Home | History | Annotate | Line # | Download | only in arm32
pte.h revision 1.15
      1 /*	$NetBSD: pte.h,v 1.15 2014/02/26 01:53:23 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #ifndef _ARM_PTE_H_
     39 #define	_ARM_PTE_H_
     40 
     41 /*
     42  * The ARM MMU architecture was introduced with ARM v3 (previous ARM
     43  * architecture versions used an optional off-CPU memory controller
     44  * to perform address translation).
     45  *
     46  * The ARM MMU consists of a TLB and translation table walking logic.
     47  * There is typically one TLB per memory interface (or, put another
     48  * way, one TLB per software-visible cache).
     49  *
     50  * The ARM MMU is capable of mapping memory in the following chunks:
     51  *
     52  *	16M	SuperSections (L1 table, ARMv6+)
     53  *
     54  *	1M	Sections (L1 table)
     55  *
     56  *	64K	Large Pages (L2 table)
     57  *
     58  *	4K	Small Pages (L2 table)
     59  *
     60  *	1K	Tiny Pages (L2 table)
     61  *
     62  * There are two types of L2 tables: Coarse Tables and Fine Tables (not
     63  * available on ARMv6+).  Coarse Tables can map Large and Small Pages.
     64  * Fine Tables can map Tiny Pages.
     65  *
     66  * Coarse Tables can define 4 Subpages within Large and Small pages.
     67  * Subpages define different permissions for each Subpage within
     68  * a Page.  ARMv6 format Coarse Tables have no subpages.
     69  *
     70  * Coarse Tables are 1K in length.  Fine tables are 4K in length.
     71  *
     72  * The Translation Table Base register holds the pointer to the
     73  * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
     74  * aligned to a 16K boundary.  Each entry in the L1 Table maps
     75  * 1M of virtual address space, either via a Section mapping or
     76  * via an L2 Table.
     77  *
     78  * ARMv6+ has a second TTBR register which can be used if any of the
     79  * upper address bits are non-zero (think kernel).  For NetBSD, this
     80  * would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
     81  * This would also reduce the size of the L1 Table to 8K.
     82  *
     83  * In addition, the Fast Context Switching Extension (FCSE) is available
     84  * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
     85  * TLB/cache flushes on context switch by use of a smaller address space
     86  * and a "process ID" that modifies the virtual address before being
     87  * presented to the translation logic.
     88  */
     89 
     90 #ifndef _LOCORE
     91 typedef uint32_t	pd_entry_t;	/* L1 table entry */
     92 typedef uint32_t	pt_entry_t;	/* L2 table entry */
     93 #endif /* _LOCORE */
     94 
     95 #define	L1_SS_SIZE	0x01000000	/* 16M */
     96 #define	L1_SS_OFFSET	(L1_SS_SIZE - 1)
     97 #define	L1_SS_FRAME	(~L1_SS_OFFSET)
     98 #define	L1_SS_SHIFT	24
     99 
    100 #define	L1_S_SIZE	0x00100000	/* 1M */
    101 #define	L1_S_OFFSET	(L1_S_SIZE - 1)
    102 #define	L1_S_FRAME	(~L1_S_OFFSET)
    103 #define	L1_S_SHIFT	20
    104 
    105 #define	L2_L_SIZE	0x00010000	/* 64K */
    106 #define	L2_L_OFFSET	(L2_L_SIZE - 1)
    107 #define	L2_L_FRAME	(~L2_L_OFFSET)
    108 #define	L2_L_SHIFT	16
    109 
    110 #define	L2_S_SEGSIZE	(PAGE_SIZE * L2_S_SIZE / 4)
    111 #define	L2_S_SIZE	0x00001000	/* 4K */
    112 #define	L2_S_OFFSET	(L2_S_SIZE - 1)
    113 #define	L2_S_FRAME	(~L2_S_OFFSET)
    114 #define	L2_S_SHIFT	12
    115 
    116 #define	L2_T_SIZE	0x00000400	/* 1K */
    117 #define	L2_T_OFFSET	(L2_T_SIZE - 1)
    118 #define	L2_T_FRAME	(~L2_T_OFFSET)
    119 #define	L2_T_SHIFT	10
    120 
    121 /*
    122  * The NetBSD VM implementation only works on whole pages (4K),
    123  * whereas the ARM MMU's Coarse tables are sized in terms of 1K
    124  * (16K L1 table, 1K L2 table).
    125  *
    126  * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
    127  * table.
    128  */
    129 #define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
    130 #define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
    131 
    132 #define	L1_TABLE_SIZE	0x4000		/* 16K */
    133 #define	L2_TABLE_SIZE	0x1000		/* 4K */
    134 /*
    135  * The new pmap deals with the 1KB coarse L2 tables by
    136  * allocating them from a pool. Until every port has been converted,
    137  * keep the old L2_TABLE_SIZE define lying around. Converted ports
    138  * should use L2_TABLE_SIZE_REAL until then.
