tegra210_car.c revision 1.15 1 1.15 jmcneill /* $NetBSD: tegra210_car.c,v 1.15 2017/09/27 10:19:48 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.15 jmcneill __KERNEL_RCSID(0, "$NetBSD: tegra210_car.c,v 1.15 2017/09/27 10:19:48 jmcneill Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/bus.h>
34 1.1 jmcneill #include <sys/device.h>
35 1.1 jmcneill #include <sys/intr.h>
36 1.1 jmcneill #include <sys/systm.h>
37 1.1 jmcneill #include <sys/kernel.h>
38 1.1 jmcneill #include <sys/rndpool.h>
39 1.1 jmcneill #include <sys/rndsource.h>
40 1.1 jmcneill #include <sys/atomic.h>
41 1.1 jmcneill #include <sys/kmem.h>
42 1.1 jmcneill
43 1.1 jmcneill #include <dev/clk/clk_backend.h>
44 1.1 jmcneill
45 1.1 jmcneill #include <arm/nvidia/tegra_reg.h>
46 1.1 jmcneill #include <arm/nvidia/tegra210_carreg.h>
47 1.1 jmcneill #include <arm/nvidia/tegra_clock.h>
48 1.1 jmcneill #include <arm/nvidia/tegra_pmcreg.h>
49 1.1 jmcneill #include <arm/nvidia/tegra_var.h>
50 1.1 jmcneill
51 1.1 jmcneill #include <dev/fdt/fdtvar.h>
52 1.1 jmcneill
53 1.1 jmcneill static int tegra210_car_match(device_t, cfdata_t, void *);
54 1.1 jmcneill static void tegra210_car_attach(device_t, device_t, void *);
55 1.1 jmcneill
56 1.1 jmcneill static struct clk *tegra210_car_clock_decode(device_t, const void *, size_t);
57 1.1 jmcneill
58 1.1 jmcneill static const struct fdtbus_clock_controller_func tegra210_car_fdtclock_funcs = {
59 1.1 jmcneill .decode = tegra210_car_clock_decode
60 1.1 jmcneill };
61 1.1 jmcneill
62 1.1 jmcneill /* DT clock ID to clock name mappings */
63 1.1 jmcneill static struct tegra210_car_clock_id {
64 1.1 jmcneill const char *name;
65 1.1 jmcneill u_int id;
66 1.1 jmcneill } tegra210_car_clock_ids[] = {
67 1.1 jmcneill { "ISPB", 3 },
68 1.1 jmcneill { "RTC", 4 },
69 1.1 jmcneill { "TIMER", 5 },
70 1.1 jmcneill { "UARTA", 6 },
71 1.1 jmcneill { "GPIO", 8 },
72 1.1 jmcneill { "SDMMC2", 9 },
73 1.1 jmcneill { "I2S1", 11 },
74 1.1 jmcneill { "I2C1", 12 },
75 1.1 jmcneill { "SDMMC1", 14 },
76 1.1 jmcneill { "SDMMC4", 15 },
77 1.1 jmcneill { "PWM", 17 },
78 1.1 jmcneill { "I2S2", 18 },
79 1.1 jmcneill { "USBD", 22 },
80 1.1 jmcneill { "ISP", 23 },
81 1.1 jmcneill { "DISP2", 26 },
82 1.1 jmcneill { "DISP1", 27 },
83 1.1 jmcneill { "HOST1X", 28 },
84 1.1 jmcneill { "I2S0", 30 },
85 1.1 jmcneill { "MC", 32 },
86 1.1 jmcneill { "AHBDMA", 33 },
87 1.1 jmcneill { "APBDMA", 34 },
88 1.1 jmcneill { "PMC", 38 },
89 1.1 jmcneill { "KFUSE", 40 },
90 1.1 jmcneill { "SBC1", 41 },
91 1.1 jmcneill { "SBC2", 44 },
92 1.1 jmcneill { "SBC3", 46 },
