pmap.h revision 1.90 1 /* $NetBSD: pmap.h,v 1.90 2008/12/30 05:51:19 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #endif
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
81 #endif
82
83 /*
84 * a pmap describes a processes' 4GB virtual address space. this
85 * virtual address space can be broken up into 4096 1MB regions which
86 * are described by L1 PTEs in the L1 table.
87 *
88 * There is a line drawn at KERNEL_BASE. Everything below that line
89 * changes when the VM context is switched. Everything above that line
90 * is the same no matter which VM context is running. This is achieved
91 * by making the L1 PTEs for those slots above KERNEL_BASE reference
92 * kernel L2 tables.
93 *
94 * The basic layout of the virtual address space thus looks like this:
95 *
96 * 0xffffffff
97 * .
98 * .
99 * .
100 * KERNEL_BASE
101 * --------------------
102 * .
103 * .
104 * .
105 * 0x00000000
106 */
107
108 /*
109 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 * A bucket size of 16 provides for 16MB of contiguous virtual address
111 * space per l2_dtable. Most processes will, therefore, require only two or
112 * three of these to map their whole working set.
113 */
114 #define L2_BUCKET_LOG2 4
115 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
116
117 /*
118 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 * of l2_dtable structures required to track all possible page descriptors
120 * mappable by an L1 translation table is given by the following constants:
121 */
122 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 #define L2_SIZE (1 << L2_LOG2)
124
125 /*
126 * tell MI code that the cache is virtually-indexed.
127 * ARMv6 is physically-tagged but all others are virtually-tagged.
128 */
129 #if ARM_MMU_V6 > 0
130 #define PMAP_CACHE_VIPT
131 #else
132 #define PMAP_CACHE_VIVT
133 #endif
134
135 #ifndef _LOCORE
136
137 struct l1_ttable;
138 struct l2_dtable;
139
140 /*
141 * Track cache/tlb occupancy using the following structure
142 */
143 union pmap_cache_state {
144 struct {
145 union {
146 u_int8_t csu_cache_b[2];
147 u_int16_t csu_cache;
148 } cs_cache_u;
149
150 union {
151 u_int8_t csu_tlb_b[2];
152 u_int16_t csu_tlb;
153 } cs_tlb_u;
154 } cs_s;
155 u_int32_t cs_all;
156 };
157 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 #define cs_cache cs_s.cs_cache_u.csu_cache
160 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
163
164 /*
165 * Assigned to cs_all to force cacheops to work for a particular pmap
166 */
167 #define PMAP_CACHE_STATE_ALL 0xffffffffu
168
169 /*
170 * This structure is used by machine-dependent code to describe
171 * static mappings of devices, created at bootstrap time.
172 */
173 struct pmap_devmap {
174 vaddr_t pd_va; /* virtual address */
175 paddr_t pd_pa; /* physical address */
176 psize_t pd_size; /* size of region */
177 vm_prot_t pd_prot; /* protection code */
178 int pd_cache; /* cache attributes */
179 };
180
181 /*
182 * The pmap structure itself
183 */
184 struct pmap {
185 u_int8_t pm_domain;
186 bool pm_remove_all;
187 bool pm_activated;
188 struct l1_ttable *pm_l1;
189 pd_entry_t *pm_pl1vec;
190 pd_entry_t pm_l1vec;
191 union pmap_cache_state pm_cstate;
192 struct uvm_object pm_obj;
193 #define pm_lock pm_obj.vmobjlock
194 struct l2_dtable *pm_l2[L2_SIZE];
195 struct pmap_statistics pm_stats;
196 LIST_ENTRY(pmap) pm_list;
197 };
198
199 /*
200 * Physical / virtual address structure. In a number of places (particularly
201 * during bootstrapping) we need to keep track of the physical and virtual
202 * addresses of various pages
203 */
204 typedef struct pv_addr {
205 SLIST_ENTRY(pv_addr) pv_list;
206 paddr_t pv_pa;
207 vaddr_t pv_va;
208 vsize_t pv_size;
209 } pv_addr_t;
210 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
211
212 extern pv_addrqh_t pmap_freeq;
213 extern pv_addr_t kernelpages;
214 extern pv_addr_t systempage;
215 extern pv_addr_t kernel_l1pt;
216
217 /*
218 * Determine various modes for PTEs (user vs. kernel, cacheable
219 * vs. non-cacheable).
