Home | History | Annotate | Line # | Download | only in arm32
pmap.h revision 1.87
      1 /*	$NetBSD: pmap.h,v 1.87 2008/07/21 07:33:54 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1994,1995 Mark Brinicombe.
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Mark Brinicombe
     53  * 4. The name of the author may not be used to endorse or promote products
     54  *    derived from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 #ifndef	_ARM32_PMAP_H_
     69 #define	_ARM32_PMAP_H_
     70 
     71 #ifdef _KERNEL
     72 
     73 #include <arm/cpuconf.h>
     74 #include <arm/arm32/pte.h>
     75 #ifndef _LOCORE
     76 #if defined(_KERNEL_OPT)
     77 #include "opt_arm32_pmap.h"
     78 #endif
     79 #include <arm/cpufunc.h>
     80 #include <uvm/uvm_object.h>
     81 #endif
     82 
     83 /*
     84  * a pmap describes a processes' 4GB virtual address space.  this
     85  * virtual address space can be broken up into 4096 1MB regions which
     86  * are described by L1 PTEs in the L1 table.
     87  *
     88  * There is a line drawn at KERNEL_BASE.  Everything below that line
     89  * changes when the VM context is switched.  Everything above that line
     90  * is the same no matter which VM context is running.  This is achieved
     91  * by making the L1 PTEs for those slots above KERNEL_BASE reference
     92  * kernel L2 tables.
     93  *
     94  * The basic layout of the virtual address space thus looks like this:
     95  *
     96  *	0xffffffff
     97  *	.
     98  *	.
     99  *	.
    100  *	KERNEL_BASE
    101  *	--------------------
    102  *	.
    103  *	.
    104  *	.
    105  *	0x00000000
    106  */
    107 
    108 /*
    109  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
    110  * A bucket size of 16 provides for 16MB of contiguous virtual address
    111  * space per l2_dtable. Most processes will, therefore, require only two or
    112  * three of these to map their whole working set.
    113  */
    114 #define	L2_BUCKET_LOG2	4
    115 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
    116 
    117 /*
    118  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
    119  * of l2_dtable structures required to track all possible page descriptors
    120  * mappable by an L1 translation table is given by the following constants:
    121  */
    122 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
    123 #define	L2_SIZE		(1 << L2_LOG2)
    124 
    125 #ifndef _LOCORE
    126 
    127 struct l1_ttable;
    128 struct l2_dtable;
    129 
    130 /*
    131  * Track cache/tlb occupancy using the following structure
    132  */
    133 union pmap_cache_state {
    134 	struct {
    135 		union {
    136 			u_int8_t csu_cache_b[2];
    137 			u_int16_t csu_cache;
    138 		} cs_cache_u;
    139 
    140 		union {
    141 			u_int8_t csu_tlb_b[2];
    142 			u_int16_t csu_tlb;
    143 		} cs_tlb_u;
    144 	} cs_s;
    145 	u_int32_t cs_all;
    146 };
    147 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
    148 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
    149 #define	cs_cache	cs_s.cs_cache_u.csu_cache
    150 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
    151 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
    152 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
    153 
    154 /*
    155  * Assigned to cs_all to force cacheops to work for a particular pmap
    156  */
    157 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
    158 
    159 /*
    160  * This structure is used by machine-dependent code to describe
    161  * static mappings of devices, created at bootstrap time.
    162  */
    163 struct pmap_devmap {
    164 	vaddr_t		pd_va;		/* virtual address */
    165 	paddr_t		pd_pa;		/* physical address */
    166 	psize_t		pd_size;	/* size of region */
    167 	vm_prot_t	pd_prot;	/* protection code */
    168 	int		pd_cache;	/* cache attributes */
    169 };
    170 
    171 /*
    172  * The pmap structure itself
    173  */
    174 struct pmap {
    175 	u_int8_t		pm_domain;
    176 	bool			pm_remove_all;
    177 	bool			pm_activated;
    178 	struct l1_ttable	*pm_l1;
    179 	pd_entry_t		*pm_pl1vec;
    180 	pd_entry_t		pm_l1vec;
    181 	union pmap_cache_state	pm_cstate;
    182 	struct uvm_object	pm_obj;
    183 #define	pm_lock pm_obj.vmobjlock
    184 	struct l2_dtable	*pm_l2[L2_SIZE];
    185 	struct pmap_statistics	pm_stats;
    186 	LIST_ENTRY(pmap)	pm_list;
    187 };
    188 
    189 typedef struct pmap *pmap_t;
    190 
    191 /*
    192  * Physical / virtual address structure. In a number of places (particularly
    193  * during bootstrapping) we need to keep track of the physical and virtual
    194  * addresses of various pages
    195  */
    196 typedef struct pv_addr {
    197 	SLIST_ENTRY(pv_addr) pv_list;
    198 	paddr_t pv_pa;
    199 	vaddr_t pv_va;
    200 	vsize_t pv_size;
    201 } pv_addr_t;
    202 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
    203 
    204 extern pv_addrqh_t pmap_freeq;
    205 extern pv_addr_t kernelpages;
    206 extern pv_addr_t systempage;
    207 extern pv_addr_t kernel_l1pt;
    208 
    209 /*
    210  * Determine various modes for PTEs (user vs. kernel, cacheable
    211  * vs. non-cacheable).