93 1.1 jmcneill { "I2C5", 47 },
94 1.1 jmcneill { "DSIA", 48 },
95 1.1 jmcneill { "CSI", 52 },
96 1.1 jmcneill { "I2C2", 54 },
97 1.1 jmcneill { "UARTC", 55 },
98 1.1 jmcneill { "MIPI_CAL", 56 },
99 1.1 jmcneill { "EMC", 57 },
100 1.1 jmcneill { "USB2", 58 },
101 1.1 jmcneill { "BSEV", 63 },
102 1.1 jmcneill { "UARTD", 65 },
103 1.1 jmcneill { "I2C3", 67 },
104 1.1 jmcneill { "SBC4", 68 },
105 1.1 jmcneill { "SDMMC3", 69 },
106 1.1 jmcneill { "PCIE", 70 },
107 1.1 jmcneill { "OWR", 71 },
108 1.1 jmcneill { "AFI", 72 },
109 1.1 jmcneill { "CSITE", 73 },
110 1.1 jmcneill { "SOC_THERM", 78 },
111 1.1 jmcneill { "DTV", 79 },
112 1.1 jmcneill { "I2CSLOW", 81 },
113 1.1 jmcneill { "DSIB", 82 },
114 1.1 jmcneill { "TSEC", 83 },
115 1.1 jmcneill { "XUSB_HOST", 89 },
116 1.1 jmcneill { "CSUS", 92 },
117 1.1 jmcneill { "MSELECT", 99 },
118 1.1 jmcneill { "TSENSOR", 100 },
119 1.1 jmcneill { "I2S3", 101 },
120 1.1 jmcneill { "I2S4", 102 },
121 1.1 jmcneill { "I2C4", 103 },
122 1.1 jmcneill { "D_AUDIO", 106 },
123 1.1 jmcneill { "APB2APE", 107 },
124 1.1 jmcneill { "HDA2CODEC_2X", 111 },
125 1.1 jmcneill { "SPDIF_2X", 118 },
126 1.1 jmcneill { "ACTMON", 119 },
127 1.1 jmcneill { "EXTERN1", 120 },
128 1.1 jmcneill { "EXTERN2", 121 },
129 1.1 jmcneill { "EXTERN3", 122 },
130 1.1 jmcneill { "SATA_OOB", 123 },
131 1.1 jmcneill { "SATA", 124 },
132 1.1 jmcneill { "HDA", 125 },
133 1.1 jmcneill { "HDA2HDMI", 128 },
134 1.1 jmcneill { "XUSB_GATE", 143 },
135 1.1 jmcneill { "CILAB", 144 },
136 1.1 jmcneill { "CILCD", 145 },
137 1.1 jmcneill { "CILE", 146 },
138 1.1 jmcneill { "DSIALP", 147 },
139 1.1 jmcneill { "DSIBLP", 148 },
140 1.1 jmcneill { "ENTROPY", 149 },
141 1.1 jmcneill { "XUSB_SS", 156 },
142 1.1 jmcneill { "DMIC1", 161 },
143 1.1 jmcneill { "DMIC2", 162 },
144 1.1 jmcneill { "I2C6", 166 },
145 1.1 jmcneill { "VIM2_CLK", 171 },
146 1.1 jmcneill { "MIPIBIF", 173 },
147 1.1 jmcneill { "CLK72MHZ", 177 },
148 1.1 jmcneill { "VIC03", 178 },
149 1.1 jmcneill { "DPAUX", 181 },
150 1.1 jmcneill { "SOR0", 182 },
151 1.1 jmcneill { "SOR1", 183 },
152 1.1 jmcneill { "GPU", 184 },
153 1.1 jmcneill { "DBGAPB", 185 },
154 1.1 jmcneill { "PLL_P_OUT_ADSP", 187 },
155 1.1 jmcneill { "PLL_G_REF", 189 },
156 1.1 jmcneill { "SDMMC_LEGACY", 193 },
157 1.1 jmcneill { "NVDEC", 194 },
158 1.1 jmcneill { "NVJPG", 195 },
159 1.1 jmcneill { "DMIC3", 197 },
160 1.1 jmcneill { "APE", 198 },
161 1.1 jmcneill { "MAUD", 202 },
162 1.1 jmcneill { "TSECB", 206 },
163 1.1 jmcneill { "DPAUX1", 207 },
164 1.1 jmcneill { "VI_I2C", 208 },
165 1.1 jmcneill { "HSIC_TRK", 209 },
