pmap.h revision 1.88.10.1 1 /* $NetBSD: pmap.h,v 1.88.10.1 2014/02/15 16:18:36 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #endif
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
81 #endif
82
83 /*
84 * a pmap describes a processes' 4GB virtual address space. this
85 * virtual address space can be broken up into 4096 1MB regions which
86 * are described by L1 PTEs in the L1 table.
87 *
88 * There is a line drawn at KERNEL_BASE. Everything below that line
89 * changes when the VM context is switched. Everything above that line
90 * is the same no matter which VM context is running. This is achieved
91 * by making the L1 PTEs for those slots above KERNEL_BASE reference
92 * kernel L2 tables.
93 *
94 * The basic layout of the virtual address space thus looks like this:
95 *
96 * 0xffffffff
97 * .
98 * .
99 * .
100 * KERNEL_BASE
101 * --------------------
102 * .
103 * .
104 * .
105 * 0x00000000
106 */
107
108 /*
109 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 * A bucket size of 16 provides for 16MB of contiguous virtual address
111 * space per l2_dtable. Most processes will, therefore, require only two or
112 * three of these to map their whole working set.
113 */
114 #define L2_BUCKET_LOG2 4
115 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
116
117 /*
118 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 * of l2_dtable structures required to track all possible page descriptors
120 * mappable by an L1 translation table is given by the following constants:
121 */
122 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 #define L2_SIZE (1 << L2_LOG2)
124
125 /*
126 * tell MI code that the cache is virtually-indexed.
127 * ARMv6 is physically-tagged but all others are virtually-tagged.
128 */
129 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
130 #define PMAP_CACHE_VIPT
131 #else
132 #define PMAP_CACHE_VIVT
133 #endif
134
135 #ifndef _LOCORE
136
137 struct l1_ttable;
138 struct l2_dtable;
139
140 /*
141 * Track cache/tlb occupancy using the following structure
142 */
143 union pmap_cache_state {
144 struct {
145 union {
146 uint8_t csu_cache_b[2];
147 uint16_t csu_cache;
148 } cs_cache_u;
149
150 union {
151 uint8_t csu_tlb_b[2];
152 uint16_t csu_tlb;
153 } cs_tlb_u;
154 } cs_s;
155 uint32_t cs_all;
156 };
157 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 #define cs_cache cs_s.cs_cache_u.csu_cache
160 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
163
164 /*
165 * Assigned to cs_all to force cacheops to work for a particular pmap
166 */
167 #define PMAP_CACHE_STATE_ALL 0xffffffffu
168
169 /*
170 * This structure is used by machine-dependent code to describe
171 * static mappings of devices, created at bootstrap time.
172 */
173 struct pmap_devmap {
174 vaddr_t pd_va; /* virtual address */
175 paddr_t pd_pa; /* physical address */
176 psize_t pd_size; /* size of region */
177 vm_prot_t pd_prot; /* protection code */
178 int pd_cache; /* cache attributes */
179 };
180
181 /*
182 * The pmap structure itself
183 */
184 struct pmap {
185 uint8_t pm_domain;
186 bool pm_remove_all;
187 bool pm_activated;
188 struct l1_ttable *pm_l1;
189 #ifndef ARM_HAS_VBAR
190 pd_entry_t *pm_pl1vec;
191 #endif
192 pd_entry_t pm_l1vec;
193 union pmap_cache_state pm_cstate;
194 struct uvm_object pm_obj;
195 #define pm_lock pm_obj.vmobjlock
196 struct l2_dtable *pm_l2[L2_SIZE];
197 struct pmap_statistics pm_stats;
198 LIST_ENTRY(pmap) pm_list;
199 };
200
201 typedef struct pmap *pmap_t;
202
203 /*
204 * Physical / virtual address structure. In a number of places (particularly
205 * during bootstrapping) we need to keep track of the physical and virtual
206 * addresses of various pages
207 */
208 typedef struct pv_addr {
209 SLIST_ENTRY(pv_addr) pv_list;
210 paddr_t pv_pa;
211 vaddr_t pv_va;
212 vsize_t pv_size;
213 uint8_t pv_cache;
214 uint8_t pv_prot;
215 } pv_addr_t;
216 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
217
218 extern pv_addrqh_t pmap_freeq;
219 extern pv_addr_t kernelstack;
220 extern pv_addr_t abtstack;
221 extern pv_addr_t fiqstack;
222 extern pv_addr_t irqstack;
223 extern pv_addr_t undstack;
224 extern pv_addr_t idlestack;
225 extern pv_addr_t systempage;
226 extern pv_addr_t kernel_l1pt;
227
228 /*
229 * Determine various modes for PTEs (user vs. kernel, cacheable
230 * vs. non-cacheable).
