pmap.h revision 1.94.4.4 1 /* $NetBSD: pmap.h,v 1.94.4.4 2011/04/21 01:40:52 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
70
71 #ifdef _KERNEL
72
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #endif
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
81 #endif
82
83 /*
84 * a pmap describes a processes' 4GB virtual address space. this
85 * virtual address space can be broken up into 4096 1MB regions which
86 * are described by L1 PTEs in the L1 table.
87 *
88 * There is a line drawn at KERNEL_BASE. Everything below that line
89 * changes when the VM context is switched. Everything above that line
90 * is the same no matter which VM context is running. This is achieved
91 * by making the L1 PTEs for those slots above KERNEL_BASE reference
92 * kernel L2 tables.
93 *
94 * The basic layout of the virtual address space thus looks like this:
95 *
96 * 0xffffffff
97 * .
98 * .
99 * .
100 * KERNEL_BASE
101 * --------------------
102 * .
103 * .
104 * .
105 * 0x00000000
106 */
107
108 /*
109 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 * A bucket size of 16 provides for 16MB of contiguous virtual address
111 * space per l2_dtable. Most processes will, therefore, require only two or
112 * three of these to map their whole working set.
113 */
114 #define L2_BUCKET_LOG2 4
115 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
116
117 /*
118 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 * of l2_dtable structures required to track all possible page descriptors
120 * mappable by an L1 translation table is given by the following constants:
121 */
122 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 #define L2_SIZE (1 << L2_LOG2)
124
125 /*
126 * tell MI code that the cache is virtually-indexed.
127 * ARMv6 is physically-tagged but all others are virtually-tagged.
128 */
129 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
130 #define PMAP_CACHE_VIPT
131 #else
132 #define PMAP_CACHE_VIVT
133 #endif
134
135 #ifndef _LOCORE
136
137 struct l1_ttable;
138 struct l2_dtable;
139
140 /*
141 * Track cache/tlb occupancy using the following structure
142 */
143 union pmap_cache_state {
144 struct {
145 union {
146 u_int8_t csu_cache_b[2];
147 u_int16_t csu_cache;
148 } cs_cache_u;
149
150 union {
151 u_int8_t csu_tlb_b[2];
152 u_int16_t csu_tlb;
153 } cs_tlb_u;
154 } cs_s;
155 u_int32_t cs_all;
156 };
157 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 #define cs_cache cs_s.cs_cache_u.csu_cache
160 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
163
164 /*
165 * Assigned to cs_all to force cacheops to work for a particular pmap
166 */
167 #define PMAP_CACHE_STATE_ALL 0xffffffffu
168
169 /*
170 * This structure is used by machine-dependent code to describe
171 * static mappings of devices, created at bootstrap time.
172 */
173 struct pmap_devmap {
174 vaddr_t pd_va; /* virtual address */
175 paddr_t pd_pa; /* physical address */
176 psize_t pd_size; /* size of region */
177 vm_prot_t pd_prot; /* protection code */
178 int pd_cache; /* cache attributes */
179 };
180
181 /*
182 * The pmap structure itself
183 */
184 struct pmap {
185 u_int8_t pm_domain;
186 bool pm_remove_all;
187 bool pm_activated;
188 struct l1_ttable *pm_l1;
189 pd_entry_t *pm_pl1vec;
190 pd_entry_t pm_l1vec;
191 union pmap_cache_state pm_cstate;
192 struct uvm_object pm_obj;
193 kmutex_t pm_obj_lock;
194 #define pm_lock pm_obj.vmobjlock
195 struct l2_dtable *pm_l2[L2_SIZE];
196 struct pmap_statistics pm_stats;
197 LIST_ENTRY(pmap) pm_list;
198 };
199
200 /*
201 * Physical / virtual address structure. In a number of places (particularly
202 * during bootstrapping) we need to keep track of the physical and virtual
203 * addresses of various pages
204 */
205 typedef struct pv_addr {
206 SLIST_ENTRY(pv_addr) pv_list;
207 paddr_t pv_pa;
208 vaddr_t pv_va;
209 vsize_t pv_size;
210 } pv_addr_t;
211 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
212
213 extern pv_addrqh_t pmap_freeq;
214 extern pv_addr_t kernelpages;
215 extern pv_addr_t systempage;
216 extern pv_addr_t kernel_l1pt;
217
218 /*
219 * Determine various modes for PTEs (user vs. kernel, cacheable
220 * vs. non-cacheable).