166 1.1 jmcneill { "USB2_TRK", 210 },
167 1.1 jmcneill { "QSPI", 211 },
168 1.1 jmcneill { "UARTAPE", 212 },
169 1.1 jmcneill { "NVENC", 219 },
170 1.1 jmcneill { "SOR_SAFE", 222 },
171 1.1 jmcneill { "PLL_P_OUT_CPU", 223 },
172 1.1 jmcneill { "UARTB", 224 },
173 1.1 jmcneill { "VFIR", 225 },
174 1.1 jmcneill { "SPDIF_IN", 226 },
175 1.1 jmcneill { "SPDIF_OUT", 227 },
176 1.1 jmcneill { "VI", 228 },
177 1.1 jmcneill { "VI_SENSOR", 229 },
178 1.1 jmcneill { "FUSE", 230 },
179 1.1 jmcneill { "FUSE_BURN", 231 },
180 1.1 jmcneill { "CLK_32K", 232 },
181 1.1 jmcneill { "CLK_M", 233 },
182 1.1 jmcneill { "CLK_M_DIV2", 234 },
183 1.1 jmcneill { "CLK_M_DIV4", 235 },
184 1.1 jmcneill { "PLL_REF", 236 },
185 1.1 jmcneill { "PLL_C", 237 },
186 1.1 jmcneill { "PLL_C_OUT1", 238 },
187 1.1 jmcneill { "PLL_C2", 239 },
188 1.1 jmcneill { "PLL_C3", 240 },
189 1.1 jmcneill { "PLL_M", 241 },
190 1.1 jmcneill { "PLL_M_OUT1", 242 },
191 1.1 jmcneill { "PLL_P", 243 },
192 1.1 jmcneill { "PLL_P_OUT1", 244 },
193 1.1 jmcneill { "PLL_P_OUT2", 245 },
194 1.1 jmcneill { "PLL_P_OUT3", 246 },
195 1.1 jmcneill { "PLL_P_OUT4", 247 },
196 1.1 jmcneill { "PLL_A", 248 },
197 1.1 jmcneill { "PLL_A_OUT0", 249 },
198 1.1 jmcneill { "PLL_D", 250 },
199 1.1 jmcneill { "PLL_D_OUT0", 251 },
200 1.1 jmcneill { "PLL_D2", 252 },
201 1.1 jmcneill { "PLL_D2_OUT0", 253 },
202 1.1 jmcneill { "PLL_U", 254 },
203 1.1 jmcneill { "PLL_U_480M", 255 },
204 1.1 jmcneill { "PLL_U_60M", 256 },
205 1.1 jmcneill { "PLL_U_48M", 257 },
206 1.1 jmcneill { "PLL_X", 259 },
207 1.1 jmcneill { "PLL_X_OUT0", 260 },
208 1.1 jmcneill { "PLL_RE_VCO", 261 },
209 1.1 jmcneill { "PLL_RE_OUT", 262 },
210 1.1 jmcneill { "PLL_E", 263 },
211 1.1 jmcneill { "SPDIF_IN_SYNC", 264 },
212 1.1 jmcneill { "I2S0_SYNC", 265 },
213 1.1 jmcneill { "I2S1_SYNC", 266 },
214 1.1 jmcneill { "I2S2_SYNC", 267 },
215 1.1 jmcneill { "I2S3_SYNC", 268 },
216 1.1 jmcneill { "I2S4_SYNC", 269 },
217 1.1 jmcneill { "VIMCLK_SYNC", 270 },
218 1.1 jmcneill { "AUDIO0", 271 },
219 1.1 jmcneill { "AUDIO1", 272 },
220 1.1 jmcneill { "AUDIO2", 273 },
221 1.1 jmcneill { "AUDIO3", 274 },
222 1.1 jmcneill { "AUDIO4", 275 },
223 1.1 jmcneill { "SPDIF", 276 },
224 1.1 jmcneill { "CLK_OUT_1", 277 },
225 1.1 jmcneill { "CLK_OUT_2", 278 },
226 1.1 jmcneill { "CLK_OUT_3", 279 },
227 1.1 jmcneill { "BLINK", 280 },
228 1.1 jmcneill { "SOR1_SRC", 282 },
229 1.1 jmcneill { "XUSB_HOST_SRC", 284 },
230 1.1 jmcneill { "XUSB_FALCON_SRC", 285 },
231 1.1 jmcneill { "XUSB_FS_SRC", 286 },
232 1.1 jmcneill { "XUSB_SS_SRC", 287 },
