PMAP_NEEDS_PTE_SYNC 0
349 #endif
350 #endif /* _KERNEL_OPT */
351
352 /*
353 * Provide a fallback in case we were not able to determine it at
354 * compile-time.
355 */
356 #ifndef PMAP_NEEDS_PTE_SYNC
357 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
358 #define PMAP_INCLUDE_PTE_SYNC
359 #endif
360
361 #define PTE_SYNC(pte) \
362 do { \
363 if (PMAP_NEEDS_PTE_SYNC) \
364 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
365 } while (/*CONSTCOND*/0)
366
367 #define PTE_SYNC_RANGE(pte, cnt) \
368 do { \
369 if (PMAP_NEEDS_PTE_SYNC) { \
370 cpu_dcache_wb_range((vaddr_t)(pte), \
371 (cnt) << 2); /* * sizeof(pt_entry_t) */ \
372 } \
373 } while (/*CONSTCOND*/0)
374
375 #define l1pte_valid(pde) ((pde) != 0)
376 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
377 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
378 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
379
380 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
381 #define l2pte_valid(pte) ((pte) != 0)
382 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
383 #define l2pte_minidata(pte) (((pte) & \
384 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
385 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
386
387 /* L1 and L2 page table macros */
388 #define pmap_pde_v(pde) l1pte_valid(*(pde))
389 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
390 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
391 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
392
393 #define pmap_pte_v(pte) l2pte_valid(*(pte))
394 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
395
396 /* Size of the kernel part of the L1 page table */
397 #define KERNEL_PD_SIZE \
398 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
399
400 /************************* ARM MMU configuration *****************************/
401
402 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
403 void pmap_copy_page_generic(paddr_t, paddr_t);
404 void pmap_zero_page_generic(paddr_t);
405
406 void pmap_pte_init_generic(void);
407 #if defined(CPU_ARM8)
408 void pmap_pte_init_arm8(void);
409 #endif
410 #if defined(CPU_ARM9)
411 void pmap_pte_init_arm9(void);
412 #endif /* CPU_ARM9 */
413 #if defined(CPU_ARM10)
414 void pmap_pte_init_arm10(void);
415 #endif /* CPU_ARM10 */
416 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
417
418 #if ARM_MMU_SA1 == 1
419 void pmap_pte_init_sa1(void);
420 #endif /* ARM_MMU_SA1 == 1 */
421
422 #if ARM_MMU_XSCALE == 1
423 void pmap_copy_page_xscale(paddr_t, paddr_t);
424 void pmap_zero_page_xscale(paddr_t);
425
426 void pmap_pte_init_xscale(void);
427
428 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
429
430 #define PMAP_UAREA(va) pmap_uarea(va)
431 void pmap_uarea(vaddr_t);
432 #endif /* ARM_MMU_XSCALE == 1 */
433
434 extern pt_entry_t pte_l1_s_cache_mode;
435 extern pt_entry_t pte_l1_s_cache_mask;
436
437 extern pt_entry_t pte_l2_l_cache_mode;
438 extern pt_entry_t pte_l2_l_cache_mask;
439
440 extern pt_entry_t pte_l2_s_cache_mode;
441 extern pt_entry_t pte_l2_s_cache_mask;
442
443 extern pt_entry_t pte_l1_s_cache_mode_pt;
444 extern pt_entry_t pte_l2_l_cache_mode_pt;
445 extern pt_entry_t pte_l2_s_cache_mode_pt;
446
447 extern pt_entry_t pte_l2_s_prot_u;
448 extern pt_entry_t pte_l2_s_prot_w;
449 extern pt_entry_t pte_l2_s_prot_mask;
450
451 extern pt_entry_t pte_l1_s_proto;
452 extern pt_entry_t pte_l1_c_proto;
453 extern pt_entry_t pte_l2_s_proto;
454
455 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
456 extern void (*pmap_zero_page_func)(paddr_t);
457
458 #endif /* !_LOCORE */
459
460 /*****************************************************************************/
461
462 /*
463 * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
464 */
465 #define PMAP_CACHE_VIVT
466
467 /*
468 * Definitions for MMU domains
469 */
470 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
471 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
472
473 /*
474 * These macros define the various bit masks in the PTE.
475 *
476 * We use these macros since we use different bits on different processor
477 * models.
478 */
479 #define L1_S_PROT_U (L1_S_AP(AP_U))
480 #define L1_S_PROT_W (L1_S_AP(AP_W))
481 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
482
483 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
484 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
485
486 #define L2_L_PROT_U (L2_AP(AP_U))
487 #define L2_L_PROT_W (L2_AP(AP_W))
488 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
489
490 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
491 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
492
493 #define L2_S_PROT_U_generic (L2_AP(AP_U))
494 #define L2_S_PROT_W_generic (L2_AP(AP_W))
495 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
496
497 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
498 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
499 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
500
501 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
502 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
503
504 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
505 #define L1_S_PROTO_xscale (L1_TYPE_S)
506
507 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
508 #define L1_C_PROTO_xscale (L1_TYPE_C)
509
510 #define L2_L_PROTO (L2_TYPE_L)
511
512 #define L2_S_PROTO_generic (L2_TYPE_S)
513 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
514
515 /*
516 * User-visible names for the ones that vary with MMU class.
517 */
518
519 #if ARM_NMMUS > 1
520 /* More than one MMU class configured; use variables. */
521 #define L2_S_PROT_U pte_l2_s_prot_u
522 #define L2_S_PROT_W pte_l2_s_prot_w
523 #define L2_S_PROT_MASK pte_l2_s_prot_mask
524
525 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
526 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
527 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
528
529 #define L1_S_PROTO pte_l1_s_proto
530 #define L1_C_PROTO pte_l1_c_proto
531 #define L2_S_PROTO pte_l2_s_proto
532
533 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
534 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
535 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
536 #define L2_S_PROT_U L2_S_PROT_U_generic
537 #define L2_S_PROT_W L2_S_PROT_W_generic
538 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
539
540 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
541 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
542 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
543
544 #define L1_S_PROTO L1_S_PROTO_generic
545 #define L1_C_PROTO L1_C_PROTO_generic
546 #define L2_S_PROTO L2_S_PROTO_generic
547
548 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
549 #define pmap_zero_page(d) pmap_zero_page_generic((d))
550 #elif ARM_MMU_XSCALE == 1
551 #define L2_S_PROT_U L2_S_PROT_U_xscale
552 #define L2_S_PROT_W L2_S_PROT_W_xscale
553 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
554
555 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
556 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
557 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
558
559 #define L1_S_PROTO L1_S_PROTO_xscale
560 #define L1_C_PROTO L1_C_PROTO_xscale
561 #define L2_S_PROTO L2_S_PROTO_xscale
562
563 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
564 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
565 #endif /* ARM_NMMUS > 1 */
566
567 /*
568 * These macros return various bits based on kernel/user and protection.
569 * Note that the compiler will usually fold these at compile time.
570 */
571 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
572 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
573
574 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
575 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
576
577 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
578 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
579
580 /*
581 * Macros to test if a mapping is mappable with an L1 Section mapping
582 * or an L2 Large Page mapping.
583 */
584 #define L1_S_MAPPABLE_P(va, pa, size) \
585 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
586
587 #define L2_L_MAPPABLE_P(va, pa, size) \
588 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
589
590 /*
591 * Hooks for the pool allocator.
592 */
593 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
594
595 #endif /* _KERNEL */
596
597 #endif /* _ARM32_PMAP_H_ */
598