    139  */
    140 #define	L1_TABLE_SIZE_REAL	0x4000	/* 16K */
    141 #define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
    142 
    143 /*
    144  * ARM L1 Descriptors
    145  */
    146 
    147 #define	L1_TYPE_INV	0x00		/* Invalid (fault) */
    148 #define	L1_TYPE_C	0x01		/* Coarse L2 */
    149 #define	L1_TYPE_S	0x02		/* Section */
    150 #define	L1_TYPE_F	0x03		/* Fine L2 */
    151 #define	L1_TYPE_MASK	0x03		/* mask of type bits */
    152 
    153 /* L1 Section Descriptor */
    154 #define	L1_S_B		0x00000004	/* bufferable Section */
    155 #define	L1_S_C		0x00000008	/* cacheable Section */
    156 #define	L1_S_IMP	0x00000010	/* implementation defined */
    157 #define	L1_S_DOM(x)	((x) << 5)	/* domain */
    158 #define	L1_S_DOM_MASK	L1_S_DOM(0xf)
    159 #define	L1_S_AP(x)	((x) << 10)	/* access permissions */
    160 #define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
    161 
    162 #define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
    163 #define	L1_S_XS_TEX(x) ((x) << 12)	/* Type Extension */
    164 #define	L1_S_V6_TEX(x)	L1_S_XS_TEX(x)
    165 #define	L1_S_V6_P	0x00000200	/* ECC enable for this section */
    166 #define	L1_S_V6_SUPER	0x00040000	/* ARMv6 SuperSection (16MB) bit */
    167 #define	L1_S_V6_XN	L1_S_IMP	/* ARMv6 eXecute Never */
    168 #define	L1_S_V6_APX	0x00008000	/* ARMv6 AP eXtension */
    169 #define	L1_S_V6_S	0x00010000	/* ARMv6 Shared */
    170 #define	L1_S_V6_nG	0x00020000	/* ARMv6 not-Global */
    171 #define	L1_S_V6_SS	0x00040000	/* ARMv6 SuperSection */
    172 #define	L1_S_V6_NS	0x00080000	/* ARMv6 Not Secure */
    173 
    174 /* L1 Coarse Descriptor */
    175 #define	L1_C_IMP0	0x00000004	/* implementation defined */
    176 #define	L1_C_IMP1	0x00000008	/* implementation defined */
    177 #define	L1_C_IMP2	0x00000010	/* implementation defined */
    178 #define	L1_C_DOM(x)	((x) << 5)	/* domain */
    179 #define	L1_C_DOM_MASK	L1_C_DOM(0xf)
    180 #define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
    181 
    182 #define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
    183 #define	L1_C_V6_P	0x00000200	/* ECC enable for this section */
    184 
    185 /* L1 Fine Descriptor */
    186 #define	L1_F_IMP0	0x00000004	/* implementation defined */
    187 #define	L1_F_IMP1	0x00000008	/* implementation defined */
    188 #define	L1_F_IMP2	0x00000010	/* implementation defined */
    189 #define	L1_F_DOM(x)	((x) << 5)	/* domain */
    190 #define	L1_F_DOM_MASK	L1_F_DOM(0xf)
    191 #define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
    192 
    193 #define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
    194 
    195 /*
    196  * ARM L2 Descriptors
    197  */
    198 
    199 #define	L2_TYPE_INV	0x00		/* Invalid (fault) */
    200 #define	L2_TYPE_L	0x01		/* Large Page */
    201 #define	L2_TYPE_S	0x02		/* Small Page */
    202 #define	L2_TYPE_T	0x03		/* Tiny Page (not armv7) */
    203 #define	L2_TYPE_MASK	0x03		/* mask of type bits */
    204 
    205 	/*
    206 	 * This L2 Descriptor type is available on XScale processors
    207 	 * when using a Coarse L1 Descriptor.  The Extended Small
    208 	 * Descriptor has the same format as the XScale Tiny Descriptor,
    209 	 * but describes a 4K page, rather than a 1K page.
    210 	 * For V6 MMU, this is used when XP bit is cleared.
    211 	 */
    212 #define	L2_TYPE_XS	0x03		/* XScale/ARMv6 Extended Small Page */
    213 
    214 #define	L2_B		0x00000004	/* Bufferable page */
    215 #define	L2_C		0x00000008	/* Cacheable page */
    216 #define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
    217 #define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
    218 #define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
    219 #define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
    220 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
    221 
    222 #define	L2_XS_L_TEX(x)	((x) << 12)	/* Type Extension */
    223 #define	L2_XS_T_TEX(x)	((x) << 6)	/* Type Extension */
    224 #define	L2_XS_XN	0x00000001	/* ARMv6 eXecute Never (when XP=1) */
    225 #define	L2_XS_APX	0x00000200	/* ARMv6 AP eXtension */
    226 #define	L2_XS_S		0x00000400	/* ARMv6 Shared */
    227 #define	L2_XS_nG	0x00000800	/* ARMv6 Not-Global */
    228 #define	L2_V6_L_TEX	L2_XS_L_TEX
    229 #define	L2_V6_XS_TEX	L2_XS_T_TEX
    230 #define	L2_XS_L_XN	0x00008000	/* ARMv6 eXecute Never */
    231 
    232 
    233 /*
    234  * Access Permissions for L1 and L2 Descriptors.