231 */
232 #define PTE_KERNEL 0
233 #define PTE_USER 1
234 #define PTE_NOCACHE 0
235 #define PTE_CACHE 1
236 #define PTE_PAGETABLE 2
237
238 /*
239 * Flags that indicate attributes of pages or mappings of pages.
240 *
241 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
242 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
243 * pv_entry's for each page. They live in the same "namespace" so
244 * that we can clear multiple attributes at a time.
245 *
246 * Note the "non-cacheable" flag generally means the page has
247 * multiple mappings in a given address space.
248 */
249 #define PVF_MOD 0x01 /* page is modified */
250 #define PVF_REF 0x02 /* page is referenced */
251 #define PVF_WIRED 0x04 /* mapping is wired */
252 #define PVF_WRITE 0x08 /* mapping is writable */
253 #define PVF_EXEC 0x10 /* mapping is executable */
254 #ifdef PMAP_CACHE_VIVT
255 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
256 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
257 #define PVF_NC (PVF_UNC|PVF_KNC)
258 #endif
259 #ifdef PMAP_CACHE_VIPT
260 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
261 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
262 #endif
263 #define PVF_COLORED 0x80 /* page has or had a color */
264 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
265 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
266 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
267 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
268 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
269 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
270
271 /*
272 * Commonly referenced structures
273 */
274 #define pmap_kernel() (&kernel_pmap_store)
275 extern struct pmap kernel_pmap_store;
276 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
277 extern int arm_poolpage_vmfreelist;
278
279 /*
280 * Macros that we need to export
281 */
282 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
283 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
284
285 #define pmap_is_modified(pg) \
286 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
287 #define pmap_is_referenced(pg) \
288 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
289 #define pmap_is_page_colored_p(md) \
290 (((md)->pvh_attrs & PVF_COLORED) != 0)
291
292 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
293
294 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
295 u_int arm32_mmap_flags(paddr_t);
296 #define ARM32_MMAP_WRITECOMBINE 0x40000000
297 #define ARM32_MMAP_CACHEABLE 0x20000000
298 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
299
300 /*
301 * Functions that we need to export
302 */
303 void pmap_procwr(struct proc *, vaddr_t, int);
304 void pmap_remove_all(struct pmap *);
305 bool pmap_extract(struct pmap *, vaddr_t, paddr_t *);
306
307 #define PMAP_NEED_PROCWR
308 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
309 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
310
311 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
312 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
313 void pmap_prefer(vaddr_t, vaddr_t *, int);
314 #endif
315
316 void pmap_icache_sync_range(struct pmap *, vaddr_t, vaddr_t);
317
318 /* Functions we use internally. */
319 #ifdef PMAP_STEAL_MEMORY
320 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
321 void pmap_boot_pageadd(pv_addr_t *);
322 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
323 #endif
324 void pmap_bootstrap(vaddr_t, vaddr_t);
325
326 void pmap_do_remove(struct pmap *, vaddr_t, vaddr_t, int);
327 int pmap_fault_fixup(struct pmap *, vaddr_t, vm_prot_t, int);
328 bool pmap_get_pde_pte(struct pmap *, vaddr_t, pd_entry_t **, pt_entry_t **);
329 bool pmap_get_pde(struct pmap *, vaddr_t, pd_entry_t **);
330 struct pcb;
331 void pmap_set_pcb_pagedir(struct pmap *, struct pcb *);
332
333 void pmap_debug(int);
334 void pmap_postinit(void);
335
336 void vector_page_setprot(int);
337
338 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
339 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
340
341 /* Bootstrapping routines. */
342 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
343 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
344 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
345 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
346 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
347 void pmap_devmap_register(const struct pmap_devmap *);
348
349 /*
350 * Special page zero routine for use by the idle loop (no cache cleans).