    212  */
    213 #define	PTE_KERNEL	0
    214 #define	PTE_USER	1
    215 #define	PTE_NOCACHE	0
    216 #define	PTE_CACHE	1
    217 #define	PTE_PAGETABLE	2
    218 
    219 /*
    220  * Flags that indicate attributes of pages or mappings of pages.
    221  *
    222  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
    223  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
    224  * pv_entry's for each page.  They live in the same "namespace" so
    225  * that we can clear multiple attributes at a time.
    226  *
    227  * Note the "non-cacheable" flag generally means the page has
    228  * multiple mappings in a given address space.
    229  */
    230 #define	PVF_MOD		0x01		/* page is modified */
    231 #define	PVF_REF		0x02		/* page is referenced */
    232 #define	PVF_WIRED	0x04		/* mapping is wired */
    233 #define	PVF_WRITE	0x08		/* mapping is writable */
    234 #define	PVF_EXEC	0x10		/* mapping is executable */
    235 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
    236 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
    237 #define	PVF_COLORED	0x80		/* page has or had a color */
    238 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
    239 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
    240 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
    241 #define	PVF_NC		(PVF_UNC|PVF_KNC)
    242 
    243 /*
    244  * Commonly referenced structures
    245  */
    246 extern struct pmap	kernel_pmap_store;
    247 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
    248 
    249 /*
    250  * Macros that we need to export
    251  */
    252 #define pmap_kernel()			(&kernel_pmap_store)
    253 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    254 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    255 
    256 #define	pmap_remove(pmap,sva,eva)	pmap_do_remove((pmap),(sva),(eva),0)
    257 
    258 #define	pmap_is_modified(pg)	\
    259 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
    260 #define	pmap_is_referenced(pg)	\
    261 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
    262 #define	pmap_is_page_colored_p(pg)	\
    263 	(((pg)->mdpage.pvh_attrs & PVF_COLORED) != 0)
    264 
    265 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
    266 
    267 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
    268 
    269 /*
    270  * Functions that we need to export
    271  */
    272 void	pmap_procwr(struct proc *, vaddr_t, int);
    273 void	pmap_remove_all(pmap_t);
    274 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
    275 
    276 #define	PMAP_NEED_PROCWR
    277 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    278 #define	PMAP_KMPAGE	0x00000040	/* Make uvm tell us when it allocates
    279 					 a page to be used for kernel memory */
    280 
    281 
    282 #if ARM_MMU_V6 > 0
    283 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
    284 void	pmap_prefer(vaddr_t, vaddr_t *, int);
    285 #endif
    286 
    287 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
    288 
    289 /* Functions we use internally. */
    290 #ifdef PMAP_STEAL_MEMORY
    291 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
    292 void	pmap_boot_pageadd(pv_addr_t *);
    293 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    294 #endif
    295 void	pmap_bootstrap(vaddr_t, vaddr_t);
    296 
    297 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
    298 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
    299 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
    300 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
    301 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
    302 
    303 void	pmap_debug(int);
    304 void	pmap_postinit(void);
    305 
    306 void	vector_page_setprot(int);
    307 
    308 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
    309 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
    310 
    311 /* Bootstrapping routines. */
    312 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
    313 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
    314 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
    315 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
    316 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
    317 void	pmap_devmap_register(const struct pmap_devmap *);
    318 
    319 /*
    320  * Special page zero routine for use by the idle loop (no cache cleans).
