pte.h revision 1.6 1 /* $NetBSD: pte.h,v 1.6 2003/04/18 11:08:28 scw Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #ifndef _ARM_PTE_H_
39 #define _ARM_PTE_H_
40
41 /*
42 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
43 * architecture versions used an optional off-CPU memory controller
44 * to perform address translation).
45 *
46 * The ARM MMU consists of a TLB and translation table walking logic.
47 * There is typically one TLB per memory interface (or, put another
48 * way, one TLB per software-visible cache).
49 *
50 * The ARM MMU is capable of mapping memory in the following chunks:
51 *
52 * 1M Sections (L1 table)
53 *
54 * 64K Large Pages (L2 table)
55 *
56 * 4K Small Pages (L2 table)
57 *
58 * 1K Tiny Pages (L2 table)
59 *
60 * There are two types of L2 tables: Coarse Tables and Fine Tables.
61 * Coarse Tables can map Large and Small Pages. Fine Tables can
62 * map Tiny Pages.
63 *
64 * Coarse Tables can define 4 Subpages within Large and Small pages.
65 * Subpages define different permissions for each Subpage within
66 * a Page.
67 *
68 * Coarse Tables are 1K in length. Fine tables are 4K in length.
69 *
70 * The Translation Table Base register holds the pointer to the
71 * L1 Table. The L1 Table is a 16K contiguous chunk of memory
72 * aligned to a 16K boundary. Each entry in the L1 Table maps
73 * 1M of virtual address space, either via a Section mapping or
74 * via an L2 Table.
75 *
76 * In addition, the Fast Context Switching Extension (FCSE) is available
77 * on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating
78 * TLB/cache flushes on context switch by use of a smaller address space
79 * and a "process ID" that modifies the virtual address before being
80 * presented to the translation logic.
81 */
82
83 #ifndef _LOCORE
84 typedef uint32_t pd_entry_t; /* L1 table entry */
85 typedef uint32_t pt_entry_t; /* L2 table entry */
86 #endif /* _LOCORE */
87
88 #define L1_S_SIZE 0x00100000 /* 1M */
89 #define L1_S_OFFSET (L1_S_SIZE - 1)
90 #define L1_S_FRAME (~L1_S_OFFSET)
91 #define L1_S_SHIFT 20
92
93 #define L2_L_SIZE 0x00010000 /* 64K */
94 #define L2_L_OFFSET (L2_L_SIZE - 1)
95 #define L2_L_FRAME (~L2_L_OFFSET)
96 #define L2_L_SHIFT 16
97
98 #define L2_S_SIZE 0x00001000 /* 4K */
99 #define L2_S_OFFSET (L2_S_SIZE - 1)
100 #define L2_S_FRAME (~L2_S_OFFSET)
101 #define L2_S_SHIFT 12
102
103 #define L2_T_SIZE 0x00000400 /* 1K */
104 #define L2_T_OFFSET (L2_T_SIZE - 1)
105 #define L2_T_FRAME (~L2_T_OFFSET)
106 #define L2_T_SHIFT 10
107
108 /*
109 * The NetBSD VM implementation only works on whole pages (4K),
110 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
111 * (16K L1 table, 1K L2 table).
112 *
113 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
114 * table.
115 */
116 #define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */
117 #define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */
118
119 #define L1_TABLE_SIZE 0x4000 /* 16K */
120 #define L2_TABLE_SIZE 0x1000 /* 4K */
121 #ifdef ARM32_PMAP_NEW
122 /*
123 * The new pmap deals with the 1KB coarse L2 tables by
124 * allocating them from a pool. Until every port has been converted,
125 * keep the old L2_TABLE_SIZE define lying around. Converted ports
126 * should use L2_TABLE_SIZE_REAL until then.