351 */
352 bool pmap_pageidlezero(paddr_t);
353 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
354
355 /*
356 * used by dumpsys to record the PA of the L1 table
357 */
358 uint32_t pmap_kernel_L1_addr(void);
359 /*
360 * The current top of kernel VM
361 */
362 extern vaddr_t pmap_curmaxkvaddr;
363
364 /*
365 * Useful macros and constants
366 */
367
368 /* Virtual address to page table entry */
369 static inline pt_entry_t *
370 vtopte(vaddr_t va)
371 {
372 pd_entry_t *pdep;
373 pt_entry_t *ptep;
374
375 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
376 return (NULL);
377 return (ptep);
378 }
379
380 /*
381 * Virtual address to physical address
382 */
383 static inline paddr_t
384 vtophys(vaddr_t va)
385 {
386 paddr_t pa;
387
388 if (pmap_extract(pmap_kernel(), va, &pa) == false)
389 return (0); /* XXXSCW: Panic? */
390
391 return (pa);
392 }
393
394 /*
395 * The new pmap ensures that page-tables are always mapping Write-Thru.
396 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
397 * on every change.
398 *
399 * Unfortunately, not all CPUs have a write-through cache mode. So we
400 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
401 * and if there is the chance for PTE syncs to be needed, we define
402 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
403 * the code.
404 */
405 extern int pmap_needs_pte_sync;
406 #if defined(_KERNEL_OPT)
407 /*
408 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
409 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
410 * this at compile time.
411 */
412 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
413 #define PMAP_INCLUDE_PTE_SYNC
414 #if (ARM_MMU_V6 > 0)
415 #define PMAP_NEEDS_PTE_SYNC 1
416 #elif (ARM_MMU_SA1 == 0)
417 #define PMAP_NEEDS_PTE_SYNC 0
418 #endif
419 #endif
420 #endif /* _KERNEL_OPT */
421
422 /*
423 * Provide a fallback in case we were not able to determine it at
424 * compile-time.
