pte.h revision 1.21 1 /* $NetBSD: pte.h,v 1.21 2020/01/18 14:40:04 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #ifndef _ARM_PTE_H_
39 #define _ARM_PTE_H_
40
41 /*
42 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
43 * architecture versions used an optional off-CPU memory controller
44 * to perform address translation).
45 *
46 * The ARM MMU consists of a TLB and translation table walking logic.
47 * There is typically one TLB per memory interface (or, put another
48 * way, one TLB per software-visible cache).
49 *
50 * The ARM MMU is capable of mapping memory in the following chunks:
51 *
52 * 16M SuperSections (L1 table, ARMv6+)
53 *
54 * 1M Sections (L1 table)
55 *
56 * 64K Large Pages (L2 table)
57 *
58 * 4K Small Pages (L2 table)
59 *
60 * 1K Tiny Pages (L2 table)
61 *
62 * There are two types of L2 tables: Coarse Tables and Fine Tables (not
63 * available on ARMv6+). Coarse Tables can map Large and Small Pages.
64 * Fine Tables can map Tiny Pages.
65 *
66 * Coarse Tables can define 4 Subpages within Large and Small pages.
67 * Subpages define different permissions for each Subpage within
68 * a Page. ARMv6 format Coarse Tables have no subpages.
69 *
70 * Coarse Tables are 1K in length. Fine tables are 4K in length.
71 *
72 * The Translation Table Base register holds the pointer to the
73 * L1 Table. The L1 Table is a 16K contiguous chunk of memory
74 * aligned to a 16K boundary. Each entry in the L1 Table maps
75 * 1M of virtual address space, either via a Section mapping or
76 * via an L2 Table.
77 *
78 * ARMv6+ has a second TTBR register which can be used if any of the
79 * upper address bits are non-zero (think kernel). For NetBSD, this
80 * would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
81 * This would also reduce the size of the L1 Table to 8K.
82 *
83 * In addition, the Fast Context Switching Extension (FCSE) is available
84 * on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating
85 * TLB/cache flushes on context switch by use of a smaller address space
86 * and a "process ID" that modifies the virtual address before being
87 * presented to the translation logic.
88 */
89
90 #ifndef _LOCORE
91 typedef uint32_t pd_entry_t; /* L1 table entry */
92 typedef uint32_t pt_entry_t; /* L2 table entry */
93 #endif /* _LOCORE */
94
95 #define L1_SS_SIZE 0x01000000 /* 16M */
96 #define L1_SS_OFFSET (L1_SS_SIZE - 1)
97 #define L1_SS_FRAME (~L1_SS_OFFSET)
98 #define L1_SS_SHIFT 24
99
100 #define L1_S_SIZE 0x00100000 /* 1M */
101 #define L1_S_OFFSET (L1_S_SIZE - 1)
102 #define L1_S_FRAME (~L1_S_OFFSET)
103 #define L1_S_SHIFT 20
104
105 #define L2_L_SIZE 0x00010000 /* 64K */
106 #define L2_L_OFFSET (L2_L_SIZE - 1)
107 #define L2_L_FRAME (~L2_L_OFFSET)
108 #define L2_L_SHIFT 16
109
110 #define L2_S_SEGSIZE (PAGE_SIZE * L2_S_SIZE / 4)
111 #define L2_S_SIZE 0x00001000 /* 4K */
112 #define L2_S_OFFSET (L2_S_SIZE - 1)
113 #define L2_S_FRAME (~L2_S_OFFSET)
114 #define L2_S_SHIFT 12
115
116 #define L2_T_SIZE 0x00000400 /* 1K */
117 #define L2_T_OFFSET (L2_T_SIZE - 1)
118 #define L2_T_FRAME (~L2_T_OFFSET)
119 #define L2_T_SHIFT 10
120
121 /*
122 * The NetBSD VM implementation only works on whole pages (4K),
123 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
124 * (16K L1 table, 1K L2 table).
125 *
126 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
127 * table.
128 */
129 #define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */
130 #define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */
131
132 #define L1_TABLE_SIZE 0x4000 /* 16K */
133 #define L2_TABLE_SIZE 0x1000 /* 4K */
134
135 /*
136 * The new pmap deals with the 1KB coarse L2 tables by
137 * allocating them from a pool. Until every port has been converted,
138 * keep the old L2_TABLE_SIZE define lying around. Converted ports
139 * should use L2_TABLE_SIZE_REAL until then.
