pte.h revision 1.12 1 /* $NetBSD: pte.h,v 1.12 2012/08/20 13:03:41 matt Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #ifndef _ARM_PTE_H_
39 #define _ARM_PTE_H_
40
41 /*
42 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
43 * architecture versions used an optional off-CPU memory controller
44 * to perform address translation).
45 *
46 * The ARM MMU consists of a TLB and translation table walking logic.
47 * There is typically one TLB per memory interface (or, put another
48 * way, one TLB per software-visible cache).
49 *
50 * The ARM MMU is capable of mapping memory in the following chunks:
51 *
52 * 16M SuperSections (L1 table, ARMv6+)
53 *
54 * 1M Sections (L1 table)
55 *
56 * 64K Large Pages (L2 table)
57 *
58 * 4K Small Pages (L2 table)
59 *
60 * 1K Tiny Pages (L2 table)
61 *
62 * There are two types of L2 tables: Coarse Tables and Fine Tables (not
63 * available on ARMv6+). Coarse Tables can map Large and Small Pages.
64 * Fine Tables can map Tiny Pages.
65 *
66 * Coarse Tables can define 4 Subpages within Large and Small pages.
67 * Subpages define different permissions for each Subpage within
68 * a Page. ARMv6 format Coarse Tables have no subpages.
69 *
70 * Coarse Tables are 1K in length. Fine tables are 4K in length.
71 *
72 * The Translation Table Base register holds the pointer to the
73 * L1 Table. The L1 Table is a 16K contiguous chunk of memory
74 * aligned to a 16K boundary. Each entry in the L1 Table maps
75 * 1M of virtual address space, either via a Section mapping or
76 * via an L2 Table.
77 *
78 * ARMv6+ has a second TTBR register which can be used if any of the
79 * upper address bits are non-zero (think kernel). For NetBSD, this
80 * would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
81 * This would also reduce the size of the L1 Table to 8K.
82 *
83 * In addition, the Fast Context Switching Extension (FCSE) is available
84 * on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating
85 * TLB/cache flushes on context switch by use of a smaller address space
86 * and a "process ID" that modifies the virtual address before being
87 * presented to the translation logic.
88 */
89
90 #ifndef _LOCORE
91 typedef uint32_t pd_entry_t; /* L1 table entry */
92 typedef uint32_t pt_entry_t; /* L2 table entry */
93 #endif /* _LOCORE */
94
95 #define L1_SS_SIZE 0x01000000 /* 16M */
96 #define L1_SS_OFFSET (L1_SS_SIZE - 1)
97 #define L1_SS_FRAME (~L1_SS_OFFSET)
98 #define L1_SS_SHIFT 24
99
100 #define L1_S_SIZE 0x00100000 /* 1M */
101 #define L1_S_OFFSET (L1_S_SIZE - 1)
102 #define L1_S_FRAME (~L1_S_OFFSET)
103 #define L1_S_SHIFT 20
104
105 #define L2_L_SIZE 0x00010000 /* 64K */
106 #define L2_L_OFFSET (L2_L_SIZE - 1)
107 #define L2_L_FRAME (~L2_L_OFFSET)
108 #define L2_L_SHIFT 16
109
110 #define L2_S_SEGSIZE (PAGE_SIZE * L2_S_SIZE / 4)
111 #define L2_S_SIZE 0x00001000 /* 4K */
112 #define L2_S_OFFSET (L2_S_SIZE - 1)
113 #define L2_S_FRAME (~L2_S_OFFSET)
114 #define L2_S_SHIFT 12
115
116 #define L2_T_SIZE 0x00000400 /* 1K */
117 #define L2_T_OFFSET (L2_T_SIZE - 1)
118 #define L2_T_FRAME (~L2_T_OFFSET)
119 #define L2_T_SHIFT 10
120
121 /*
122 * The NetBSD VM implementation only works on whole pages (4K),
123 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
124 * (16K L1 table, 1K L2 table).
125 *
126 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
127 * table.
128 */
129 #define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */
130 #define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */
131
132 #define L1_TABLE_SIZE 0x4000 /* 16K */
133 #define L2_TABLE_SIZE 0x1000 /* 4K */
134 /*
135 * The new pmap deals with the 1KB coarse L2 tables by
136 * allocating them from a pool. Until every port has been converted,
137 * keep the old L2_TABLE_SIZE define lying around. Converted ports
138 * should use L2_TABLE_SIZE_REAL until then.