221 */
222 #define PTE_KERNEL 0
223 #define PTE_USER 1
224 #define PTE_NOCACHE 0
225 #define PTE_CACHE 1
226 #define PTE_PAGETABLE 2
227
228 /*
229 * Flags that indicate attributes of pages or mappings of pages.
230 *
231 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
232 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
233 * pv_entry's for each page. They live in the same "namespace" so
234 * that we can clear multiple attributes at a time.
235 *
236 * Note the "non-cacheable" flag generally means the page has
237 * multiple mappings in a given address space.
238 */
239 #define PVF_MOD 0x01 /* page is modified */
240 #define PVF_REF 0x02 /* page is referenced */
241 #define PVF_WIRED 0x04 /* mapping is wired */
242 #define PVF_WRITE 0x08 /* mapping is writable */
243 #define PVF_EXEC 0x10 /* mapping is executable */
244 #ifdef PMAP_CACHE_VIVT
245 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
246 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
247 #define PVF_NC (PVF_UNC|PVF_KNC)
248 #endif
249 #ifdef PMAP_CACHE_VIPT
250 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
251 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
252 #endif
253 #define PVF_COLORED 0x80 /* page has or had a color */
254 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
255 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
256 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
257 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
258 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
259 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
260
261 /*
262 * Commonly referenced structures
263 */
264 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
265
266 /*
267 * Macros that we need to export
268 */
269 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
270 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
271
272 #define pmap_is_modified(pg) \
273 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
274 #define pmap_is_referenced(pg) \
275 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
276 #define pmap_is_page_colored_p(md) \
277 (((md)->pvh_attrs & PVF_COLORED) != 0)
278
279 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
280
281 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
282 u_int arm32_mmap_flags(paddr_t);
283 #define ARM32_MMAP_WRITECOMBINE 0x40000000
284 #define ARM32_MMAP_CACHEABLE 0x20000000
285 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
286
287 /*
288 * Functions that we need to export
289 */
290 void pmap_procwr(struct proc *, vaddr_t, int);
291 void pmap_remove_all(pmap_t);
292 bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
293
294 #define PMAP_NEED_PROCWR
295 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
296 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
297
298 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
299 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
300 void pmap_prefer(vaddr_t, vaddr_t *, int);
301 #endif
302
303 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
304
305 /* Functions we use internally. */
306 #ifdef PMAP_STEAL_MEMORY
307 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
308 void pmap_boot_pageadd(pv_addr_t *);
309 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
310 #endif
311 void pmap_bootstrap(vaddr_t, vaddr_t);
312
313 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
314 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
315 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
316 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
317 void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
318
319 void pmap_debug(int);
320 void pmap_postinit(void);
321
322 void vector_page_setprot(int);
323
324 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
325 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
326
327 /* Bootstrapping routines. */
328 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
329 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
330 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
331 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
332 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
333 void pmap_devmap_register(const struct pmap_devmap *);
334
335 /*
336 * Special page zero routine for use by the idle loop (no cache cleans).
337 */
338 bool pmap_pageidlezero(paddr_t);
339 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
340
341 /*
342 * used by dumpsys to record the PA of the L1 table
343 */
344 uint32_t pmap_kernel_L1_addr(void);
345 /*
346 * The current top of kernel VM
347 */
348 extern vaddr_t pmap_curmaxkvaddr;
349
350 /*
351 * Useful macros and constants
352 */
353
354 /* Virtual address to page table entry */
355 static inline pt_entry_t *
356 vtopte(vaddr_t va)
357 {
358 pd_entry_t *pdep;
359 pt_entry_t *ptep;
360
361 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
362 return (NULL);
363 return (ptep);
364 }
365
366 /*
367 * Virtual address to physical address
368 */
369 static inline paddr_t
370 vtophys(vaddr_t va)
371 {
372 paddr_t pa;
373
374 if (pmap_extract(pmap_kernel(), va, &pa) == false)
375 return (0); /* XXXSCW: Panic? */
376
377 return (pa);
378 }
379
380 /*
381 * The new pmap ensures that page-tables are always mapping Write-Thru.
382 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
383 * on every change.
384 *
385 * Unfortunately, not all CPUs have a write-through cache mode. So we
386 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
387 * and if there is the chance for PTE syncs to be needed, we define
388 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
389 * the code.