233 1.1 jmcneill { "XUSB_DEV_SRC", 288 },
234 1.1 jmcneill { "XUSB_DEV", 289 },
235 1.1 jmcneill { "XUSB_HS_SRC", 290 },
236 1.1 jmcneill { "SCLK", 291 },
237 1.1 jmcneill { "HCLK", 292 },
238 1.1 jmcneill { "PCLK", 293 },
239 1.1 jmcneill { "CCLK_G", 294 },
240 1.1 jmcneill { "CCLK_LP", 295 },
241 1.1 jmcneill { "DFLL_REF", 296 },
242 1.1 jmcneill { "DFLL_SOC", 297 },
243 1.1 jmcneill { "VI_SENSOR2", 298 },
244 1.1 jmcneill { "PLL_P_OUT5", 299 },
245 1.1 jmcneill { "CML0", 300 },
246 1.1 jmcneill { "CML1", 301 },
247 1.1 jmcneill { "PLL_C4", 302 },
248 1.1 jmcneill { "PLL_DP", 303 },
249 1.1 jmcneill { "PLL_E_MUX", 304 },
250 1.1 jmcneill { "PLL_MB", 305 },
251 1.1 jmcneill { "PLL_A1", 306 },
252 1.1 jmcneill { "PLL_D_DSI_OUT", 307 },
253 1.1 jmcneill { "PLL_C4_OUT0", 308 },
254 1.1 jmcneill { "PLL_C4_OUT1", 309 },
255 1.1 jmcneill { "PLL_C4_OUT2", 310 },
256 1.1 jmcneill { "PLL_C4_OUT3", 311 },
257 1.1 jmcneill { "PLL_U_OUT", 312 },
258 1.1 jmcneill { "PLL_U_OUT1", 313 },
259 1.1 jmcneill { "PLL_U_OUT2", 314 },
260 1.1 jmcneill { "USB2_HSIC_TRK", 315 },
261 1.1 jmcneill { "PLL_P_OUT_HSIO", 316 },
262 1.1 jmcneill { "PLL_P_OUT_XUSB", 317 },
263 1.1 jmcneill { "XUSB_SSP_SRC", 318 },
264 1.1 jmcneill { "PLL_RE_OUT1", 319 },
265 1.1 jmcneill { "AUDIO0_MUX", 350 },
266 1.1 jmcneill { "AUDIO1_MUX", 351 },
267 1.1 jmcneill { "AUDIO2_MUX", 352 },
268 1.1 jmcneill { "AUDIO3_MUX", 353 },
269 1.1 jmcneill { "AUDIO4_MUX", 354 },
270 1.1 jmcneill { "SPDIF_MUX", 355 },
271 1.1 jmcneill { "CLK_OUT_1_MUX", 356 },
272 1.1 jmcneill { "CLK_OUT_2_MUX", 357 },
273 1.1 jmcneill { "CLK_OUT_3_MUX", 358 },
274 1.1 jmcneill { "DSIA_MUX", 359 },
275 1.1 jmcneill { "DSIB_MUX", 360 },
276 1.1 jmcneill { "SOR0_LVDS", 361 },
277 1.1 jmcneill { "XUSB_SS_DIV2", 362 },
278 1.1 jmcneill { "PLL_M_UD", 363 },
279 1.1 jmcneill { "PLL_C_UD", 364 },
280 1.1 jmcneill { "SCLK_MUX", 365 },
281 1.1 jmcneill };
282 1.1 jmcneill
283 1.1 jmcneill static struct clk *tegra210_car_clock_get(void *, const char *);
284 1.1 jmcneill static void tegra210_car_clock_put(void *, struct clk *);
285 1.1 jmcneill static u_int tegra210_car_clock_get_rate(void *, struct clk *);
286 1.1 jmcneill static int tegra210_car_clock_set_rate(void *, struct clk *, u_int);
287 1.1 jmcneill static int tegra210_car_clock_enable(void *, struct clk *);
288 1.1 jmcneill static int tegra210_car_clock_disable(void *, struct clk *);
289 1.1 jmcneill static int tegra210_car_clock_set_parent(void *, struct clk *,
290 1.1 jmcneill struct clk *);