425 */
426 #ifndef PMAP_NEEDS_PTE_SYNC
427 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
428 #define PMAP_INCLUDE_PTE_SYNC
429 #endif
430
431 static inline void
432 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
433 {
434 if (PMAP_NEEDS_PTE_SYNC)
435 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
436 #if ARM_MMU_V7 > 0
437 __asm("dsb");
438 #endif
439 }
440
441 #define PTE_SYNC(ptep) pmap_ptesync((ptep), 1)
442 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
443
444 #define l1pte_valid(pde) ((pde) != 0)
445 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
446 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
447 && ((pde) & L1_S_V6_SUPER) != 0)
448 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
449 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
450
451 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
452 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
453 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
454 #define l2pte_minidata(pte) (((pte) & \
455 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
456 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
457
458 static inline void
459 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
460 {
461 KASSERT(*ptep == opte);
462 *ptep = pte;
463 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
464 KASSERT(ptep[k] == opte ? opte + k * L2_S_SIZE : 0);
465 pte += L2_S_SIZE;
466 ptep[k] = pte;
467 }
468 }
469
470 static inline void
471 l2pte_reset(pt_entry_t *ptep)
472 {
473 *ptep = 0;
474 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
475 ptep[k] = 0;
476 }
477 }
478
479 /* L1 and L2 page table macros */
480 #define pmap_pde_v(pde) l1pte_valid(*(pde))
481 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
482 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
483 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
484 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
485
486 #define pmap_pte_v(pte) l2pte_valid(*(pte))
487 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
488
489 /* Size of the kernel part of the L1 page table */
490 #define KERNEL_PD_SIZE \
491 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
492
493 void bzero_page(vaddr_t);
494 void bcopy_page(vaddr_t, vaddr_t);
495
496 #ifdef FPU_VFP
497 void bzero_page_vfp(vaddr_t);
498 void bcopy_page_vfp(vaddr_t, vaddr_t);
499 #endif
500
501 /************************* ARM MMU configuration *****************************/
502
503 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
504 void pmap_copy_page_generic(paddr_t, paddr_t);
505 void pmap_zero_page_generic(paddr_t);
506
507 void pmap_pte_init_generic(void);
508 #if defined(CPU_ARM8)
509 void pmap_pte_init_arm8(void);
510 #endif
511 #if defined(CPU_ARM9)
512 void pmap_pte_init_arm9(void);
513 #endif /* CPU_ARM9 */
514 #if defined(CPU_ARM10)
515 void pmap_pte_init_arm10(void);
516 #endif /* CPU_ARM10 */
517 #if defined(CPU_ARM11) /* ARM_MMU_V6 */
518 void pmap_pte_init_arm11(void);
519 #endif /* CPU_ARM11 */
520 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
521 void pmap_pte_init_arm11mpcore(void);
522 #endif
523 #if ARM_MMU_V7 == 1
524 void pmap_pte_init_armv7(void);
525 #endif /* ARM_MMU_V7 */
526 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
527
528 #if ARM_MMU_SA1 == 1
529 void pmap_pte_init_sa1(void);
530 #endif /* ARM_MMU_SA1 == 1 */
531
532 #if ARM_MMU_XSCALE == 1
533 void pmap_copy_page_xscale(paddr_t, paddr_t);
534 void pmap_zero_page_xscale(paddr_t);
535
536 void pmap_pte_init_xscale(void);
537
538 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
539
540 #define PMAP_UAREA(va) pmap_uarea(va)
541 void pmap_uarea(vaddr_t);
542 #endif /* ARM_MMU_XSCALE == 1 */
543
544 extern pt_entry_t pte_l1_s_cache_mode;
545 extern pt_entry_t pte_l1_s_cache_mask;
546
547 extern pt_entry_t pte_l2_l_cache_mode;
548 extern pt_entry_t pte_l2_l_cache_mask;
549
550 extern pt_entry_t pte_l2_s_cache_mode;
551 extern pt_entry_t pte_l2_s_cache_mask;
552
553 extern pt_entry_t pte_l1_s_cache_mode_pt;
554 extern pt_entry_t pte_l2_l_cache_mode_pt;
555 extern pt_entry_t pte_l2_s_cache_mode_pt;
556
557 extern pt_entry_t pte_l1_s_wc_mode;
558 extern pt_entry_t pte_l2_l_wc_mode;
559 extern pt_entry_t pte_l2_s_wc_mode;
560
561 extern pt_entry_t pte_l1_s_prot_u;
562 extern pt_entry_t pte_l1_s_prot_w;
563 extern pt_entry_t pte_l1_s_prot_ro;
564 extern pt_entry_t pte_l1_s_prot_mask;
565
566 extern pt_entry_t pte_l2_s_prot_u;
567 extern pt_entry_t pte_l2_s_prot_w;
568 extern pt_entry_t pte_l2_s_prot_ro;
569 extern pt_entry_t pte_l2_s_prot_mask;
570
571 extern pt_entry_t pte_l2_l_prot_u;
572 extern pt_entry_t pte_l2_l_prot_w;
573 extern pt_entry_t pte_l2_l_prot_ro;
574 extern pt_entry_t pte_l2_l_prot_mask;
575
576 extern pt_entry_t pte_l1_ss_proto;
577 extern pt_entry_t pte_l1_s_proto;
578 extern pt_entry_t pte_l1_c_proto;
579 extern pt_entry_t pte_l2_s_proto;
580
581 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
582 extern void (*pmap_zero_page_func)(paddr_t);
583
584 #endif /* !_LOCORE */
585
586 /*****************************************************************************/
587
588 /*
589 * Definitions for MMU domains
590 */
591 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
592 #define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */
593
594 /*
595 * These macros define the various bit masks in the PTE.
