Home | History | Annotate | Line # | Download | only in arm32
pte.h revision 1.6
      1 /*	$NetBSD: pte.h,v 1.6 2003/04/18 11:08:28 scw Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #ifndef _ARM_PTE_H_
     39 #define	_ARM_PTE_H_
     40 
     41 /*
     42  * The ARM MMU architecture was introduced with ARM v3 (previous ARM
     43  * architecture versions used an optional off-CPU memory controller
     44  * to perform address translation).
     45  *
     46  * The ARM MMU consists of a TLB and translation table walking logic.
     47  * There is typically one TLB per memory interface (or, put another
     48  * way, one TLB per software-visible cache).
     49  *
     50  * The ARM MMU is capable of mapping memory in the following chunks:
     51  *
     52  *	1M	Sections (L1 table)
     53  *
     54  *	64K	Large Pages (L2 table)
     55  *
     56  *	4K	Small Pages (L2 table)
     57  *
     58  *	1K	Tiny Pages (L2 table)
     59  *
     60  * There are two types of L2 tables: Coarse Tables and Fine Tables.
     61  * Coarse Tables can map Large and Small Pages.  Fine Tables can
     62  * map Tiny Pages.
     63  *
     64  * Coarse Tables can define 4 Subpages within Large and Small pages.
     65  * Subpages define different permissions for each Subpage within
     66  * a Page.
     67  *
     68  * Coarse Tables are 1K in length.  Fine tables are 4K in length.
     69  *
     70  * The Translation Table Base register holds the pointer to the
     71  * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
     72  * aligned to a 16K boundary.  Each entry in the L1 Table maps
     73  * 1M of virtual address space, either via a Section mapping or
     74  * via an L2 Table.
     75  *
     76  * In addition, the Fast Context Switching Extension (FCSE) is available
     77  * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
     78  * TLB/cache flushes on context switch by use of a smaller address space
     79  * and a "process ID" that modifies the virtual address before being
     80  * presented to the translation logic.
     81  */
     82 
     83 #ifndef _LOCORE
     84 typedef uint32_t	pd_entry_t;	/* L1 table entry */
     85 typedef uint32_t	pt_entry_t;	/* L2 table entry */
     86 #endif /* _LOCORE */
     87 
     88 #define	L1_S_SIZE	0x00100000	/* 1M */
     89 #define	L1_S_OFFSET	(L1_S_SIZE - 1)
     90 #define	L1_S_FRAME	(~L1_S_OFFSET)
     91 #define	L1_S_SHIFT	20
     92 
     93 #define	L2_L_SIZE	0x00010000	/* 64K */
     94 #define	L2_L_OFFSET	(L2_L_SIZE - 1)
     95 #define	L2_L_FRAME	(~L2_L_OFFSET)
     96 #define	L2_L_SHIFT	16
     97 
     98 #define	L2_S_SIZE	0x00001000	/* 4K */
     99 #define	L2_S_OFFSET	(L2_S_SIZE - 1)
    100 #define	L2_S_FRAME	(~L2_S_OFFSET)
    101 #define	L2_S_SHIFT	12
    102 
    103 #define	L2_T_SIZE	0x00000400	/* 1K */
    104 #define	L2_T_OFFSET	(L2_T_SIZE - 1)
    105 #define	L2_T_FRAME	(~L2_T_OFFSET)
    106 #define	L2_T_SHIFT	10
    107 
    108 /*
    109  * The NetBSD VM implementation only works on whole pages (4K),
    110  * whereas the ARM MMU's Coarse tables are sized in terms of 1K
    111  * (16K L1 table, 1K L2 table).
    112  *
    113  * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
    114  * table.
    115  */
    116 #define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
    117 #define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
    118 
    119 #define	L1_TABLE_SIZE	0x4000		/* 16K */
    120 #define	L2_TABLE_SIZE	0x1000		/* 4K */
    121 #ifdef ARM32_PMAP_NEW
    122 /*
    123  * The new pmap deals with the 1KB coarse L2 tables by
    124  * allocating them from a pool. Until every port has been converted,
    125  * keep the old L2_TABLE_SIZE define lying around. Converted ports
    126  * should use L2_TABLE_SIZE_REAL until then.