291 1.1 jmcneill static struct clk *tegra210_car_clock_get_parent(void *, struct clk *);
292 1.1 jmcneill
293 1.1 jmcneill static const struct clk_funcs tegra210_car_clock_funcs = {
294 1.1 jmcneill .get = tegra210_car_clock_get,
295 1.1 jmcneill .put = tegra210_car_clock_put,
296 1.1 jmcneill .get_rate = tegra210_car_clock_get_rate,
297 1.1 jmcneill .set_rate = tegra210_car_clock_set_rate,
298 1.1 jmcneill .enable = tegra210_car_clock_enable,
299 1.1 jmcneill .disable = tegra210_car_clock_disable,
300 1.1 jmcneill .set_parent = tegra210_car_clock_set_parent,
301 1.1 jmcneill .get_parent = tegra210_car_clock_get_parent,
302 1.1 jmcneill };
303 1.1 jmcneill
304 1.1 jmcneill #define CLK_FIXED(_name, _rate) { \
305 1.1 jmcneill .base = { .name = (_name) }, .type = TEGRA_CLK_FIXED, \
306 1.1 jmcneill .u = { .fixed = { .rate = (_rate) } } \
307 1.1 jmcneill }
308 1.1 jmcneill
309 1.1 jmcneill #define CLK_PLL(_name, _parent, _base, _divm, _divn, _divp) { \
310 1.1 jmcneill .base = { .name = (_name) }, .type = TEGRA_CLK_PLL, \
311 1.1 jmcneill .parent = (_parent), \
312 1.1 jmcneill .u = { \
313 1.1 jmcneill .pll = { \
314 1.1 jmcneill .base_reg = (_base), \
315 1.1 jmcneill .divm_mask = (_divm), \
316 1.1 jmcneill .divn_mask = (_divn), \
317 1.1 jmcneill .divp_mask = (_divp), \
318 1.1 jmcneill } \
319 1.1 jmcneill } \
320 1.1 jmcneill }
321 1.1 jmcneill
322 1.1 jmcneill #define CLK_MUX(_name, _reg, _bits, _p) { \
323 1.1 jmcneill .base = { .name = (_name) }, .type = TEGRA_CLK_MUX, \
324 1.1 jmcneill .u = { \
325 1.1 jmcneill .mux = { \
326 1.1 jmcneill .nparents = __arraycount(_p), \
327 1.1 jmcneill .parents = (_p), \
328 1.1 jmcneill .reg = (_reg), \
329 1.1 jmcneill .bits = (_bits) \
330 1.1 jmcneill } \
331 1.1 jmcneill } \
332 1.1 jmcneill }
333 1.1 jmcneill
334 1.1 jmcneill #define CLK_FIXED_DIV(_name, _parent, _div) { \
335 1.1 jmcneill .base = { .name = (_name) }, .type = TEGRA_CLK_FIXED_DIV, \
336 1.1 jmcneill .parent = (_parent), \
337 1.1 jmcneill .u = { \
338 1.1 jmcneill .fixed_div = { \
339 1.1 jmcneill .div = (_div) \
340 1.1 jmcneill } \
341 1.1 jmcneill } \
342 1.1 jmcneill }
343 1.1 jmcneill
344 1.1 jmcneill #define CLK_DIV(_name, _parent, _reg, _bits) { \
345 1.1 jmcneill .base = { .name = (_name) }, .type = TEGRA_CLK_DIV, \
346 1.1 jmcneill .parent = (_parent), \
347 1.1 jmcneill .u = { \
348 1.1 jmcneill .div = { \
349 1.1 jmcneill .reg = (_reg), \
350 1.1 jmcneill .bits = (_bits) \
351 1.1 jmcneill } \
352 1.1 jmcneill } \
353 1.1 jmcneill }
354 1.1 jmcneill
355 1.1 jmcneill #define CLK_GATE(_name, _parent, _set, _clr, _bits) { \