    321  */
    322 bool	pmap_pageidlezero(paddr_t);
    323 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    324 
    325 /*
    326  * used by dumpsys to record the PA of the L1 table
    327  */
    328 uint32_t pmap_kernel_L1_addr(void);
    329 /*
    330  * The current top of kernel VM
    331  */
    332 extern vaddr_t	pmap_curmaxkvaddr;
    333 
    334 /*
    335  * Useful macros and constants
    336  */
    337 
    338 /* Virtual address to page table entry */
    339 static inline pt_entry_t *
    340 vtopte(vaddr_t va)
    341 {
    342 	pd_entry_t *pdep;
    343 	pt_entry_t *ptep;
    344 
    345 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
    346 		return (NULL);
    347 	return (ptep);
    348 }
    349 
    350 /*
    351  * Virtual address to physical address
    352  */
    353 static inline paddr_t
    354 vtophys(vaddr_t va)
    355 {
    356 	paddr_t pa;
    357 
    358 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
    359 		return (0);	/* XXXSCW: Panic? */
    360 
    361 	return (pa);
    362 }
    363 
    364 /*
    365  * The new pmap ensures that page-tables are always mapping Write-Thru.
    366  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
    367  * on every change.
    368  *
    369  * Unfortunately, not all CPUs have a write-through cache mode.  So we
    370  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
    371  * and if there is the chance for PTE syncs to be needed, we define
    372  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
    373  * the code.
    374  */
    375 extern int pmap_needs_pte_sync;
    376 #if defined(_KERNEL_OPT)
    377 /*
    378  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
    379  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
    380  * this at compile time.
    381  */
    382 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
    383 #define	PMAP_NEEDS_PTE_SYNC	1
    384 #define	PMAP_INCLUDE_PTE_SYNC
    385 #elif (ARM_MMU_SA1 == 0)
    386 #define	PMAP_NEEDS_PTE_SYNC	0
    387 #endif
    388 #endif /* _KERNEL_OPT */
    389 
    390 /*
    391  * Provide a fallback in case we were not able to determine it at
    392  * compile-time.
    393  */
    394 #ifndef PMAP_NEEDS_PTE_SYNC
    395 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
    396 #define	PMAP_INCLUDE_PTE_SYNC
    397 #endif
    398 
    399 #define	PTE_SYNC(pte)							\
    400 do {									\
    401 	if (PMAP_NEEDS_PTE_SYNC)					\
    402 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
    403 } while (/*CONSTCOND*/0)
    404 
    405 #define	PTE_SYNC_RANGE(pte, cnt)					\
    406 do {									\
    407 	if (PMAP_NEEDS_PTE_SYNC) {					\
    408 		cpu_dcache_wb_range((vaddr_t)(pte),			\
    409 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
    410 	}								\
    411 } while (/*CONSTCOND*/0)
    412 
    413 #define	l1pte_valid(pde)	((pde) != 0)
    414 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
    415 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
    416 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
    417 
    418 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
    419 #define	l2pte_valid(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
    420 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
    421 #define l2pte_minidata(pte)	(((pte) & \
    422 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
    423 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
    424 
    425 /* L1 and L2 page table macros */
    426 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
    427 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
    428 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
    429 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
    430 
    431 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
    432 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
    433 
    434 /* Size of the kernel part of the L1 page table */
    435 #define KERNEL_PD_SIZE	\
    436 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
    437 
    438 /************************* ARM MMU configuration *****************************/
    439 
    440 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
    441 void	pmap_copy_page_generic(paddr_t, paddr_t);
    442 void	pmap_zero_page_generic(paddr_t);
    443 
    444 void	pmap_pte_init_generic(void);
    445 #if defined(CPU_ARM8)
    446 void	pmap_pte_init_arm8(void);
    447 #endif
    448 #if defined(CPU_ARM9)
    449 void	pmap_pte_init_arm9(void);
    450 #endif /* CPU_ARM9 */
    451 #if defined(CPU_ARM10)
    452 void	pmap_pte_init_arm10(void);
    453 #endif /* CPU_ARM10 */
    454 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
    455 
    456 #if ARM_MMU_SA1 == 1
    457 void	pmap_pte_init_sa1(void);
    458 #endif /* ARM_MMU_SA1 == 1 */
    459 
    460 #if ARM_MMU_XSCALE == 1
    461 void	pmap_copy_page_xscale(paddr_t, paddr_t);
    462 void	pmap_zero_page_xscale(paddr_t);
    463 
    464 void	pmap_pte_init_xscale(void);
    465 
    466 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
    467 
    468 #define	PMAP_UAREA(va)		pmap_uarea(va)
    469 void	pmap_uarea(vaddr_t);
    470 #endif /* ARM_MMU_XSCALE == 1 */
    471 
    472 extern pt_entry_t		pte_l1_s_cache_mode;
    473 extern pt_entry_t		pte_l1_s_cache_mask;
    474 
    475 extern pt_entry_t		pte_l2_l_cache_mode;
    476 extern pt_entry_t		pte_l2_l_cache_mask;
    477 
    478 extern pt_entry_t		pte_l2_s_cache_mode;
    479 extern pt_entry_t		pte_l2_s_cache_mask;
    480 
    481 extern pt_entry_t		pte_l1_s_cache_mode_pt;
    482 extern pt_entry_t		pte_l2_l_cache_mode_pt;
    483 extern pt_entry_t		pte_l2_s_cache_mode_pt;
    484 
    485 extern pt_entry_t		pte_l2_s_prot_u;
    486 extern pt_entry_t		pte_l2_s_prot_w;
    487 extern pt_entry_t		pte_l2_s_prot_mask;
    488 
    489 extern pt_entry_t		pte_l1_s_proto;
    490 extern pt_entry_t		pte_l1_c_proto;
    491 extern pt_entry_t		pte_l2_s_proto;
    492 
    493 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
    494 extern void (*pmap_zero_page_func)(paddr_t);
    495 
    496 #endif /* !_LOCORE */
    497 
    498 /*****************************************************************************/
    499 
    500 /*
    501  * tell MI code that the cache is virtually-indexed.