    127  */
    128 #define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
    129 #endif
    130 
    131 /*
    132  * ARM L1 Descriptors
    133  */
    134 
    135 #define	L1_TYPE_INV	0x00		/* Invalid (fault) */
    136 #define	L1_TYPE_C	0x01		/* Coarse L2 */
    137 #define	L1_TYPE_S	0x02		/* Section */
    138 #define	L1_TYPE_F	0x03		/* Fine L2 */
    139 #define	L1_TYPE_MASK	0x03		/* mask of type bits */
    140 
    141 /* L1 Section Descriptor */
    142 #define	L1_S_B		0x00000004	/* bufferable Section */
    143 #define	L1_S_C		0x00000008	/* cacheable Section */
    144 #define	L1_S_IMP	0x00000010	/* implementation defined */
    145 #define	L1_S_DOM(x)	((x) << 5)	/* domain */
    146 #define	L1_S_DOM_MASK	L1_S_DOM(0xf)
    147 #define	L1_S_AP(x)	((x) << 10)	/* access permissions */
    148 #define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
    149 
    150 #define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
    151 #define	L1_S_XSCALE_TEX(x) ((x) << 12)	/* Type Extension */
    152 
    153 /* L1 Coarse Descriptor */
    154 #define	L1_C_IMP0	0x00000004	/* implementation defined */
    155 #define	L1_C_IMP1	0x00000008	/* implementation defined */
    156 #define	L1_C_IMP2	0x00000010	/* implementation defined */
    157 #define	L1_C_DOM(x)	((x) << 5)	/* domain */
    158 #define	L1_C_DOM_MASK	L1_C_DOM(0xf)
    159 #define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
    160 
    161 #define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
    162 
    163 /* L1 Fine Descriptor */
    164 #define	L1_F_IMP0	0x00000004	/* implementation defined */
    165 #define	L1_F_IMP1	0x00000008	/* implementation defined */
    166 #define	L1_F_IMP2	0x00000010	/* implementation defined */
    167 #define	L1_F_DOM(x)	((x) << 5)	/* domain */
    168 #define	L1_F_DOM_MASK	L1_F_DOM(0xf)
    169 #define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
    170 
    171 #define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
    172 
    173 /*
    174  * ARM L2 Descriptors
    175  */
    176 
    177 #define	L2_TYPE_INV	0x00		/* Invalid (fault) */
    178 #define	L2_TYPE_L	0x01		/* Large Page */
    179 #define	L2_TYPE_S	0x02		/* Small Page */
    180 #define	L2_TYPE_T	0x03		/* Tiny Page */
    181 #define	L2_TYPE_MASK	0x03		/* mask of type bits */
    182 
    183 	/*
    184 	 * This L2 Descriptor type is available on XScale processors
    185 	 * when using a Coarse L1 Descriptor.  The Extended Small
    186 	 * Descriptor has the same format as the XScale Tiny Descriptor,
    187 	 * but describes a 4K page, rather than a 1K page.
    188 	 */
    189 #define	L2_TYPE_XSCALE_XS 0x03		/* XScale Extended Small Page */
    190 
    191 #define	L2_B		0x00000004	/* Bufferable page */
    192 #define	L2_C		0x00000008	/* Cacheable page */
    193 #define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
    194 #define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
    195 #define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
    196 #define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
    197 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
    198 
    199 #define	L2_XSCALE_L_TEX(x) ((x) << 12)	/* Type Extension */
    200 #define	L2_XSCALE_T_TEX(x) ((x) << 6)	/* Type Extension */
    201 
    202 /*
    203  * Access Permissions for L1 and L2 Descriptors.
    204  */
    205 #define	AP_W		0x01		/* writable */
    206 #define	AP_U		0x02		/* user */
    207 
    208 /*
    209  * Short-hand for common AP_* constants.
    210  *
    211  * Note: These values assume the S (System) bit is set and
    212  * the R (ROM) bit is clear in CP15 register 1.
    213  */
    214 #define	AP_KR		0x00		/* kernel read */
    215 #define	AP_KRW		0x01		/* kernel read/write */
    216 #define	AP_KRWUR	0x02		/* kernel read/write usr read */
    217 #define	AP_KRWURW	0x03		/* kernel read/write usr read/write */
    218 
    219 /*
    220  * Domain Types for the Domain Access Control Register.
    221  */
    222 #define	DOMAIN_FAULT	0x00		/* no access */
    223 #define	DOMAIN_CLIENT	0x01		/* client */
    224 #define	DOMAIN_RESERVED	0x02		/* reserved */
    225 #define	DOMAIN_MANAGER	0x03		/* manager */
    226 
    227 /*
    228  * Type Extension bits for XScale processors.
    229  *
    230  * Behavior of C and B when X == 0:
    231  *
    232  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
    233  * 0 0      N          N            -                 -
    234  * 0 1      N          Y            -                 -
    235  * 1 0      Y          Y       Write-through    Read Allocate
    236  * 1 1      Y          Y        Write-back      Read Allocate
    237  *
    238  * Behavior of C and B when X == 1:
    239  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
    240  * 0 0      -          -            -                 -           DO NOT USE
    241  * 0 1      N          Y            -                 -
    242  * 1 0  Mini-Data      -            -                 -
    243  * 1 1      Y          Y        Write-back       R/W Allocate
    244  */
    245 #define	TEX_XSCALE_X	0x01		/* X modifies C and B */
    246 
    247 #endif /* _ARM_PTE_H_ */
    248