356 1.1 jmcneill .base = { .name = (_name), .flags = CLK_SET_RATE_PARENT }, \
357 1.1 jmcneill .type = TEGRA_CLK_GATE, \
358 1.1 jmcneill .parent = (_parent), \
359 1.1 jmcneill .u = { \
360 1.1 jmcneill .gate = { \
361 1.1 jmcneill .set_reg = (_set), \
362 1.1 jmcneill .clr_reg = (_clr), \
363 1.1 jmcneill .bits = (_bits), \
364 1.1 jmcneill } \
365 1.1 jmcneill } \
366 1.1 jmcneill }
367 1.1 jmcneill
368 1.1 jmcneill #define CLK_GATE_L(_name, _parent, _bits) \
369 1.1 jmcneill CLK_GATE(_name, _parent, \
370 1.1 jmcneill CAR_CLK_ENB_L_SET_REG, CAR_CLK_ENB_L_CLR_REG, \
371 1.1 jmcneill _bits)
372 1.1 jmcneill
373 1.1 jmcneill #define CLK_GATE_H(_name, _parent, _bits) \
374 1.1 jmcneill CLK_GATE(_name, _parent, \
375 1.1 jmcneill CAR_CLK_ENB_H_SET_REG, CAR_CLK_ENB_H_CLR_REG, \
376 1.1 jmcneill _bits)
377 1.1 jmcneill
378 1.1 jmcneill #define CLK_GATE_U(_name, _parent, _bits) \
379 1.1 jmcneill CLK_GATE(_name, _parent, \
380 1.1 jmcneill CAR_CLK_ENB_U_SET_REG, CAR_CLK_ENB_U_CLR_REG, \
381 1.1 jmcneill _bits)
382 1.1 jmcneill
383 1.1 jmcneill #define CLK_GATE_V(_name, _parent, _bits) \
384 1.1 jmcneill CLK_GATE(_name, _parent, \
385 1.1 jmcneill CAR_CLK_ENB_V_SET_REG, CAR_CLK_ENB_V_CLR_REG, \
386 1.1 jmcneill _bits)
387 1.1 jmcneill
388 1.1 jmcneill #define CLK_GATE_W(_name, _parent, _bits) \
389 1.1 jmcneill CLK_GATE(_name, _parent, \
390 1.1 jmcneill CAR_CLK_ENB_W_SET_REG, CAR_CLK_ENB_W_CLR_REG, \
391 1.1 jmcneill _bits)
392 1.1 jmcneill
393 1.1 jmcneill #define CLK_GATE_X(_name, _parent, _bits) \
394 1.1 jmcneill CLK_GATE(_name, _parent, \
395 1.1 jmcneill CAR_CLK_ENB_X_SET_REG, CAR_CLK_ENB_X_CLR_REG, \
396 1.1 jmcneill _bits)
397 1.1 jmcneill
398 1.1 jmcneill #define CLK_GATE_Y(_name, _parent, _bits) \
399 1.1 jmcneill CLK_GATE(_name, _parent, \
400 1.1 jmcneill CAR_CLK_ENB_Y_SET_REG, CAR_CLK_ENB_Y_CLR_REG, \
401 1.1 jmcneill _bits)
402 1.1 jmcneill
403 1.1 jmcneill
404 1.1 jmcneill #define CLK_GATE_SIMPLE(_name, _parent, _reg, _bits) \
405 1.1 jmcneill CLK_GATE(_name, _parent, _reg, _reg, _bits)
406 1.1 jmcneill
407 1.1 jmcneill static const char *mux_uart_p[] =
408 1.1 jmcneill { "PLL_P", "PLL_C2", "PLL_C", "PLL_C4_OUT0",
409 1.1 jmcneill NULL, "PLL_C4_OUT1", "CLK_M", "PLL_C4_OUT2" };
410 1.1 jmcneill
411 1.1 jmcneill static const char *mux_sdmmc1_p[] =
412 1.1 jmcneill { "PLL_P", "PLL_A", "PLL_C", "PLL_C4_OUT0",
413 1.1 jmcneill "PLL_M", "PLL_E", "CLK_M", "PLL_C4_OUT0" };
414 1.1 jmcneill
415 1.1 jmcneill static const char *mux_sdmmc2_4_p[] =
416 1.1 jmcneill { "PLL_P", "PLL_C4_OUT2"/*LJ*/, "PLL_C4_OUT0"/*LJ*/, "PLL_C4_OUT2",