127 */
128 #define L2_TABLE_SIZE_REAL 0x400 /* 1K */
129 #endif
130
131 /*
132 * ARM L1 Descriptors
133 */
134
135 #define L1_TYPE_INV 0x00 /* Invalid (fault) */
136 #define L1_TYPE_C 0x01 /* Coarse L2 */
137 #define L1_TYPE_S 0x02 /* Section */
138 #define L1_TYPE_F 0x03 /* Fine L2 */
139 #define L1_TYPE_MASK 0x03 /* mask of type bits */
140
141 /* L1 Section Descriptor */
142 #define L1_S_B 0x00000004 /* bufferable Section */
143 #define L1_S_C 0x00000008 /* cacheable Section */
144 #define L1_S_IMP 0x00000010 /* implementation defined */
145 #define L1_S_DOM(x) ((x) << 5) /* domain */
146 #define L1_S_DOM_MASK L1_S_DOM(0xf)
147 #define L1_S_AP(x) ((x) << 10) /* access permissions */
148 #define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */
149
150 #define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */
151 #define L1_S_XSCALE_TEX(x) ((x) << 12) /* Type Extension */
152
153 /* L1 Coarse Descriptor */
154 #define L1_C_IMP0 0x00000004 /* implementation defined */
155 #define L1_C_IMP1 0x00000008 /* implementation defined */
156 #define L1_C_IMP2 0x00000010 /* implementation defined */
157 #define L1_C_DOM(x) ((x) << 5) /* domain */
158 #define L1_C_DOM_MASK L1_C_DOM(0xf)
159 #define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */
160
161 #define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */
162
163 /* L1 Fine Descriptor */
164 #define L1_F_IMP0 0x00000004 /* implementation defined */
165 #define L1_F_IMP1 0x00000008 /* implementation defined */
166 #define L1_F_IMP2 0x00000010 /* implementation defined */
167 #define L1_F_DOM(x) ((x) << 5) /* domain */
168 #define L1_F_DOM_MASK L1_F_DOM(0xf)
169 #define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */
170
171 #define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */
172
173 /*
174 * ARM L2 Descriptors
175 */
176
177 #define L2_TYPE_INV 0x00 /* Invalid (fault) */
178 #define L2_TYPE_L 0x01 /* Large Page */
179 #define L2_TYPE_S 0x02 /* Small Page */
180 #define L2_TYPE_T 0x03 /* Tiny Page */
181 #define L2_TYPE_MASK 0x03 /* mask of type bits */
182
183 /*
184 * This L2 Descriptor type is available on XScale processors
185 * when using a Coarse L1 Descriptor. The Extended Small
186 * Descriptor has the same format as the XScale Tiny Descriptor,
187 * but describes a 4K page, rather than a 1K page.
188 */
189 #define L2_TYPE_XSCALE_XS 0x03 /* XScale Extended Small Page */
190
191 #define L2_B 0x00000004 /* Bufferable page */
192 #define L2_C 0x00000008 /* Cacheable page */
193 #define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */
194 #define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */
195 #define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */
196 #define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */
197 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
198
199 #define L2_XSCALE_L_TEX(x) ((x) << 12) /* Type Extension */
200 #define L2_XSCALE_T_TEX(x) ((x) << 6) /* Type Extension */
201
202 /*
203 * Access Permissions for L1 and L2 Descriptors.
204 */
205 #define AP_W 0x01 /* writable */
206 #define AP_U 0x02 /* user */
207
208 /*
209 * Short-hand for common AP_* constants.
210 *
211 * Note: These values assume the S (System) bit is set and
212 * the R (ROM) bit is clear in CP15 register 1.
213 */
214 #define AP_KR 0x00 /* kernel read */
215 #define AP_KRW 0x01 /* kernel read/write */
216 #define AP_KRWUR 0x02 /* kernel read/write usr read */
217 #define AP_KRWURW 0x03 /* kernel read/write usr read/write */
218
219 /*
220 * Domain Types for the Domain Access Control Register.
221 */
222 #define DOMAIN_FAULT 0x00 /* no access */
223 #define DOMAIN_CLIENT 0x01 /* client */
224 #define DOMAIN_RESERVED 0x02 /* reserved */
225 #define DOMAIN_MANAGER 0x03 /* manager */
226
227 /*
228 * Type Extension bits for XScale processors.
229 *
230 * Behavior of C and B when X == 0:
231 *
232 * C B Cacheable Bufferable Write Policy Line Allocate Policy
233 * 0 0 N N - -
234 * 0 1 N Y - -
235 * 1 0 Y Y Write-through Read Allocate
236 * 1 1 Y Y Write-back Read Allocate
237 *
238 * Behavior of C and B when X == 1:
239 * C B Cacheable Bufferable Write Policy Line Allocate Policy
240 * 0 0 - - - - DO NOT USE
241 * 0 1 N Y - -
242 * 1 0 Mini-Data - - -
243 * 1 1 Y Y Write-back R/W Allocate
244 */
245 #define TEX_XSCALE_X 0x01 /* X modifies C and B */
246
247 #endif /* _ARM_PTE_H_ */
248