390 */
391 extern int pmap_needs_pte_sync;
392 #if defined(_KERNEL_OPT)
393 /*
394 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
395 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
396 * this at compile time.
397 */
398 #if (ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7 != 0) && (ARM_NMMUS == 1)
399 #define PMAP_NEEDS_PTE_SYNC 1
400 #define PMAP_INCLUDE_PTE_SYNC
401 #elif (ARM_MMU_SA1 == 0)
402 #define PMAP_NEEDS_PTE_SYNC 0
403 #endif
404 #endif /* _KERNEL_OPT */
405
406 /*
407 * Provide a fallback in case we were not able to determine it at
408 * compile-time.
409 */
410 #ifndef PMAP_NEEDS_PTE_SYNC
411 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
412 #define PMAP_INCLUDE_PTE_SYNC
413 #endif
414
415 #define PTE_SYNC(pte) \
416 do { \
417 if (PMAP_NEEDS_PTE_SYNC) \
418 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
419 } while (/*CONSTCOND*/0)
420
421 #define PTE_SYNC_RANGE(pte, cnt) \
422 do { \
423 if (PMAP_NEEDS_PTE_SYNC) { \
424 cpu_dcache_wb_range((vaddr_t)(pte), \
425 (cnt) << 2); /* * sizeof(pt_entry_t) */ \
426 } \
427 } while (/*CONSTCOND*/0)
428
429 #define l1pte_valid(pde) ((pde) != 0)
430 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
431 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
432 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
433
434 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
435 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
436 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
437 #define l2pte_minidata(pte) (((pte) & \
438 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
439 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
440
441 /* L1 and L2 page table macros */
442 #define pmap_pde_v(pde) l1pte_valid(*(pde))
443 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
444 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
445 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
446
447 #define pmap_pte_v(pte) l2pte_valid(*(pte))
448 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
449
450 /* Size of the kernel part of the L1 page table */
451 #define KERNEL_PD_SIZE \
452 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
453
454 /************************* ARM MMU configuration *****************************/
455
456 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
457 void pmap_copy_page_generic(paddr_t, paddr_t);
458 void pmap_zero_page_generic(paddr_t);
459
460 void pmap_pte_init_generic(void);
461 #if defined(CPU_ARM8)
462 void pmap_pte_init_arm8(void);
463 #endif
464 #if defined(CPU_ARM9)
465 void pmap_pte_init_arm9(void);
466 #endif /* CPU_ARM9 */
467 #if defined(CPU_ARM10)
468 void pmap_pte_init_arm10(void);
469 #endif /* CPU_ARM10 */
470 #if defined(CPU_ARM11)
471 void pmap_pte_init_arm11(void);
472 #endif /* CPU_ARM11 */
473 #if defined(CPU_ARM11MPCORE)
474 void pmap_pte_init_arm11mpcore(void);
475 #endif
476 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
477
478 #if ARM_MMU_SA1 == 1
479 void pmap_pte_init_sa1(void);
480 #endif /* ARM_MMU_SA1 == 1 */
481
482 #if ARM_MMU_XSCALE == 1
483 void pmap_copy_page_xscale(paddr_t, paddr_t);
484 void pmap_zero_page_xscale(paddr_t);
485
486 void pmap_pte_init_xscale(void);
487
488 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
489
490 #define PMAP_UAREA(va) pmap_uarea(va)
491 void pmap_uarea(vaddr_t);
492 #endif /* ARM_MMU_XSCALE == 1 */
493
494 #if ARM_MMU_V7 == 1
495 void pmap_pte_init_armv7(void);
496 #endif /* ARM_MMU_V7 */
497
498 extern pt_entry_t pte_l1_s_cache_mode;
499 extern pt_entry_t pte_l1_s_cache_mask;
500
501 extern pt_entry_t pte_l2_l_cache_mode;
502 extern pt_entry_t pte_l2_l_cache_mask;
503
504 extern pt_entry_t pte_l2_s_cache_mode;
505 extern pt_entry_t pte_l2_s_cache_mask;
506
507 extern pt_entry_t pte_l1_s_cache_mode_pt;
508 extern pt_entry_t pte_l2_l_cache_mode_pt;
509 extern pt_entry_t pte_l2_s_cache_mode_pt;
510
511 extern pt_entry_t pte_l1_s_wc_mode;
512 extern pt_entry_t pte_l2_l_wc_mode;
513 extern pt_entry_t pte_l2_s_wc_mode;
514
515 extern pt_entry_t pte_l1_s_prot_u;
516 extern pt_entry_t pte_l1_s_prot_w;
517 extern pt_entry_t pte_l1_s_prot_ro;
518 extern pt_entry_t pte_l1_s_prot_mask;
519
520 extern pt_entry_t pte_l2_s_prot_u;
521 extern pt_entry_t pte_l2_s_prot_w;
522 extern pt_entry_t pte_l2_s_prot_ro;
523 extern pt_entry_t pte_l2_s_prot_mask;
524
525 extern pt_entry_t pte_l2_l_prot_u;
526 extern pt_entry_t pte_l2_l_prot_w;
527 extern pt_entry_t pte_l2_l_prot_ro;
528 extern pt_entry_t pte_l2_l_prot_mask;
529
530 extern pt_entry_t pte_l1_s_proto;
531 extern pt_entry_t pte_l1_c_proto;
532 extern pt_entry_t pte_l2_s_proto;
533
534 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
535 extern void (*pmap_zero_page_func)(paddr_t);
536
537 #endif /* !_LOCORE */
538
539 /*****************************************************************************/
540
541 /*
542 * Definitions for MMU domains
543 */
544 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
545 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
546
547 /*
548 * These macros define the various bit masks in the PTE.