596 *
597 * We use these macros since we use different bits on different processor
598 * models.
599 */
600 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
601 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
602 #define L1_S_PROT_RO_generic (0)
603 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
604
605 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
606 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
607 #define L1_S_PROT_RO_xscale (0)
608 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
609
610 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
611 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
612 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
613 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
614
615 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
616 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
617 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
618 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
619
620 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
621 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
622 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
623 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
624
625 #define L2_L_PROT_U_generic (L2_AP(AP_U))
626 #define L2_L_PROT_W_generic (L2_AP(AP_W))
627 #define L2_L_PROT_RO_generic (0)
628 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
629
630 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
631 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
632 #define L2_L_PROT_RO_xscale (0)
633 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
634
635 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
636 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
637 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
638 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
639
640 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
641 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
642 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
643 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
644
645 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
646 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
647 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
648 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
649
650 #define L2_S_PROT_U_generic (L2_AP(AP_U))
651 #define L2_S_PROT_W_generic (L2_AP(AP_W))
652 #define L2_S_PROT_RO_generic (0)
653 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
654
655 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
656 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
657 #define L2_S_PROT_RO_xscale (0)
658 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
659
660 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
661 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
662 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
663 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
664
665 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
666 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
667 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
668 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
669
670 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
671 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
672 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
673 #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
674 #ifdef ARMV6_EXTENDED_SMALL_PAGE
675 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
676 #else
677 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
678 #endif
679 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
680
681
682 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
683 #define L1_S_PROTO_xscale (L1_TYPE_S)
684 #define L1_S_PROTO_armv6 (L1_TYPE_S)
685 #define L1_S_PROTO_armv7 (L1_TYPE_S)
686
687 #define L1_SS_PROTO_generic 0
688 #define L1_SS_PROTO_xscale 0
689 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
690 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
691
692 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
693 #define L1_C_PROTO_xscale (L1_TYPE_C)
694 #define L1_C_PROTO_armv6 (L1_TYPE_C)
695 #define L1_C_PROTO_armv7 (L1_TYPE_C)
696
697 #define L2_L_PROTO (L2_TYPE_L)
698
699 #define L2_S_PROTO_generic (L2_TYPE_S)
700 #define L2_S_PROTO_xscale (L2_TYPE_XS)
701 #ifdef ARMV6_EXTENDED_SMALL_PAGE
702 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
703 #else
704 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
705 #endif
706 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
707 #define L2_S_PROTO_armv7 (L2_TYPE_S)
708
709 /*
710 * User-visible names for the ones that vary with MMU class.