    502  * ARMv6 is physically-tagged but all others are virtually-tagged.
    503  */
    504 #if ARM_MMU_V6 > 0
    505 #define PMAP_CACHE_VIPT
    506 #else
    507 #define PMAP_CACHE_VIVT
    508 #endif
    509 
    510 /*
    511  * Definitions for MMU domains
    512  */
    513 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
    514 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
    515 
    516 /*
    517  * These macros define the various bit masks in the PTE.
    518  *
    519  * We use these macros since we use different bits on different processor
    520  * models.
    521  */
    522 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
    523 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
    524 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
    525 
    526 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
    527 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
    528 
    529 #define	L2_L_PROT_U		(L2_AP(AP_U))
    530 #define	L2_L_PROT_W		(L2_AP(AP_W))
    531 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
    532 
    533 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
    534 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
    535 
    536 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
    537 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
    538 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
    539 
    540 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
    541 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
    542 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
    543 
    544 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
    545 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
    546 
    547 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
    548 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
    549 
    550 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
    551 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
    552 
    553 #define	L2_L_PROTO		(L2_TYPE_L)
    554 
    555 #define	L2_S_PROTO_generic	(L2_TYPE_S)
    556 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
    557 
    558 /*
    559  * User-visible names for the ones that vary with MMU class.
    560  */
    561 
    562 #if ARM_NMMUS > 1
    563 /* More than one MMU class configured; use variables. */
    564 #define	L2_S_PROT_U		pte_l2_s_prot_u
    565 #define	L2_S_PROT_W		pte_l2_s_prot_w
    566 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
    567 
    568 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
    569 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
    570 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
    571 
    572 #define	L1_S_PROTO		pte_l1_s_proto
    573 #define	L1_C_PROTO		pte_l1_c_proto
    574 #define	L2_S_PROTO		pte_l2_s_proto
    575 
    576 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
    577 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
    578 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
    579 #define	L2_S_PROT_U		L2_S_PROT_U_generic
    580 #define	L2_S_PROT_W		L2_S_PROT_W_generic
    581 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
    582 
    583 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
    584 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
    585 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
    586 
    587 #define	L1_S_PROTO		L1_S_PROTO_generic
    588 #define	L1_C_PROTO		L1_C_PROTO_generic
    589 #define	L2_S_PROTO		L2_S_PROTO_generic
    590 
    591 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
    592 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
    593 #elif ARM_MMU_XSCALE == 1
    594 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
    595 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
    596 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
    597 
    598 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
    599 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
    600 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
    601 
    602 #define	L1_S_PROTO		L1_S_PROTO_xscale
    603 #define	L1_C_PROTO		L1_C_PROTO_xscale
    604 #define	L2_S_PROTO		L2_S_PROTO_xscale
    605 
    606 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
    607 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
    608 #endif /* ARM_NMMUS > 1 */
    609 
    610 /*
    611  * These macros return various bits based on kernel/user and protection.
    612  * Note that the compiler will usually fold these at compile time.
    613  */
    614 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
    615 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
    616 
    617 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
    618 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
    619 
    620 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
    621 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
    622 
    623 /*
    624  * Macros to test if a mapping is mappable with an L1 Section mapping
    625  * or an L2 Large Page mapping.
    626  */
    627 #define	L1_S_MAPPABLE_P(va, pa, size)					\
    628 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
    629 
    630 #define	L2_L_MAPPABLE_P(va, pa, size)					\
    631 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
    632 
    633 /*
    634  * Hooks for the pool allocator.
    635  */
    636 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    637 
    638 #endif /* _KERNEL */
    639 
    640 #endif	/* _ARM32_PMAP_H_ */
    641