Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.80
      1 /*	$NetBSD: pmap.h,v 1.80 2007/02/21 22:59:38 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #include <arm/cpufunc.h>
     77 #include <uvm/uvm_object.h>
     78 #endif
     79 
     80 /*
     81  * a pmap describes a processes' 4GB virtual address space.  this
     82  * virtual address space can be broken up into 4096 1MB regions which
     83  * are described by L1 PTEs in the L1 table.
     84  *
     85  * There is a line drawn at KERNEL_BASE.  Everything below that line
     86  * changes when the VM context is switched.  Everything above that line
     87  * is the same no matter which VM context is running.  This is achieved
     88  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     89  * kernel L2 tables.
     90  *
     91  * The basic layout of the virtual address space thus looks like this:
     92  *
     93  *	0xffffffff
     94  *	.
     95  *	.
     96  *	.
     97  *	KERNEL_BASE
     98  *	--------------------
     99  *	.
    100  *	.
    101  *	.
    102  *	0x00000000
    103  */
    104 
    105 /*
    106  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    107  * A bucket size of 16 provides for 16MB of contiguous virtual address
    108  * space per l2_dtable. Most processes will, therefore, require only two or
    109  * three of these to map their whole working set.
    110  */
    111 #define	L2_BUCKET_LOG2	4
    112 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    113 
    114 /*
    115  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    116  * of l2_dtable structures required to track all possible page descriptors
    117  * mappable by an L1 translation table is given by the following constants:
    118  */
    119 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    120 #define	L2_SIZE		(1 << L2_LOG2)
    121 
    122 #ifndef _LOCORE
    123 
    124 struct l1_ttable;
    125 struct l2_dtable;
    126 
    127 /*
    128  * Track cache/tlb occupancy using the following structure
    129  */
    130 union pmap_cache_state {
    131 	struct {
    132 		union {
    133 			u_int8_t csu_cache_b[2];
    134 			u_int16_t csu_cache;
    135 		} cs_cache_u;
    136 
    137 		union {
    138 			u_int8_t csu_tlb_b[2];
    139 			u_int16_t csu_tlb;
    140 		} cs_tlb_u;
    141 	} cs_s;
    142 	u_int32_t cs_all;
    143 };
    144 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    145 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    146 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    147 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    148 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    149 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    150 
    151 /*
    152  * Assigned to cs_all to force cacheops to work for a particular pmap
    153  */
    154 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    155 
    156 /*
    157  * This structure is used by machine-dependent code to describe
    158  * static mappings of devices, created at bootstrap time.
    159  */
    160 struct pmap_devmap {
    161 	vaddr_t		pd_va;		/* virtual address */
    162 	paddr_t		pd_pa;		/* physical address */
    163 	psize_t		pd_size;	/* size of region */
    164 	vm_prot_t	pd_prot;	/* protection code */
    165 	int		pd_cache;	/* cache attributes */
    166 };
    167 
    168 /*
    169  * The pmap structure itself
    170  */
    171 struct pmap {
    172 	u_int8_t		pm_domain;
    173 	bool			pm_remove_all;
    174 	struct l1_ttable	*pm_l1;
    175 	union pmap_cache_state	pm_cstate;
    176 	struct uvm_object	pm_obj;
    177 #define	pm_lock pm_obj.vmobjlock
    178 	struct l2_dtable	*pm_l2[L2_SIZE];
    179 	struct pmap_statistics	pm_stats;
    180 	LIST_ENTRY(pmap)	pm_list;
    181 };
    182 
    183 typedef struct pmap *pmap_t;
    184 
    185 /*
    186  * Physical / virtual address structure. In a number of places (particularly
    187  * during bootstrapping) we need to keep track of the physical and virtual
    188  * addresses of various pages
    189  */
    190 typedef struct pv_addr {
    191 	SLIST_ENTRY(pv_addr) pv_list;
    192 	paddr_t pv_pa;
    193 	vaddr_t pv_va;
    194 } pv_addr_t;
    195 
    196 /*
    197  * Determine various modes for PTEs (user vs. kernel, cacheable
    198  * vs. non-cacheable).
    199  */
    200 #define	PTE_KERNEL	0
    201 #define	PTE_USER	1
    202 #define	PTE_NOCACHE	0
    203 #define	PTE_CACHE	1
    204 #define	PTE_PAGETABLE	2
    205 
    206 /*
    207  * Flags that indicate attributes of pages or mappings of pages.
    208  *
    209  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    210  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    211  * pv_entry's for each page.  They live in the same "namespace" so
    212  * that we can clear multiple attributes at a time.
    213  *
    214  * Note the "non-cacheable" flag generally means the page has
    215  * multiple mappings in a given address space.