711 */
712
713 #if ARM_NMMUS > 1
714 /* More than one MMU class configured; use variables. */
715 #define L1_S_PROT_U pte_l1_s_prot_u
716 #define L1_S_PROT_W pte_l1_s_prot_w
717 #define L1_S_PROT_RO pte_l1_s_prot_ro
718 #define L1_S_PROT_MASK pte_l1_s_prot_mask
719
720 #define L2_S_PROT_U pte_l2_s_prot_u
721 #define L2_S_PROT_W pte_l2_s_prot_w
722 #define L2_S_PROT_RO pte_l2_s_prot_ro
723 #define L2_S_PROT_MASK pte_l2_s_prot_mask
724
725 #define L2_L_PROT_U pte_l2_l_prot_u
726 #define L2_L_PROT_W pte_l2_l_prot_w
727 #define L2_L_PROT_RO pte_l2_l_prot_ro
728 #define L2_L_PROT_MASK pte_l2_l_prot_mask
729
730 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
731 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
732 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
733
734 #define L1_SS_PROTO pte_l1_ss_proto
735 #define L1_S_PROTO pte_l1_s_proto
736 #define L1_C_PROTO pte_l1_c_proto
737 #define L2_S_PROTO pte_l2_s_proto
738
739 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
740 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
741 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
742 #define L1_S_PROT_U L1_S_PROT_U_generic
743 #define L1_S_PROT_W L1_S_PROT_W_generic
744 #define L1_S_PROT_RO L1_S_PROT_RO_generic
745 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
746
747 #define L2_S_PROT_U L2_S_PROT_U_generic
748 #define L2_S_PROT_W L2_S_PROT_W_generic
749 #define L2_S_PROT_RO L2_S_PROT_RO_generic
750 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
751
752 #define L2_L_PROT_U L2_L_PROT_U_generic
753 #define L2_L_PROT_W L2_L_PROT_W_generic
754 #define L2_L_PROT_RO L2_L_PROT_RO_generic
755 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
756
757 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
758 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
759 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
760
761 #define L1_SS_PROTO L1_SS_PROTO_generic
762 #define L1_S_PROTO L1_S_PROTO_generic
763 #define L1_C_PROTO L1_C_PROTO_generic
764 #define L2_S_PROTO L2_S_PROTO_generic
765
766 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
767 #define pmap_zero_page(d) pmap_zero_page_generic((d))
768 #elif ARM_MMU_V6N != 0
769 #define L1_S_PROT_U L1_S_PROT_U_armv6
770 #define L1_S_PROT_W L1_S_PROT_W_armv6
771 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
772 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
773
774 #define L2_S_PROT_U L2_S_PROT_U_armv6n
775 #define L2_S_PROT_W L2_S_PROT_W_armv6n
776 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
777 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
778
779 #define L2_L_PROT_U L2_L_PROT_U_armv6n
780 #define L2_L_PROT_W L2_L_PROT_W_armv6n
781 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
782 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
783
784 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6
785 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6
786 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
787
788 /* These prototypes make writeable mappings, while the other MMU types
789 * make read-only mappings. */
790 #define L1_SS_PROTO L1_SS_PROTO_armv6
791 #define L1_S_PROTO L1_S_PROTO_armv6
792 #define L1_C_PROTO L1_C_PROTO_armv6
793 #define L2_S_PROTO L2_S_PROTO_armv6n
794
795 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
796 #define pmap_zero_page(d) pmap_zero_page_generic((d))
797 #elif ARM_MMU_V6C != 0
798 #define L1_S_PROT_U L1_S_PROT_U_generic
799 #define L1_S_PROT_W L1_S_PROT_W_generic
800 #define L1_S_PROT_RO L1_S_PROT_RO_generic
801 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
802
803 #define L2_S_PROT_U L2_S_PROT_U_generic
804 #define L2_S_PROT_W L2_S_PROT_W_generic
805 #define L2_S_PROT_RO L2_S_PROT_RO_generic
806 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
807
808 #define L2_L_PROT_U L2_L_PROT_U_generic
809 #define L2_L_PROT_W L2_L_PROT_W_generic
810 #define L2_L_PROT_RO L2_L_PROT_RO_generic
811 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
812
813 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
814 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
815 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
816
817 #define L1_SS_PROTO L1_SS_PROTO_generic
818 #define L1_S_PROTO L1_S_PROTO_generic
819 #define L1_C_PROTO L1_C_PROTO_generic
820 #define L2_S_PROTO L2_S_PROTO_generic
821
822 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
823 #define pmap_zero_page(d) pmap_zero_page_generic((d))