140 */
141 #define L1_TABLE_SIZE_REAL 0x4000 /* 16K */
142 #define L2_TABLE_SIZE_REAL 0x400 /* 1K */
143
144 #define L1TT_SIZE 0x2000 /* 8K */
145
146 /*
147 * ARM L1 Descriptors
148 */
149
150 #define L1_TYPE_INV 0x00 /* Invalid (fault) */
151 #define L1_TYPE_C 0x01 /* Coarse L2 */
152 #define L1_TYPE_S 0x02 /* Section */
153 #define L1_TYPE_F 0x03 /* Fine L2 */
154 #define L1_TYPE_MASK 0x03 /* mask of type bits */
155
156 /* L1 Section Descriptor */
157 #define L1_S_B 0x00000004 /* bufferable Section */
158 #define L1_S_C 0x00000008 /* cacheable Section */
159 #define L1_S_IMP 0x00000010 /* implementation defined */
160 #define L1_S_DOM(x) ((x) << 5) /* domain */
161 #define L1_S_DOM_MASK L1_S_DOM(0xf)
162 #define L1_S_AP(x) ((x) << 10) /* access permissions */
163 #define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */
164
165 #define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */
166 #define L1_S_XS_TEX(x) ((x) << 12) /* Type Extension */
167 #define L1_S_V6_TEX(x) L1_S_XS_TEX(x)
168 #define L1_S_V6_P 0x00000200 /* ECC enable for this section */
169 #define L1_S_V6_SUPER 0x00040000 /* ARMv6 SuperSection (16MB) bit */
170 #define L1_S_V6_XN L1_S_IMP /* ARMv6 eXecute Never */
171 #define L1_S_V6_APX 0x00008000 /* ARMv6 AP eXtension */
172 #define L1_S_V6_S 0x00010000 /* ARMv6 Shared */
173 #define L1_S_V6_nG 0x00020000 /* ARMv6 not-Global */
174 #define L1_S_V6_SS 0x00040000 /* ARMv6 SuperSection */
175 #define L1_S_V6_NS 0x00080000 /* ARMv6 Not Secure */
176
177 /* L1 Coarse Descriptor */
178 #define L1_C_IMP0 0x00000004 /* implementation defined */
179 #define L1_C_IMP1 0x00000008 /* implementation defined */
180 #define L1_C_IMP2 0x00000010 /* implementation defined */
181 #define L1_C_DOM(x) ((x) << 5) /* domain */
182 #define L1_C_DOM_MASK L1_C_DOM(0xf)
183 #define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */
184
185 #define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */
186 #define L1_C_V6_P 0x00000200 /* ECC enable for this section */
187
188 /* L1 Fine Descriptor */
189 #define L1_F_IMP0 0x00000004 /* implementation defined */
190 #define L1_F_IMP1 0x00000008 /* implementation defined */
191 #define L1_F_IMP2 0x00000010 /* implementation defined */
192 #define L1_F_DOM(x) ((x) << 5) /* domain */
193 #define L1_F_DOM_MASK L1_F_DOM(0xf)
194 #define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */
195
196 #define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */
197
198 /*
199 * ARM L2 Descriptors
200 */
201
202 #define L2_TYPE_INV 0x00 /* Invalid (fault) */
203 #define L2_TYPE_L 0x01 /* Large Page */
204 #define L2_TYPE_S 0x02 /* Small Page */
205 #define L2_TYPE_T 0x03 /* Tiny Page (not armv7) */
206 #define L2_TYPE_MASK 0x03 /* mask of type bits */
207
208 /*
209 * This L2 Descriptor type is available on XScale processors
210 * when using a Coarse L1 Descriptor. The Extended Small
211 * Descriptor has the same format as the XScale Tiny Descriptor,
212 * but describes a 4K page, rather than a 1K page.
213 * For V6 MMU, this is used when XP bit is cleared.
214 */
215 #define L2_TYPE_XS 0x03 /* XScale/ARMv6 Extended Small Page */
216
217 #define L2_B 0x00000004 /* Bufferable page */
218 #define L2_C 0x00000008 /* Cacheable page */
219 #define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */
220 #define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */
221 #define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */
222 #define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */
223 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
224
225 #define L2_XS_L_TEX(x) ((x) << 12) /* Type Extension */
226 #define L2_XS_T_TEX(x) ((x) << 6) /* Type Extension */
227 #define L2_XS_XN 0x00000001 /* ARMv6 eXecute Never (when XP=1) */
228 #define L2_XS_APX 0x00000200 /* ARMv6 AP eXtension */
229 #define L2_XS_S 0x00000400 /* ARMv6 Shared */
230 #define L2_XS_nG 0x00000800 /* ARMv6 Not-Global */
231 #define L2_V6_L_TEX L2_XS_L_TEX
232 #define L2_V6_XS_TEX L2_XS_T_TEX
233 #define L2_XS_L_XN 0x00008000 /* ARMv6 eXecute Never */
234
235
236 /*
237 * Access Permissions for L1 and L2 Descriptors.