139 */
140 #define L2_TABLE_SIZE_REAL 0x400 /* 1K */
141
142 /*
143 * ARM L1 Descriptors
144 */
145
146 #define L1_TYPE_INV 0x00 /* Invalid (fault) */
147 #define L1_TYPE_C 0x01 /* Coarse L2 */
148 #define L1_TYPE_S 0x02 /* Section */
149 #define L1_TYPE_F 0x03 /* Fine L2 */
150 #define L1_TYPE_MASK 0x03 /* mask of type bits */
151
152 /* L1 Section Descriptor */
153 #define L1_S_B 0x00000004 /* bufferable Section */
154 #define L1_S_C 0x00000008 /* cacheable Section */
155 #define L1_S_IMP 0x00000010 /* implementation defined */
156 #define L1_S_DOM(x) ((x) << 5) /* domain */
157 #define L1_S_DOM_MASK L1_S_DOM(0xf)
158 #define L1_S_AP(x) ((x) << 10) /* access permissions */
159 #define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */
160
161 #define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */
162 #define L1_S_XS_TEX(x) ((x) << 12) /* Type Extension */
163 #define L1_S_V6_TEX(x) L1_S_XS_TEX(x)
164 #define L1_S_V6_P 0x00000200 /* ECC enable for this section */
165 #define L1_S_V6_SUPER 0x00040000 /* ARMv6 SuperSection (16MB) bit */
166 #define L1_S_V6_XN L1_S_IMP /* ARMv6 eXecute Never */
167 #define L1_S_V6_APX 0x00008000 /* ARMv6 AP eXtension */
168 #define L1_S_V6_S 0x00010000 /* ARMv6 Shared */
169 #define L1_S_V6_nG 0x00020000 /* ARMv6 not-Global */
170 #define L1_S_V6_SS 0x00040000 /* ARMv6 SuperSection */
171 #define L1_S_V6_NS 0x00080000 /* ARMv6 Not Secure */
172
173 /* L1 Coarse Descriptor */
174 #define L1_C_IMP0 0x00000004 /* implementation defined */
175 #define L1_C_IMP1 0x00000008 /* implementation defined */
176 #define L1_C_IMP2 0x00000010 /* implementation defined */
177 #define L1_C_DOM(x) ((x) << 5) /* domain */
178 #define L1_C_DOM_MASK L1_C_DOM(0xf)
179 #define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */
180
181 #define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */
182 #define L1_C_V6_P 0x00000200 /* ECC enable for this section */
183
184 /* L1 Fine Descriptor */
185 #define L1_F_IMP0 0x00000004 /* implementation defined */
186 #define L1_F_IMP1 0x00000008 /* implementation defined */
187 #define L1_F_IMP2 0x00000010 /* implementation defined */
188 #define L1_F_DOM(x) ((x) << 5) /* domain */
189 #define L1_F_DOM_MASK L1_F_DOM(0xf)
190 #define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */
191
192 #define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */
193
194 /*
195 * ARM L2 Descriptors
196 */
197
198 #define L2_TYPE_INV 0x00 /* Invalid (fault) */
199 #define L2_TYPE_L 0x01 /* Large Page */
200 #define L2_TYPE_S 0x02 /* Small Page */
201 #define L2_TYPE_T 0x03 /* Tiny Page */
202 #define L2_TYPE_MASK 0x03 /* mask of type bits */
203
204 /*
205 * This L2 Descriptor type is available on XScale processors
206 * when using a Coarse L1 Descriptor. The Extended Small
207 * Descriptor has the same format as the XScale Tiny Descriptor,
208 * but describes a 4K page, rather than a 1K page.
209 * For V6 MMU, this is used when XP bit is cleared.
210 */
211 #define L2_TYPE_XS 0x03 /* XScale/ARMv6 Extended Small Page */
212
213 #define L2_B 0x00000004 /* Bufferable page */
214 #define L2_C 0x00000008 /* Cacheable page */
215 #define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */
216 #define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */
217 #define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */
218 #define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */
219 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
220
221 #define L2_XS_L_TEX(x) ((x) << 12) /* Type Extension */
222 #define L2_XS_T_TEX(x) ((x) << 6) /* Type Extension */
223 #define L2_XS_XN 0x00000001 /* ARMv6 eXecute Never (when XP=1) */
224 #define L2_XS_APX 0x00000200 /* ARMv6 AP eXtension */
225 #define L2_XS_S 0x00000400 /* ARMv6 Shared */
226 #define L2_XS_nG 0x00000800 /* ARMv6 Not-Global */
227 #define L2_V6_L_TEX L2_XS_L_TEX
228 #define L2_V6_XS_TEX L2_XS_T_TEX
229
230
231 /*
232 * Access Permissions for L1 and L2 Descriptors.
