Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.82
      1 /*	$NetBSD: pmap.h,v 1.82 2007/09/15 09:25:22 scw Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #include <arm/cpufunc.h>
     77 #include <uvm/uvm_object.h>
     78 #endif
     79 
     80 /*
     81  * a pmap describes a processes' 4GB virtual address space.  this
     82  * virtual address space can be broken up into 4096 1MB regions which
     83  * are described by L1 PTEs in the L1 table.
     84  *
     85  * There is a line drawn at KERNEL_BASE.  Everything below that line
     86  * changes when the VM context is switched.  Everything above that line
     87  * is the same no matter which VM context is running.  This is achieved
     88  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     89  * kernel L2 tables.
     90  *
     91  * The basic layout of the virtual address space thus looks like this:
     92  *
     93  *	0xffffffff
     94  *	.
     95  *	.
     96  *	.
     97  *	KERNEL_BASE
     98  *	--------------------
     99  *	.
    100  *	.
    101  *	.
    102  *	0x00000000
    103  */
    104 
    105 /*
    106  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    107  * A bucket size of 16 provides for 16MB of contiguous virtual address
    108  * space per l2_dtable. Most processes will, therefore, require only two or
    109  * three of these to map their whole working set.
    110  */
    111 #define	L2_BUCKET_LOG2	4
    112 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    113 
    114 /*
    115  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    116  * of l2_dtable structures required to track all possible page descriptors
    117  * mappable by an L1 translation table is given by the following constants:
    118  */
    119 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    120 #define	L2_SIZE		(1 << L2_LOG2)
    121 
    122 #ifndef _LOCORE
    123 
    124 struct l1_ttable;
    125 struct l2_dtable;
    126 
    127 /*
    128  * Track cache/tlb occupancy using the following structure
    129  */
    130 union pmap_cache_state {
    131 	struct {
    132 		union {
    133 			u_int8_t csu_cache_b[2];
    134 			u_int16_t csu_cache;
    135 		} cs_cache_u;
    136 
    137 		union {
    138 			u_int8_t csu_tlb_b[2];
    139 			u_int16_t csu_tlb;
    140 		} cs_tlb_u;
    141 	} cs_s;
    142 	u_int32_t cs_all;
    143 };
    144 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    145 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    146 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    147 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    148 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    149 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    150 
    151 /*
    152  * Assigned to cs_all to force cacheops to work for a particular pmap
    153  */
    154 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    155 
    156 /*
    157  * This structure is used by machine-dependent code to describe
    158  * static mappings of devices, created at bootstrap time.
    159  */
    160 struct pmap_devmap {
    161 	vaddr_t		pd_va;		/* virtual address */
    162 	paddr_t		pd_pa;		/* physical address */
    163 	psize_t		pd_size;	/* size of region */
    164 	vm_prot_t	pd_prot;	/* protection code */
    165 	int		pd_cache;	/* cache attributes */
    166 };
    167 
    168 /*
    169  * The pmap structure itself
    170  */
    171 struct pmap {
    172 	u_int8_t		pm_domain;
    173 	bool			pm_remove_all;
    174 	bool			pm_activated;
    175 	struct l1_ttable	*pm_l1;
    176 	pd_entry_t		*pm_pl1vec;
    177 	pd_entry_t		pm_l1vec;
    178 	union pmap_cache_state	pm_cstate;
    179 	struct uvm_object	pm_obj;
    180 #define	pm_lock pm_obj.vmobjlock
    181 	struct l2_dtable	*pm_l2[L2_SIZE];
    182 	struct pmap_statistics	pm_stats;
    183 	LIST_ENTRY(pmap)	pm_list;
    184 };
    185 
    186 typedef struct pmap *pmap_t;
    187 
    188 /*
    189  * Physical / virtual address structure. In a number of places (particularly
    190  * during bootstrapping) we need to keep track of the physical and virtual
    191  * addresses of various pages
    192  */
    193 typedef struct pv_addr {
    194 	SLIST_ENTRY(pv_addr) pv_list;
    195 	paddr_t pv_pa;
    196 	vaddr_t pv_va;
    197 } pv_addr_t;
    198 
    199 /*
    200  * Determine various modes for PTEs (user vs. kernel, cacheable
    201  * vs. non-cacheable).
    202  */
    203 #define	PTE_KERNEL	0
    204 #define	PTE_USER	1
    205 #define	PTE_NOCACHE	0
    206 #define	PTE_CACHE	1
    207 #define	PTE_PAGETABLE	2
    208 
    209 /*
    210  * Flags that indicate attributes of pages or mappings of pages.
    211  *
    212  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    213  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    214  * pv_entry's for each page.  They live in the same "namespace" so
    215  * that we can clear multiple attributes at a time.
    216  *
    217  * Note the "non-cacheable" flag generally means the page has
    218  * multiple mappings in a given address space.