238 */
239 #define AP_W 0x01 /* writable */
240 #define AP_U 0x02 /* user */
241
242 /*
243 * Access Permissions for L1 and L2 of ARMv6 with XP=1 and ARMv7
244 */
245 #define AP_R 0x01 /* readable */
246 #define AP_RO 0x20 /* read-only (L2_XS_APX >> 4) */
247
248 /*
249 * Short-hand for common AP_* constants.
250 *
251 * Note: These values assume the S (System) bit is set and
252 * the R (ROM) bit is clear in CP15 register 1.
253 */
254 #define AP_KR 0x00 /* kernel read */
255 #define AP_KRW 0x01 /* kernel read/write */
256 #define AP_KRWUR 0x02 /* kernel read/write user read */
257 #define AP_KRWURW 0x03 /* kernel read/write user read/write */
258
259 /*
260 * Note: These values assume the S (System) and the R (ROM) bits are clear and
261 * the XP (eXtended page table) bit is set in CP15 register 1. ARMv6 only.
262 */
263 #define APX_KR(APX) (APX|0x01) /* kernel read */
264 #define APX_KRUR(APX) (APX|0x02) /* kernel read user read */
265 #define APX_KRW(APX) ( 0x01) /* kernel read/write */
266 #define APX_KRWUR(APX) ( 0x02) /* kernel read/write user read */
267 #define APX_KRWURW(APX) ( 0x03) /* kernel read/write user read/write */
268
269 /*
270 * Note: These values are for the simplified access permissions model
271 * of ARMv7. Assumes that AFE is clear in CP15 register 1.
272 * Also used for ARMv6 with XP bit set.
273 */
274 #define AP7_KR 0x21 /* kernel read */
275 #define AP7_KRUR 0x23 /* kernel read user read */
276 #define AP7_KRW 0x01 /* kernel read/write */
277 #define AP7_KRWURW 0x03 /* kernel read/write user read/write */
278
279 /*
280 * Domain Types for the Domain Access Control Register.
281 */
282 #define DOMAIN_FAULT 0x00 /* no access */
283 #define DOMAIN_CLIENT 0x01 /* client */
284 #define DOMAIN_RESERVED 0x02 /* reserved */
285 #define DOMAIN_MANAGER 0x03 /* manager */
286
287 /*
288 * Type Extension bits for XScale processors.
289 *
290 * Behavior of C and B when X == 0:
291 *
292 * C B Cacheable Bufferable Write Policy Line Allocate Policy
293 * 0 0 N N - -
294 * 0 1 N Y - -
295 * 1 0 Y Y Write-through Read Allocate
296 * 1 1 Y Y Write-back Read Allocate
297 *
298 * Behavior of C and B when X == 1:
299 * C B Cacheable Bufferable Write Policy Line Allocate Policy
300 * 0 0 - - - - DO NOT USE
301 * 0 1 N Y - -
302 * 1 0 Mini-Data - - -
303 * 1 1 Y Y Write-back R/W Allocate
304 */
305 #define TEX_XSCALE_X 0x01 /* X modifies C and B */
306
307 /*
308 * Type Extension bits for ARM V6 and V7 MMU
309 *
310 * TEX C B Shared
311 * 000 0 0 Strong order yes
312 * 000 0 1 Shared device yes
313 * 000 1 0 Outer and Inner write through, no write alloc S-bit
314 * 000 1 1 Outer and Inner write back, no write alloc S-bit
315 * 001 0 0 Outer and Inner non-cacheable S-bit
316 * 001 0 1 reserved
317 * 001 1 0 reserved
318 * 001 1 1 Outer and Inner write back, write alloc S-bit
319 * 010 0 0 Non-shared device no
320 * 010 0 1 reserved
321 * 010 1 X reserved
322 * 011 X X reserved
323 * 1BB A A BB for inner, AA for outer S-bit
324 *
325 * BB inner cache
326 * 0 0 Non-cacheable
327 * 0 1 Write back, write alloc
328 * 1 0 Write through, no write alloc
329 * 1 1 Write back, no write alloc
330 *
331 * AA outer cache
332 * 0 0 Non-cacheable
333 * 0 1 Write back, write alloc
334 * 1 0 Write through, no write alloc
335 * 1 1 Write back, no write alloc
336 */
337
338 #define TEX_ARMV6_TEX 0x07 /* 3 bits in TEX */
339
340 #endif /* _ARM_PTE_H_ */
341