233 */
234 #define AP_W 0x01 /* writable */
235 #define AP_U 0x02 /* user */
236
237 /*
238 * Access Permissions for L1 and L2 of ARMv6 with XP=1 and ARMv7
239 */
240 #define AP_R 0x01 /* readable */
241 #define AP_RO 0x20 /* read-only */
242
243 /*
244 * Short-hand for common AP_* constants.
245 *
246 * Note: These values assume the S (System) bit is set and
247 * the R (ROM) bit is clear in CP15 register 1.
248 */
249 #define AP_KR 0x00 /* kernel read */
250 #define AP_KRW 0x01 /* kernel read/write */
251 #define AP_KRWUR 0x02 /* kernel read/write usr read */
252 #define AP_KRWURW 0x03 /* kernel read/write usr read/write */
253
254 /*
255 * Note: These values assume the S (System) and the R (ROM) bits are clear and
256 * the XP (eXtended page table) bit is set in CP15 register 1. ARMv6 only.
257 */
258 #define APX_KR(APX) (APX|0x01) /* kernel read */
259 #define APX_KRUR(APX) (APX|0x02) /* kernel read user read */
260 #define APX_KRW(APX) ( 0x01) /* kernel read/write */
261 #define APX_KRWUR(APX) ( 0x02) /* kernel read/write user read */
262 #define APX_KRWURW(APX) ( 0x03) /* kernel read/write user read/write */
263
264 /*
265 * Note: These values are for the simplified access permissions model
266 * of ARMv7. Assumes that AFE is clear in CP15 register 1.
267 * Also used for ARMv6 with XP bit set.
268 */
269 #define AP7_KR 0x21 /* kernel read */
270 #define AP7_KRUR 0x23 /* kernel read usr read */
271 #define AP7_KRW 0x01 /* kernel read/write */
272 #define AP7_KRWURW 0x03 /* kernel read/write usr read/write */
273
274 /*
275 * Domain Types for the Domain Access Control Register.
276 */
277 #define DOMAIN_FAULT 0x00 /* no access */
278 #define DOMAIN_CLIENT 0x01 /* client */
279 #define DOMAIN_RESERVED 0x02 /* reserved */
280 #define DOMAIN_MANAGER 0x03 /* manager */
281
282 /*
283 * Type Extension bits for XScale processors.
284 *
285 * Behavior of C and B when X == 0:
286 *
287 * C B Cacheable Bufferable Write Policy Line Allocate Policy
288 * 0 0 N N - -
289 * 0 1 N Y - -
290 * 1 0 Y Y Write-through Read Allocate
291 * 1 1 Y Y Write-back Read Allocate
292 *
293 * Behavior of C and B when X == 1:
294 * C B Cacheable Bufferable Write Policy Line Allocate Policy
295 * 0 0 - - - - DO NOT USE
296 * 0 1 N Y - -
297 * 1 0 Mini-Data - - -
298 * 1 1 Y Y Write-back R/W Allocate
299 */
300 #define TEX_XSCALE_X 0x01 /* X modifies C and B */
301
302 /*
303 * Type Extension bits for ARM V6 and V7 MMU
304 *
305 * TEX C B Shared
306 * 000 0 0 Strong order yes
307 * 000 0 1 Shared device yes
308 * 000 1 0 write through, no write alloc S-bit
309 * 000 1 1 write back, no write alloc S-bit
310 * 001 0 0 non-cacheable S-bit
311 * 001 0 1 reserved
312 * 001 1 0 reserved
313 * 001 1 1 write back, write alloc S-bit
314 * 010 0 0 Non-shared device no
315 * 010 0 1 reserved
316 * 010 1 X reserved
317 * 011 X X reserved
318 * 1BB A A BB for internal, AA for external S-bit
319 *
320 * BB internal cache
321 * 0 0 Non-cacheable non-buffered
322 * 0 1 Write back, write alloc, buffered
323 * 1 0 Write through, no write alloc, buffered
324 * (non-cacheable for MPCore)
325 * 1 1 Write back, no write alloc, buffered
326 * (write back, write alloc for MPCore)
327 *
328 * AA external cache
329 * 0 0 Non-cacheable non-buffered
330 * 0 1 Write back, write alloc, buffered
331 * 1 0 Write through, no write alloc, buffered
332 * 1 1 Write back, no write alloc, buffered
333 */
334
335 #define TEX_ARMV6_TEX 0x07 /* 3 bits in TEX */
336
337 #endif /* _ARM_PTE_H_ */
338