    216  */
    217 #define	PVF_MOD		0x01		/* page is modified */
    218 #define	PVF_REF		0x02		/* page is referenced */
    219 #define	PVF_WIRED	0x04		/* mapping is wired */
    220 #define	PVF_WRITE	0x08		/* mapping is writable */
    221 #define	PVF_EXEC	0x10		/* mapping is executable */
    222 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    223 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    224 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    225 
    226 /*
    227  * Commonly referenced structures
    228  */
    229 extern struct pmap	kernel_pmap_store;
    230 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    231 
    232 /*
    233  * Macros that we need to export
    234  */
    235 #define pmap_kernel()			(&kernel_pmap_store)
    236 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    237 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    238 
    239 #define	pmap_remove(pmap,sva,eva)	pmap_do_remove((pmap),(sva),(eva),0)
    240 
    241 #define	pmap_is_modified(pg)	\
    242 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    243 #define	pmap_is_referenced(pg)	\
    244 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    245 
    246 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    247 
    248 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    249 
    250 /*
    251  * Functions that we need to export
    252  */
    253 void	pmap_procwr(struct proc *, vaddr_t, int);
    254 void	pmap_remove_all(pmap_t);
    255 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    256 
    257 #define	PMAP_NEED_PROCWR
    258 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    259 
    260 /* Functions we use internally. */
    261 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
    262 
    263 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    264 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    265 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    266 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    267 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    268 
    269 void	pmap_debug(int);
    270 void	pmap_postinit(void);
    271 
    272 void	vector_page_setprot(int);
    273 
    274 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    275 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    276 
    277 /* Bootstrapping routines. */
    278 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    279 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    280 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    281 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    282 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    283 void	pmap_devmap_register(const struct pmap_devmap *);
    284 
    285 /*
    286  * Special page zero routine for use by the idle loop (no cache cleans).
    287  */
    288 bool	pmap_pageidlezero(paddr_t);
    289 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    290 
    291 /*
    292  * The current top of kernel VM
    293  */
    294 extern vaddr_t	pmap_curmaxkvaddr;
    295 
    296 /*
    297  * Useful macros and constants
    298  */
    299 
    300 /* Virtual address to page table entry */
    301 static inline pt_entry_t *
    302 vtopte(vaddr_t va)
    303 {
    304 	pd_entry_t *pdep;
    305 	pt_entry_t *ptep;
    306 
    307 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
    308 		return (NULL);
    309 	return (ptep);
    310 }
    311 
    312 /*
    313  * Virtual address to physical address
    314  */
    315 static inline paddr_t
    316 vtophys(vaddr_t va)
    317 {
    318 	paddr_t pa;
    319 
    320 	if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    321 		return (0);	/* XXXSCW: Panic? */
    322 
    323 	return (pa);
    324 }
    325 
    326 /*
    327  * The new pmap ensures that page-tables are always mapping Write-Thru.
    328  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    329  * on every change.
    330  *
    331  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    332  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    333  * and if there is the chance for PTE syncs to be needed, we define
    334  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    335  * the code.
    336  */
    337 extern int pmap_needs_pte_sync;
    338 #if defined(_KERNEL_OPT)
    339 /*
    340  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    341  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    342  * this at compile time.
    343  */
    344 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
    345 #define	PMAP_NEEDS_PTE_SYNC	1
    346 #define	PMAP_INCLUDE_PTE_SYNC
    347 #elif (ARM_MMU_SA1 == 0)
    348 #define	PMAP_NEEDS_PTE_SYNC	0
    349 #endif
    350 #endif /* _KERNEL_OPT */
    351 
    352 /*
    353  * Provide a fallback in case we were not able to determine it at
    354  * compile-time.
    355  */
    356 #ifndef PMAP_NEEDS_PTE_SYNC
    357 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    358 #define	PMAP_INCLUDE_PTE_SYNC
    359 #endif
    360 
    361 #define	PTE_SYNC(pte)							\
    362 do {									\
    363 	if (PMAP_NEEDS_PTE_SYNC)					\
    364 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
    365 } while (/*CONSTCOND*/0)
    366 
    367 #define	PTE_SYNC_RANGE(pte, cnt)					\
    368 do {									\
    369 	if (PMAP_NEEDS_PTE_SYNC) {					\
    370 		cpu_dcache_wb_range((vaddr_t)(pte),			\
    371 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
    372 	}								\
    373 } while (/*CONSTCOND*/0)
    374 
    375 #define	l1pte_valid(pde)	((pde) != 0)
    376 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    377 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    378 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    379 
    380 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    381 #define	l2pte_valid(pte)	((pte) != 0)
    382 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    383 #define l2pte_minidata(pte)	(((pte) & \
    384 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
    385 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
    386 
    387 /* L1 and L2 page table macros */
    388 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    389 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    390 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    391 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    392 
    393 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    394 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    395 
    396 /* Size of the kernel part of the L1 page table */
    397 #define KERNEL_PD_SIZE	\
    398 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    399 
    400 /************************* ARM MMU configuration *****************************/
    401 
    402 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    403 void	pmap_copy_page_generic(paddr_t, paddr_t);
    404 void	pmap_zero_page_generic(paddr_t);
    405 
    406 void	pmap_pte_init_generic(void);
    407 #if defined(CPU_ARM8)
    408 void	pmap_pte_init_arm8(void);
    409 #endif
    410 #if defined(CPU_ARM9)
    411 void	pmap_pte_init_arm9(void);
    412 #endif /* CPU_ARM9 */