220 */
221 #define PTE_KERNEL 0
222 #define PTE_USER 1
223 #define PTE_NOCACHE 0
224 #define PTE_CACHE 1
225 #define PTE_PAGETABLE 2
226
227 /*
228 * Flags that indicate attributes of pages or mappings of pages.
229 *
230 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
231 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
232 * pv_entry's for each page. They live in the same "namespace" so
233 * that we can clear multiple attributes at a time.
234 *
235 * Note the "non-cacheable" flag generally means the page has
236 * multiple mappings in a given address space.
237 */
238 #define PVF_MOD 0x01 /* page is modified */
239 #define PVF_REF 0x02 /* page is referenced */
240 #define PVF_WIRED 0x04 /* mapping is wired */
241 #define PVF_WRITE 0x08 /* mapping is writable */
242 #define PVF_EXEC 0x10 /* mapping is executable */
243 #ifdef PMAP_CACHE_VIVT
244 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
245 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
246 #define PVF_NC (PVF_UNC|PVF_KNC)
247 #endif
248 #ifdef PMAP_CACHE_VIPT
249 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
250 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
251 #endif
252 #define PVF_COLORED 0x80 /* page has or had a color */
253 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
254 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
255 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
256 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
257 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
258 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
259
260 /*
261 * Commonly referenced structures
262 */
263 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
264
265 /*
266 * Macros that we need to export
267 */
268 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
269 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
270
271 #define pmap_remove(pmap,sva,eva) pmap_do_remove((pmap),(sva),(eva),0)
272
273 #define pmap_is_modified(pg) \
274 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
275 #define pmap_is_referenced(pg) \
276 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
277 #define pmap_is_page_colored_p(pg) \
278 (((pg)->mdpage.pvh_attrs & PVF_COLORED) != 0)
279
280 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
281
282 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
283
284 /*
285 * Functions that we need to export
286 */
287 void pmap_procwr(struct proc *, vaddr_t, int);
288 void pmap_remove_all(pmap_t);
289 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
290
291 #define PMAP_NEED_PROCWR
292 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
293 #define PMAP_KMPAGE 0x00000040 /* Make uvm tell us when it allocates
294 a page to be used for kernel memory */
295
296
297 #if ARM_MMU_V6 > 0
298 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
299 void pmap_prefer(vaddr_t, vaddr_t *, int);
300 #endif
301
302 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
303
304 /* Functions we use internally. */
305 #ifdef PMAP_STEAL_MEMORY
306 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
307 void pmap_boot_pageadd(pv_addr_t *);
308 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
309 #endif
310 void pmap_bootstrap(vaddr_t, vaddr_t);
311
312 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
313 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
314 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
315 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
316 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
317
318 void pmap_debug(int);
319 void pmap_postinit(void);
320
321 void vector_page_setprot(int);
322
323 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
324 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
325
326 /* Bootstrapping routines. */
327 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
328 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
329 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
330 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
331 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
332 void pmap_devmap_register(const struct pmap_devmap *);
333
334 /*
335 * Special page zero routine for use by the idle loop (no cache cleans).
336 */
337 bool pmap_pageidlezero(paddr_t);
338 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
339
340 /*
341 * used by dumpsys to record the PA of the L1 table
342 */
343 uint32_t pmap_kernel_L1_addr(void);
344 /*
345 * The current top of kernel VM
346 */
347 extern vaddr_t pmap_curmaxkvaddr;
348
349 /*
350 * Useful macros and constants
351 */
352
353 /* Virtual address to page table entry */
354 static inline pt_entry_t *
355 vtopte(vaddr_t va)
356 {
357 pd_entry_t *pdep;
358 pt_entry_t *ptep;
359
360 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
361 return (NULL);
362 return (ptep);
363 }
364
365 /*
366 * Virtual address to physical address
367 */
368 static inline paddr_t
369 vtophys(vaddr_t va)
370 {
371 paddr_t pa;
372
373 if (pmap_extract(pmap_kernel(), va, &pa) == false)
374 return (0); /* XXXSCW: Panic? */
375
376 return (pa);
377 }
378
379 /*
380 * The new pmap ensures that page-tables are always mapping Write-Thru.