    219  */
    220 #define	PVF_MOD		0x01		/* page is modified */
    221 #define	PVF_REF		0x02		/* page is referenced */
    222 #define	PVF_WIRED	0x04		/* mapping is wired */
    223 #define	PVF_WRITE	0x08		/* mapping is writable */
    224 #define	PVF_EXEC	0x10		/* mapping is executable */
    225 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    226 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    227 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    228 
    229 /*
    230  * Commonly referenced structures
    231  */
    232 extern struct pmap	kernel_pmap_store;
    233 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    234 
    235 /*
    236  * Macros that we need to export
    237  */
    238 #define pmap_kernel()			(&kernel_pmap_store)
    239 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    240 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    241 
    242 #define	pmap_remove(pmap,sva,eva)	pmap_do_remove((pmap),(sva),(eva),0)
    243 
    244 #define	pmap_is_modified(pg)	\
    245 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    246 #define	pmap_is_referenced(pg)	\
    247 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    248 
    249 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    250 
    251 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    252 
    253 /*
    254  * Functions that we need to export
    255  */
    256 void	pmap_procwr(struct proc *, vaddr_t, int);
    257 void	pmap_remove_all(pmap_t);
    258 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    259 
    260 #define	PMAP_NEED_PROCWR
    261 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    262 
    263 /* Functions we use internally. */
    264 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
    265 
    266 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    267 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    268 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    269 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    270 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    271 
    272 void	pmap_debug(int);
    273 void	pmap_postinit(void);
    274 
    275 void	vector_page_setprot(int);
    276 
    277 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    278 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    279 
    280 /* Bootstrapping routines. */
    281 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    282 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    283 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    284 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    285 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    286 void	pmap_devmap_register(const struct pmap_devmap *);
    287 
    288 /*
    289  * Special page zero routine for use by the idle loop (no cache cleans).
    290  */
    291 bool	pmap_pageidlezero(paddr_t);
    292 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    293 
    294 /*
    295  * The current top of kernel VM
    296  */
    297 extern vaddr_t	pmap_curmaxkvaddr;
    298 
    299 /*
    300  * Useful macros and constants
    301  */
    302 
    303 /* Virtual address to page table entry */
    304 static inline pt_entry_t *
    305 vtopte(vaddr_t va)
    306 {
    307 	pd_entry_t *pdep;
    308 	pt_entry_t *ptep;
    309 
    310 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
    311 		return (NULL);
    312 	return (ptep);
    313 }
    314 
    315 /*
    316  * Virtual address to physical address
    317  */
    318 static inline paddr_t
    319 vtophys(vaddr_t va)
    320 {
    321 	paddr_t pa;
    322 
    323 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
    324 		return (0);	/* XXXSCW: Panic? */
    325 
    326 	return (pa);
    327 }
    328 
    329 /*
    330  * The new pmap ensures that page-tables are always mapping Write-Thru.
    331  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    332  * on every change.
    333  *
    334  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    335  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    336  * and if there is the chance for PTE syncs to be needed, we define
    337  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    338  * the code.
    339  */
    340 extern int pmap_needs_pte_sync;
    341 #if defined(_KERNEL_OPT)
    342 /*
    343  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    344  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    345  * this at compile time.
    346  */
    347 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
    348 #define	PMAP_NEEDS_PTE_SYNC	1
    349 #define	PMAP_INCLUDE_PTE_SYNC
    350 #elif (ARM_MMU_SA1 == 0)
    351 #define	PMAP_NEEDS_PTE_SYNC	0
    352 #endif
    353 #endif /* _KERNEL_OPT */
    354 
    355 /*
    356  * Provide a fallback in case we were not able to determine it at
    357  * compile-time.
    358  */
    359 #ifndef PMAP_NEEDS_PTE_SYNC
    360 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    361 #define	PMAP_INCLUDE_PTE_SYNC
    362 #endif
    363 
    364 #define	PTE_SYNC(pte)							\
    365 do {									\
    366 	if (PMAP_NEEDS_PTE_SYNC)					\
    367 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
    368 } while (/*CONSTCOND*/0)
    369 
    370 #define	PTE_SYNC_RANGE(pte, cnt)					\
    371 do {									\
    372 	if (PMAP_NEEDS_PTE_SYNC) {					\
    373 		cpu_dcache_wb_range((vaddr_t)(pte),			\
    374 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
    375 	}								\
    376 } while (/*CONSTCOND*/0)
    377 
    378 #define	l1pte_valid(pde)	((pde) != 0)
    379 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    380 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    381 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    382 
    383 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    384 #define	l2pte_valid(pte)	((pte) != 0)
    385 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    386 #define l2pte_minidata(pte)	(((pte) & \
    387 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
    388 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
    389 
    390 /* L1 and L2 page table macros */
    391 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    392 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    393 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    394 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    395 
    396 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    397 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    398 
    399 /* Size of the kernel part of the L1 page table */
    400 #define KERNEL_PD_SIZE	\
    401 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    402 
    403 /************************* ARM MMU configuration *****************************/
    404 
    405 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    406 void	pmap_copy_page_generic(paddr_t, paddr_t);
    407 void	pmap_zero_page_generic(paddr_t);
    408 
    409 void	pmap_pte_init_generic(void);
    410 #if defined(CPU_ARM8)
    411 void	pmap_pte_init_arm8(void);
    412 #endif
    413 #if defined(CPU_ARM9)
    414 void	pmap_pte_init_arm9(void);
    415 #endif /* CPU_ARM9 */