824 #elif ARM_MMU_XSCALE == 1
825 #define L1_S_PROT_U L1_S_PROT_U_generic
826 #define L1_S_PROT_W L1_S_PROT_W_generic
827 #define L1_S_PROT_RO L1_S_PROT_RO_generic
828 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
829
830 #define L2_S_PROT_U L2_S_PROT_U_xscale
831 #define L2_S_PROT_W L2_S_PROT_W_xscale
832 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
833 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
834
835 #define L2_L_PROT_U L2_L_PROT_U_generic
836 #define L2_L_PROT_W L2_L_PROT_W_generic
837 #define L2_L_PROT_RO L2_L_PROT_RO_generic
838 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
839
840 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
841 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
842 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
843
844 #define L1_SS_PROTO L1_SS_PROTO_xscale
845 #define L1_S_PROTO L1_S_PROTO_xscale
846 #define L1_C_PROTO L1_C_PROTO_xscale
847 #define L2_S_PROTO L2_S_PROTO_xscale
848
849 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
850 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
851 #elif ARM_MMU_V7 == 1
852 #define L1_S_PROT_U L1_S_PROT_U_armv7
853 #define L1_S_PROT_W L1_S_PROT_W_armv7
854 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
855 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
856
857 #define L2_S_PROT_U L2_S_PROT_U_armv7
858 #define L2_S_PROT_W L2_S_PROT_W_armv7
859 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
860 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
861
862 #define L2_L_PROT_U L2_L_PROT_U_armv7
863 #define L2_L_PROT_W L2_L_PROT_W_armv7
864 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
865 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
866
867 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
868 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
869 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
870
871 /* These prototypes make writeable mappings, while the other MMU types
872 * make read-only mappings. */
873 #define L1_SS_PROTO L1_SS_PROTO_armv7
874 #define L1_S_PROTO L1_S_PROTO_armv7
875 #define L1_C_PROTO L1_C_PROTO_armv7
876 #define L2_S_PROTO L2_S_PROTO_armv7
877
878 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
879 #define pmap_zero_page(d) pmap_zero_page_generic((d))
880 #endif /* ARM_NMMUS > 1 */
881
882 /*
883 * Macros to set and query the write permission on page descriptors.
884 */
885 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
886 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
887 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
888 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
889
890 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
891 (L2_S_PROT_RO == 0 || \
892 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
893
894 /*
895 * These macros return various bits based on kernel/user and protection.
896 * Note that the compiler will usually fold these at compile time.
897 */
898 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
899 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
900
901 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
902 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
903
904 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
905 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
906
907 /*
908 * Macros to test if a mapping is mappable with an L1 SuperSection,
909 * L1 Section, or an L2 Large Page mapping.
910 */
911 #define L1_SS_MAPPABLE_P(va, pa, size) \
912 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
913
914 #define L1_S_MAPPABLE_P(va, pa, size) \
915 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
916
917 #define L2_L_MAPPABLE_P(va, pa, size) \
918 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
919
920 #ifndef _LOCORE
921 /*
922 * Hooks for the pool allocator.
923 */
924 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
925 extern paddr_t physical_start, physical_end;
926 #ifdef PMAP_NEED_ALLOC_POOLPAGE
927 struct vm_page *arm_pmap_alloc_poolpage(int);
928 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
929 #endif
930 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
931 #define PMAP_MAP_POOLPAGE(pa) \
932 ((vaddr_t)((paddr_t)(pa) - physical_start + KERNEL_BASE))
933 #define PMAP_UNMAP_POOLPAGE(va) \
934 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + physical_start))
935 #endif
936
937 #endif /* !_LOCORE */
938
939 #endif /* _KERNEL */
940
941 #endif /* _ARM32_PMAP_H_ */
942