549 *
550 * We use these macros since we use different bits on different processor
551 * models.
552 */
553 #define L1_S_PROT_U_generic (L1_S_AP(AP_U))
554 #define L1_S_PROT_W_generic (L1_S_AP(AP_W))
555 #define L1_S_PROT_RO_generic (0)
556 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
557
558 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
559 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
560 #define L1_S_PROT_RO_xscale (0)
561 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
562
563 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
564 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
565 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
566 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
567
568 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
569 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
570 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
571 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
572
573 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
574 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
575 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
576 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C)
577
578 #define L2_L_PROT_U_generic (L2_AP(AP_U))
579 #define L2_L_PROT_W_generic (L2_AP(AP_W))
580 #define L2_L_PROT_RO_generic (0)
581 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
582
583 #define L2_L_PROT_U_xscale (L2_AP(AP_U))
584 #define L2_L_PROT_W_xscale (L2_AP(AP_W))
585 #define L2_L_PROT_RO_xscale (0)
586 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
587
588 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
589 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
590 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
591 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
592
593 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
594 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
595 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
596 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
597
598 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
599 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
600 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
601 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C)
602
603 #define L2_S_PROT_U_generic (L2_AP(AP_U))
604 #define L2_S_PROT_W_generic (L2_AP(AP_W))
605 #define L2_S_PROT_RO_generic (0)
606 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
607
608 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
609 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
610 #define L2_S_PROT_RO_xscale (0)
611 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
612
613 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
614 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
615 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
616 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
617
618 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
619 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
620 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
621 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
622
623 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
624 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
625 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
626 #define L2_S_CACHE_MASK_armv6n L2_XS_CACHE_MASK_armv6
627 #ifdef ARMV6_EXTENDED_SMALL_PAGE
628 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
629 #else
630 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
631 #endif
632 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C)
633
634
635 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
636 #define L1_S_PROTO_xscale (L1_TYPE_S)
637 #define L1_S_PROTO_armv6 (L1_TYPE_S)
638 #define L1_S_PROTO_armv7 (L1_TYPE_S)
639
640 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
641 #define L1_C_PROTO_xscale (L1_TYPE_C)
642 #define L1_C_PROTO_armv6 (L1_TYPE_C)
643 #define L1_C_PROTO_armv7 (L1_TYPE_C)
644
645 #define L2_L_PROTO (L2_TYPE_L)
646
647 #define L2_S_PROTO_generic (L2_TYPE_S)
648 #define L2_S_PROTO_xscale (L2_TYPE_XS)
649 #ifdef ARMV6_EXTENDED_SMALL_PAGE
650 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
651 #else
652 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
653 #endif
654 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
655 #define L2_S_PROTO_armv7 (L2_TYPE_S)
656
657 /*
658 * User-visible names for the ones that vary with MMU class.