381 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
382 * on every change.
383 *
384 * Unfortunately, not all CPUs have a write-through cache mode. So we
385 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
386 * and if there is the chance for PTE syncs to be needed, we define
387 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
388 * the code.
389 */
390 extern int pmap_needs_pte_sync;
391 #if defined(_KERNEL_OPT)
392 /*
393 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
394 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
395 * this at compile time.
396 */
397 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
398 #define PMAP_NEEDS_PTE_SYNC 1
399 #define PMAP_INCLUDE_PTE_SYNC
400 #elif (ARM_MMU_SA1 == 0)
401 #define PMAP_NEEDS_PTE_SYNC 0
402 #endif
403 #endif /* _KERNEL_OPT */
404
405 /*
406 * Provide a fallback in case we were not able to determine it at
407 * compile-time.
408 */
409 #ifndef PMAP_NEEDS_PTE_SYNC
410 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
411 #define PMAP_INCLUDE_PTE_SYNC
412 #endif
413
414 #define PTE_SYNC(pte) \
415 do { \
416 if (PMAP_NEEDS_PTE_SYNC) \
417 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
418 } while (/*CONSTCOND*/0)
419
420 #define PTE_SYNC_RANGE(pte, cnt) \
421 do { \
422 if (PMAP_NEEDS_PTE_SYNC) { \
423 cpu_dcache_wb_range((vaddr_t)(pte), \
424 (cnt) << 2); /* * sizeof(pt_entry_t) */ \
425 } \
426 } while (/*CONSTCOND*/0)
427
428 #define l1pte_valid(pde) ((pde) != 0)
429 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
430 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
431 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
432
433 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
434 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
435 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
436 #define l2pte_minidata(pte) (((pte) & \
437 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
438 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
439
440 /* L1 and L2 page table macros */
441 #define pmap_pde_v(pde) l1pte_valid(*(pde))
442 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
443 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
444 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
445
446 #define pmap_pte_v(pte) l2pte_valid(*(pte))
447 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
448
449 /* Size of the kernel part of the L1 page table */
450 #define KERNEL_PD_SIZE \
451 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
452
453 /************************* ARM MMU configuration *****************************/
454
455 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
456 void pmap_copy_page_generic(paddr_t, paddr_t);
457 void pmap_zero_page_generic(paddr_t);
458
459 void pmap_pte_init_generic(void);
460 #if defined(CPU_ARM8)
461 void pmap_pte_init_arm8(void);
462 #endif
463 #if defined(CPU_ARM9)
464 void pmap_pte_init_arm9(void);
465 #endif /* CPU_ARM9 */
466 #if defined(CPU_ARM10)
467 void pmap_pte_init_arm10(void);
468 #endif /* CPU_ARM10 */
469 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
470
471 #if ARM_MMU_SA1 == 1
472 void pmap_pte_init_sa1(void);
473 #endif /* ARM_MMU_SA1 == 1 */
474
475 #if ARM_MMU_XSCALE == 1
476 void pmap_copy_page_xscale(paddr_t, paddr_t);
477 void pmap_zero_page_xscale(paddr_t);
478
479 void pmap_pte_init_xscale(void);
480
481 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
482
483 #define PMAP_UAREA(va) pmap_uarea(va)
484 void pmap_uarea(vaddr_t);
485 #endif /* ARM_MMU_XSCALE == 1 */
486
487 extern pt_entry_t pte_l1_s_cache_mode;
488 extern pt_entry_t pte_l1_s_cache_mask;
489
490 extern pt_entry_t pte_l2_l_cache_mode;
491 extern pt_entry_t pte_l2_l_cache_mask;
492
493 extern pt_entry_t pte_l2_s_cache_mode;
494 extern pt_entry_t pte_l2_s_cache_mask;
495
496 extern pt_entry_t pte_l1_s_cache_mode_pt;
497 extern pt_entry_t pte_l2_l_cache_mode_pt;
498 extern pt_entry_t pte_l2_s_cache_mode_pt;
499
500 extern pt_entry_t pte_l2_s_prot_u;
501 extern pt_entry_t pte_l2_s_prot_w;
502 extern pt_entry_t pte_l2_s_prot_mask;
503
504 extern pt_entry_t pte_l1_s_proto;
505 extern pt_entry_t pte_l1_c_proto;
506 extern pt_entry_t pte_l2_s_proto;
507
508 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
509 extern void (*pmap_zero_page_func)(paddr_t);
510
511 #endif /* !_LOCORE */
512
513 /*****************************************************************************/
514
515 /*
516 * Definitions for MMU domains
517 */
518 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
519 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
520
521 /*
522 * These macros define the various bit masks in the PTE.