    235  */
    236 #define	AP_W		0x01		/* writable */
    237 #define	AP_U		0x02		/* user */
    238 
    239 /*
    240  * Access Permissions for L1 and L2 of ARMv6 with XP=1 and ARMv7
    241  */
    242 #define	AP_R		0x01		/* readable */
    243 #define	AP_RO		0x20		/* read-only (L2_XS_APX >> 4) */
    244 
    245 /*
    246  * Short-hand for common AP_* constants.
    247  *
    248  * Note: These values assume the S (System) bit is set and
    249  * the R (ROM) bit is clear in CP15 register 1.
    250  */
    251 #define	AP_KR		0x00		/* kernel read */
    252 #define	AP_KRW		0x01		/* kernel read/write */
    253 #define	AP_KRWUR	0x02		/* kernel read/write usr read */
    254 #define	AP_KRWURW	0x03		/* kernel read/write usr read/write */
    255 
    256 /*
    257  * Note: These values assume the S (System) and the R (ROM) bits are clear and
    258  * the XP (eXtended page table) bit is set in CP15 register 1.  ARMv6 only.
    259  */
    260 #define	APX_KR(APX)	(APX|0x01)	/* kernel read */
    261 #define	APX_KRUR(APX)	(APX|0x02)	/* kernel read user read */
    262 #define	APX_KRW(APX)	(    0x01)	/* kernel read/write */
    263 #define	APX_KRWUR(APX)	(    0x02)	/* kernel read/write user read */
    264 #define	APX_KRWURW(APX)	(    0x03)	/* kernel read/write user read/write */
    265 
    266 /*
    267  * Note: These values are for the simplified access permissions model
    268  * of ARMv7. Assumes that AFE is clear in CP15 register 1.
    269  * Also used for ARMv6 with XP bit set.
    270  */
    271 #define	AP7_KR		0x21		/* kernel read */
    272 #define	AP7_KRUR	0x23		/* kernel read usr read */
    273 #define	AP7_KRW		0x01		/* kernel read/write */
    274 #define	AP7_KRWURW	0x03		/* kernel read/write usr read/write */
    275 
    276 /*
    277  * Domain Types for the Domain Access Control Register.
    278  */
    279 #define	DOMAIN_FAULT	0x00		/* no access */
    280 #define	DOMAIN_CLIENT	0x01		/* client */
    281 #define	DOMAIN_RESERVED	0x02		/* reserved */
    282 #define	DOMAIN_MANAGER	0x03		/* manager */
    283 
    284 /*
    285  * Type Extension bits for XScale processors.
    286  *
    287  * Behavior of C and B when X == 0:
    288  *
    289  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
    290  * 0 0      N          N            -                 -
    291  * 0 1      N          Y            -                 -
    292  * 1 0      Y          Y       Write-through    Read Allocate
    293  * 1 1      Y          Y        Write-back      Read Allocate
    294  *
    295  * Behavior of C and B when X == 1:
    296  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
    297  * 0 0      -          -            -                 -           DO NOT USE
    298  * 0 1      N          Y            -                 -
    299  * 1 0  Mini-Data      -            -                 -
    300  * 1 1      Y          Y        Write-back       R/W Allocate
    301  */
    302 #define	TEX_XSCALE_X	0x01		/* X modifies C and B */
    303 
    304 /*
    305  * Type Extension bits for ARM V6 and V7 MMU
    306  *
    307  * TEX C B                                    Shared
    308  * 000 0 0  Strong order                      yes
    309  * 000 0 1  Shared device                     yes
    310  * 000 1 0  write through, no write alloc     S-bit
    311  * 000 1 1  write back, no write alloc        S-bit
    312  * 001 0 0  non-cacheable                     S-bit
    313  * 001 0 1  reserved
    314  * 001 1 0  reserved
    315  * 001 1 1  write back, write alloc           S-bit
    316  * 010 0 0  Non-shared device                 no
    317  * 010 0 1  reserved
    318  * 010 1 X  reserved
    319  * 011 X X  reserved
    320  * 1BB A A  BB for internal, AA for external  S-bit
    321  *
    322  *    BB    internal cache
    323  *    0 0   Non-cacheable non-buffered
    324  *    0 1   Write back, write alloc, buffered
    325  *    1 0   Write through, no write alloc, buffered
    326  *          (non-cacheable for MPCore)
    327  *    1 1   Write back, no write alloc, buffered
    328  *          (write back, write alloc for MPCore)
    329  *
    330  *    AA    external cache
    331  *    0 0   Non-cacheable non-buffered
    332  *    0 1   Write back, write alloc, buffered
    333  *    1 0   Write through, no write alloc, buffered
    334  *    1 1   Write back, no write alloc, buffered
    335  */
    336 
    337 #define	TEX_ARMV6_TEX	0x07		/* 3 bits in TEX */
    338 
    339 #endif /* _ARM_PTE_H_ */
    340