    416 #if defined(CPU_ARM10)
    417 void	pmap_pte_init_arm10(void);
    418 #endif /* CPU_ARM10 */
    419 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    420 
    421 #if ARM_MMU_SA1 == 1
    422 void	pmap_pte_init_sa1(void);
    423 #endif /* ARM_MMU_SA1 == 1 */
    424 
    425 #if ARM_MMU_XSCALE == 1
    426 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    427 void	pmap_zero_page_xscale(paddr_t);
    428 
    429 void	pmap_pte_init_xscale(void);
    430 
    431 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    432 
    433 #define	PMAP_UAREA(va)		pmap_uarea(va)
    434 void	pmap_uarea(vaddr_t);
    435 #endif /* ARM_MMU_XSCALE == 1 */
    436 
    437 extern pt_entry_t		pte_l1_s_cache_mode;
    438 extern pt_entry_t		pte_l1_s_cache_mask;
    439 
    440 extern pt_entry_t		pte_l2_l_cache_mode;
    441 extern pt_entry_t		pte_l2_l_cache_mask;
    442 
    443 extern pt_entry_t		pte_l2_s_cache_mode;
    444 extern pt_entry_t		pte_l2_s_cache_mask;
    445 
    446 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    447 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    448 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    449 
    450 extern pt_entry_t		pte_l2_s_prot_u;
    451 extern pt_entry_t		pte_l2_s_prot_w;
    452 extern pt_entry_t		pte_l2_s_prot_mask;
    453 
    454 extern pt_entry_t		pte_l1_s_proto;
    455 extern pt_entry_t		pte_l1_c_proto;
    456 extern pt_entry_t		pte_l2_s_proto;
    457 
    458 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    459 extern void (*pmap_zero_page_func)(paddr_t);
    460 
    461 #endif /* !_LOCORE */
    462 
    463 /*****************************************************************************/
    464 
    465 /*
    466  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
    467  */
    468 #define PMAP_CACHE_VIVT
    469 
    470 /*
    471  * Definitions for MMU domains
    472  */
    473 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    474 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    475 
    476 /*
    477  * These macros define the various bit masks in the PTE.
    478  *
    479  * We use these macros since we use different bits on different processor
    480  * models.
    481  */
    482 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    483 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    484 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    485 
    486 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    487 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
    488 
    489 #define	L2_L_PROT_U		(L2_AP(AP_U))
    490 #define	L2_L_PROT_W		(L2_AP(AP_W))
    491 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    492 
    493 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    494 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
    495 
    496 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    497 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    498 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    499 
    500 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    501 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    502 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    503 
    504 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    505 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
    506 
    507 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    508 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    509 
    510 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    511 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    512 
    513 #define	L2_L_PROTO		(L2_TYPE_L)
    514 
    515 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    516 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
    517 
    518 /*
    519  * User-visible names for the ones that vary with MMU class.
    520  */
    521 
    522 #if ARM_NMMUS > 1
    523 /* More than one MMU class configured; use variables. */
    524 #define	L2_S_PROT_U		pte_l2_s_prot_u
    525 #define	L2_S_PROT_W		pte_l2_s_prot_w
    526 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    527 
    528 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    529 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    530 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    531 
    532 #define	L1_S_PROTO		pte_l1_s_proto
    533 #define	L1_C_PROTO		pte_l1_c_proto
    534 #define	L2_S_PROTO		pte_l2_s_proto
    535 
    536 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    537 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    538 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
    539 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    540 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    541 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    542 
    543 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    544 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    545 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    546 
    547 #define	L1_S_PROTO		L1_S_PROTO_generic
    548 #define	L1_C_PROTO		L1_C_PROTO_generic
    549 #define	L2_S_PROTO		L2_S_PROTO_generic
    550 
    551 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    552 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    553 #elif ARM_MMU_XSCALE == 1
    554 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    555 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    556 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    557 
    558 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    559 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    560 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    561 
    562 #define	L1_S_PROTO		L1_S_PROTO_xscale
    563 #define	L1_C_PROTO		L1_C_PROTO_xscale
    564 #define	L2_S_PROTO		L2_S_PROTO_xscale
    565 
    566 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    567 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    568 #endif /* ARM_NMMUS > 1 */
    569 
    570 /*
    571  * These macros return various bits based on kernel/user and protection.
    572  * Note that the compiler will usually fold these at compile time.
    573  */
    574 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    575 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    576 
    577 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    578 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    579 
    580 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    581 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    582 
    583 /*
    584  * Macros to test if a mapping is mappable with an L1 Section mapping
    585  * or an L2 Large Page mapping.
    586  */
    587 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    588 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    589 
    590 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    591 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    592 
    593 /*
    594  * Hooks for the pool allocator.
    595  */
    596 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    597 
    598 #endif /* _KERNEL */
    599 
    600 #endif	/* _ARM32_PMAP_H_ */
    601