523 *
524 * We use these macros since we use different bits on different processor
525 * models.
526 */
527 #define L1_S_PROT_U (L1_S_AP(AP_U))
528 #define L1_S_PROT_W (L1_S_AP(AP_W))
529 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
530
531 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
532 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
533
534 #define L2_L_PROT_U (L2_AP(AP_U))
535 #define L2_L_PROT_W (L2_AP(AP_W))
536 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
537
538 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
539 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
540
541 #define L2_S_PROT_U_generic (L2_AP(AP_U))
542 #define L2_S_PROT_W_generic (L2_AP(AP_W))
543 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
544
545 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
546 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
547 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
548
549 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
550 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
551
552 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
553 #define L1_S_PROTO_xscale (L1_TYPE_S)
554
555 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
556 #define L1_C_PROTO_xscale (L1_TYPE_C)
557
558 #define L2_L_PROTO (L2_TYPE_L)
559
560 #define L2_S_PROTO_generic (L2_TYPE_S)
561 #define L2_S_PROTO_xscale (L2_TYPE_XS)
562
563 /*
564 * User-visible names for the ones that vary with MMU class.
565 */
566
567 #if ARM_NMMUS > 1
568 /* More than one MMU class configured; use variables. */
569 #define L2_S_PROT_U pte_l2_s_prot_u
570 #define L2_S_PROT_W pte_l2_s_prot_w
571 #define L2_S_PROT_MASK pte_l2_s_prot_mask
572
573 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
574 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
575 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
576
577 #define L1_S_PROTO pte_l1_s_proto
578 #define L1_C_PROTO pte_l1_c_proto
579 #define L2_S_PROTO pte_l2_s_proto
580
581 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
582 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
583 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
584 #define L2_S_PROT_U L2_S_PROT_U_generic
585 #define L2_S_PROT_W L2_S_PROT_W_generic
586 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
587
588 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
589 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
590 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
591
592 #define L1_S_PROTO L1_S_PROTO_generic
593 #define L1_C_PROTO L1_C_PROTO_generic
594 #define L2_S_PROTO L2_S_PROTO_generic
595
596 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
597 #define pmap_zero_page(d) pmap_zero_page_generic((d))
598 #elif ARM_MMU_XSCALE == 1
599 #define L2_S_PROT_U L2_S_PROT_U_xscale
600 #define L2_S_PROT_W L2_S_PROT_W_xscale
601 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
602
603 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
604 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
605 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
606
607 #define L1_S_PROTO L1_S_PROTO_xscale
608 #define L1_C_PROTO L1_C_PROTO_xscale
609 #define L2_S_PROTO L2_S_PROTO_xscale
610
611 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
612 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
613 #endif /* ARM_NMMUS > 1 */
614
615 /*
616 * These macros return various bits based on kernel/user and protection.
617 * Note that the compiler will usually fold these at compile time.
618 */
619 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
620 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
621
622 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
623 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
624
625 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
626 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
627
628 /*
629 * Macros to test if a mapping is mappable with an L1 Section mapping
630 * or an L2 Large Page mapping.
631 */
632 #define L1_S_MAPPABLE_P(va, pa, size) \
633 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
634
635 #define L2_L_MAPPABLE_P(va, pa, size) \
636 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
637
638 /*
639 * Hooks for the pool allocator.
640 */
641 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
642
643 #endif /* _KERNEL */
644
645 #endif /* _ARM32_PMAP_H_ */
646