    413 #if defined(CPU_ARM10)
    414 void	pmap_pte_init_arm10(void);
    415 #endif /* CPU_ARM10 */
    416 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    417 
    418 #if ARM_MMU_SA1 == 1
    419 void	pmap_pte_init_sa1(void);
    420 #endif /* ARM_MMU_SA1 == 1 */
    421 
    422 #if ARM_MMU_XSCALE == 1
    423 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    424 void	pmap_zero_page_xscale(paddr_t);
    425 
    426 void	pmap_pte_init_xscale(void);
    427 
    428 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    429 
    430 #define	PMAP_UAREA(va)		pmap_uarea(va)
    431 void	pmap_uarea(vaddr_t);
    432 #endif /* ARM_MMU_XSCALE == 1 */
    433 
    434 extern pt_entry_t		pte_l1_s_cache_mode;
    435 extern pt_entry_t		pte_l1_s_cache_mask;
    436 
    437 extern pt_entry_t		pte_l2_l_cache_mode;
    438 extern pt_entry_t		pte_l2_l_cache_mask;
    439 
    440 extern pt_entry_t		pte_l2_s_cache_mode;
    441 extern pt_entry_t		pte_l2_s_cache_mask;
    442 
    443 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    444 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    445 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    446 
    447 extern pt_entry_t		pte_l2_s_prot_u;
    448 extern pt_entry_t		pte_l2_s_prot_w;
    449 extern pt_entry_t		pte_l2_s_prot_mask;
    450 
    451 extern pt_entry_t		pte_l1_s_proto;
    452 extern pt_entry_t		pte_l1_c_proto;
    453 extern pt_entry_t		pte_l2_s_proto;
    454 
    455 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    456 extern void (*pmap_zero_page_func)(paddr_t);
    457 
    458 #endif /* !_LOCORE */
    459 
    460 /*****************************************************************************/
    461 
    462 /*
    463  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    464  */
    465 #define PMAP_CACHE_VIVT
    466 
    467 /*
    468  * Definitions for MMU domains
    469  */
    470 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    471 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    472 
    473 /*
    474  * These macros define the various bit masks in the PTE.
    475  *
    476  * We use these macros since we use different bits on different processor
    477  * models.
    478  */
    479 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    480 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    481 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    482 
    483 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    484 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    485 
    486 #define	L2_L_PROT_U		(L2_AP(AP_U))
    487 #define	L2_L_PROT_W		(L2_AP(AP_W))
    488 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    489 
    490 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    491 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    492 
    493 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    494 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    495 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    496 
    497 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    498 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    499 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    500 
    501 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    502 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    503 
    504 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    505 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    506 
    507 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    508 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    509 
    510 #define	L2_L_PROTO		(L2_TYPE_L)
    511 
    512 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    513 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    514 
    515 /*
    516  * User-visible names for the ones that vary with MMU class.
    517  */
    518 
    519 #if ARM_NMMUS > 1
    520 /* More than one MMU class configured; use variables. */
    521 #define	L2_S_PROT_U		pte_l2_s_prot_u
    522 #define	L2_S_PROT_W		pte_l2_s_prot_w
    523 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    524 
    525 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    526 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    527 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    528 
    529 #define	L1_S_PROTO		pte_l1_s_proto
    530 #define	L1_C_PROTO		pte_l1_c_proto
    531 #define	L2_S_PROTO		pte_l2_s_proto
    532 
    533 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    534 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    535 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    536 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    537 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    538 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    539 
    540 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    541 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    542 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    543 
    544 #define	L1_S_PROTO		L1_S_PROTO_generic
    545 #define	L1_C_PROTO		L1_C_PROTO_generic
    546 #define	L2_S_PROTO		L2_S_PROTO_generic
    547 
    548 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    549 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    550 #elif ARM_MMU_XSCALE == 1
    551 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    552 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    553 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    554 
    555 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    556 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    557 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    558 
    559 #define	L1_S_PROTO		L1_S_PROTO_xscale
    560 #define	L1_C_PROTO		L1_C_PROTO_xscale
    561 #define	L2_S_PROTO		L2_S_PROTO_xscale
    562 
    563 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    564 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    565 #endif /* ARM_NMMUS > 1 */
    566 
    567 /*
    568  * These macros return various bits based on kernel/user and protection.
    569  * Note that the compiler will usually fold these at compile time.
    570  */
    571 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    572 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    573 
    574 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    575 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    576 
    577 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    578 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    579 
    580 /*
    581  * Macros to test if a mapping is mappable with an L1 Section mapping
    582  * or an L2 Large Page mapping.
    583  */
    584 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    585 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    586 
    587 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    588 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    589 
    590 /*
    591  * Hooks for the pool allocator.
    592  */
    593 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    594 
    595 #endif /* _KERNEL */
    596 
    597 #endif	/* _ARM32_PMAP_H_ */
    598