659 */
660
661 #if ARM_NMMUS > 1
662 /* More than one MMU class configured; use variables. */
663 #define L1_S_PROT_U pte_l1_s_prot_u
664 #define L1_S_PROT_W pte_l1_s_prot_w
665 #define L1_S_PROT_RO pte_l1_s_prot_ro
666 #define L1_S_PROT_MASK pte_l1_s_prot_mask
667
668 #define L2_S_PROT_U pte_l2_s_prot_u
669 #define L2_S_PROT_W pte_l2_s_prot_w
670 #define L2_S_PROT_RO pte_l2_s_prot_ro
671 #define L2_S_PROT_MASK pte_l2_s_prot_mask
672
673 #define L2_L_PROT_U pte_l2_l_prot_u
674 #define L2_L_PROT_W pte_l2_l_prot_w
675 #define L2_L_PROT_RO pte_l2_l_prot_ro
676 #define L2_L_PROT_MASK pte_l2_l_prot_mask
677
678 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
679 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
680 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
681
682 #define L1_S_PROTO pte_l1_s_proto
683 #define L1_C_PROTO pte_l1_c_proto
684 #define L2_S_PROTO pte_l2_s_proto
685
686 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
687 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
688 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
689 #define L1_S_PROT_U L1_S_PROT_U_generic
690 #define L1_S_PROT_W L1_S_PROT_W_generic
691 #define L1_S_PROT_RO L1_S_PROT_RO_generic
692 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
693
694 #define L2_S_PROT_U L2_S_PROT_U_generic
695 #define L2_S_PROT_W L2_S_PROT_W_generic
696 #define L2_S_PROT_RO L2_S_PROT_RO_generic
697 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
698
699 #define L2_L_PROT_U L2_L_PROT_U_generic
700 #define L2_L_PROT_W L2_L_PROT_W_generic
701 #define L2_L_PROT_RO L2_L_PROT_RO_generic
702 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
703
704 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
705 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
706 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
707
708 #define L1_S_PROTO L1_S_PROTO_generic
709 #define L1_C_PROTO L1_C_PROTO_generic
710 #define L2_S_PROTO L2_S_PROTO_generic
711
712 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
713 #define pmap_zero_page(d) pmap_zero_page_generic((d))
714 #elif ARM_MMU_V6N != 0
715 #define L1_S_PROT_U L1_S_PROT_U_armv6
716 #define L1_S_PROT_W L1_S_PROT_W_armv6
717 #define L1_S_PROT_RO L1_S_PROT_RO_armv6
718 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
719
720 #define L2_S_PROT_U L2_S_PROT_U_armv6n
721 #define L2_S_PROT_W L2_S_PROT_W_armv6n
722 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n
723 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
724
725 #define L2_L_PROT_U L2_L_PROT_U_armv6n
726 #define L2_L_PROT_W L2_L_PROT_W_armv6n
727 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n
728 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
729
730 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6
731 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6
732 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
733
734 /* These prototypes make writeable mappings, while the other MMU types
735 * make read-only mappings. */
736 #define L1_S_PROTO L1_S_PROTO_armv6
737 #define L1_C_PROTO L1_C_PROTO_armv6
738 #define L2_S_PROTO L2_S_PROTO_armv6n
739
740 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
741 #define pmap_zero_page(d) pmap_zero_page_generic((d))
742 #elif ARM_MMU_V6C != 0
743 #define L1_S_PROT_U L1_S_PROT_U_generic
744 #define L1_S_PROT_W L1_S_PROT_W_generic
745 #define L1_S_PROT_RO L1_S_PROT_RO_generic
746 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
747
748 #define L2_S_PROT_U L2_S_PROT_U_generic
749 #define L2_S_PROT_W L2_S_PROT_W_generic
750 #define L2_S_PROT_RO L2_S_PROT_RO_generic
751 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
752
753 #define L2_L_PROT_U L2_L_PROT_U_generic
754 #define L2_L_PROT_W L2_L_PROT_W_generic
755 #define L2_L_PROT_RO L2_L_PROT_RO_generic
756 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
757
758 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
759 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
760 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
761
762 #define L1_S_PROTO L1_S_PROTO_generic
763 #define L1_C_PROTO L1_C_PROTO_generic
764 #define L2_S_PROTO L2_S_PROTO_generic
765
766 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
767 #define pmap_zero_page(d) pmap_zero_page_generic((d))
768 #elif ARM_MMU_XSCALE == 1
769 #define L1_S_PROT_U L1_S_PROT_U_generic
770 #define L1_S_PROT_W L1_S_PROT_W_generic
771 #define L1_S_PROT_RO L1_S_PROT_RO_generic
772 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic
773
774 #define L2_S_PROT_U L2_S_PROT_U_xscale
775 #define L2_S_PROT_W L2_S_PROT_W_xscale
776 #define L2_S_PROT_RO L2_S_PROT_RO_xscale
777 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
778
779 #define L2_L_PROT_U L2_L_PROT_U_generic
780 #define L2_L_PROT_W L2_L_PROT_W_generic
781 #define L2_L_PROT_RO L2_L_PROT_RO_generic
782 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic
783
784 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
785 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
786 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
787
788 #define L1_S_PROTO L1_S_PROTO_xscale
789 #define L1_C_PROTO L1_C_PROTO_xscale
790 #define L2_S_PROTO L2_S_PROTO_xscale
791
792 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
793 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
794 #elif ARM_MMU_V7 == 1
795 #define L1_S_PROT_U L1_S_PROT_U_armv7
796 #define L1_S_PROT_W L1_S_PROT_W_armv7
797 #define L1_S_PROT_RO L1_S_PROT_RO_armv7
798 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
799
800 #define L2_S_PROT_U L2_S_PROT_U_armv7
801 #define L2_S_PROT_W L2_S_PROT_W_armv7
802 #define L2_S_PROT_RO L2_S_PROT_RO_armv7
803 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
804
805 #define L2_L_PROT_U L2_L_PROT_U_armv7
806 #define L2_L_PROT_W L2_L_PROT_W_armv7
807 #define L2_L_PROT_RO L2_L_PROT_RO_armv7
808 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
809
810 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
811 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
812 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
813
814 /* These prototypes make writeable mappings, while the other MMU types
815 * make read-only mappings. */
816 #define L1_S_PROTO L1_S_PROTO_armv7
817 #define L1_C_PROTO L1_C_PROTO_armv7
818 #define L2_S_PROTO L2_S_PROTO_armv7
819
820 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
821 #define pmap_zero_page(d) pmap_zero_page_generic((d))
822 #endif /* ARM_NMMUS > 1 */
823
824 /*
825 * Macros to set and query the write permission on page descriptors.
826 */
827 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
828 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
829 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
830 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
831
832 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
833 (L2_S_PROT_RO == 0 || \
834 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
835
836 /*
837 * These macros return various bits based on kernel/user and protection.
838 * Note that the compiler will usually fold these at compile time.
839 */
840 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
841 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO))
842
843 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
844 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO))
845
846 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
847 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO))
848
849 /*
850 * Macros to test if a mapping is mappable with an L1 Section mapping
851 * or an L2 Large Page mapping.
852 */
853 #define L1_S_MAPPABLE_P(va, pa, size) \
854 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
855
856 #define L2_L_MAPPABLE_P(va, pa, size) \
857 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
858
859 /*
860 * Hooks for the pool allocator.
861 */
862 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
863
864 #ifndef _LOCORE
865
866 /*
867 * pmap-specific data store in the vm_page structure.
868 */
869 #define __HAVE_VM_PAGE_MD
870 struct vm_page_md {
871 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
872 struct simplelock pvh_slock; /* lock on this head */
873 int pvh_attrs; /* page attributes */
874 u_int uro_mappings;
875 u_int urw_mappings;
876 union {
877 u_short s_mappings[2]; /* Assume kernel count <= 65535 */
878 u_int i_mappings;
879 } k_u;
880 #define kro_mappings k_u.s_mappings[0]
881 #define krw_mappings k_u.s_mappings[1]
882 #define k_mappings k_u.i_mappings
883 };
884
885 /*
886 * Set the default color of each page.
887 */
888 #if ARM_MMU_V6 > 0
889 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
890 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
891 #else
892 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
893 (pg)->mdpage.pvh_attrs = 0
894 #endif
895
896 #define VM_MDPAGE_INIT(pg) \
897 do { \
898 SLIST_INIT(&(pg)->mdpage.pvh_list); \
899 simple_lock_init(&(pg)->mdpage.pvh_slock); \
900 VM_MDPAGE_PVH_ATTRS_INIT(pg); \
901 (pg)->mdpage.uro_mappings = 0; \
902 (pg)->mdpage.urw_mappings = 0; \
903 (pg)->mdpage.k_mappings = 0; \
904 } while (/*CONSTCOND*/0)
905
906 #endif /* !_LOCORE */
907
908 #endif /* _KERNEL */
909
910 #endif /* _ARM32_PMAP_H_ */
911