417 1.1 jmcneill "PLL_M", "PLL_E", "CLK_M", "PLL_C4_OUT0" };
418 1.1 jmcneill
419 1.1 jmcneill static const char *mux_sdmmc3_p[] =
420 1.1 jmcneill { "PLL_P", "PLL_A", "PLL_C", "PLL_C4_OUT2",
421 1.1 jmcneill "PLL_C4_OUT1", "PLL_E", "CLK_M", "PLL_C4_OUT0" };
422 1.1 jmcneill
423 1.1 jmcneill static const char *mux_i2c_p[] =
424 1.1 jmcneill { "PLL_P", "PLL_C2_OUT0", "PLL_C", "PLL_C4_OUT0",
425 1.1 jmcneill NULL, "PLL_C4_OUT1", "CLK_M", "PLL_C4_OUT2" };
426 1.1 jmcneill
427 1.2 jmcneill static const char *mux_xusb_host_p[] =
428 1.2 jmcneill { "CLK_M", "PLL_P", NULL, NULL,
429 1.2 jmcneill NULL, "PLL_REF", NULL, NULL };
430 1.2 jmcneill
431 1.2 jmcneill static const char *mux_xusb_fs_p[] =
432 1.2 jmcneill { "CLK_M", NULL, "PLL_U_48M", NULL,
433 1.2 jmcneill "PLL_P", NULL, "PLL_U_480M", NULL };
434 1.2 jmcneill
435 1.2 jmcneill static const char *mux_xusb_ss_p[] =
436 1.2 jmcneill { "CLK_M", "PLL_REF", "CLK_32K", "PLL_U_480M",
437 1.2 jmcneill NULL, NULL, NULL, NULL };
438 1.2 jmcneill
439 1.13 jmcneill static const char *mux_mselect_p[] =
440 1.13 jmcneill { "PLL_P", "PLL_C2", "PLL_C", "PLL_C4_OUT2",
441 1.13 jmcneill "PLL_C4_OUT1", "CLK_S", "CLK_M", "PLL_C4_OUT0" };
442 1.13 jmcneill
443 1.15 jmcneill static const char *mux_tsensor_p[] =
444 1.15 jmcneill { "PLL_P", "PLL_C2", "PLL_C", "PLL_C4_OUT0",
445 1.15 jmcneill "CLK_M", "PLL_C4_OUT1", "CLK_S", "PLL_C4_OUT2" };
446 1.15 jmcneill
447 1.15 jmcneill static const char *mux_soc_therm_p[] =
448 1.15 jmcneill { "CLK_M", "PLL_C", "PLL_P", "PLL_A",
449 1.15 jmcneill "PLL_C2", "PLL_C4_OUT0", "PLL_C4_OUT1", "PLL_C4_OUT2" };
450 1.15 jmcneill
451 1.1 jmcneill static struct tegra_clk tegra210_car_clocks[] = {
452 1.1 jmcneill CLK_FIXED("CLK_M", TEGRA210_REF_FREQ),
453 1.1 jmcneill
454 1.1 jmcneill CLK_PLL("PLL_P", "CLK_M", CAR_PLLP_BASE_REG,
455 1.1 jmcneill CAR_PLLP_BASE_DIVM, CAR_PLLP_BASE_DIVN, CAR_PLLP_BASE_DIVP),
456 1.1 jmcneill CLK_PLL("PLL_C", "CLK_M", CAR_PLLC_BASE_REG,
457 1.1 jmcneill CAR_PLLC_BASE_DIVM, CAR_PLLC_BASE_DIVN, CAR_PLLC_BASE_DIVP),
458 1.1 jmcneill CLK_PLL("PLL_U", "CLK_M", CAR_PLLU_BASE_REG,
459 1.1 jmcneill CAR_PLLU_BASE_DIVM, CAR_PLLU_BASE_DIVN, CAR_PLLU_BASE_DIVP),
460 1.1 jmcneill CLK_PLL("PLL_X", "CLK_M", CAR_PLLX_BASE_REG,
461 1.1 jmcneill CAR_PLLX_BASE_DIVM, CAR_PLLX_BASE_DIVN, CAR_PLLX_BASE_DIVP),
462 1.1 jmcneill CLK_PLL("PLL_E", "CLK_M", CAR_PLLE_BASE_REG,
463 1.1 jmcneill CAR_PLLE_BASE_DIVM, CAR_PLLE_BASE_DIVN, CAR_PLLE_BASE_DIVP_CML),
464 1.1 jmcneill CLK_PLL("PLL_D", "CLK_M", CAR_PLLD_BASE_REG,
465 1.1 jmcneill CAR_PLLD_BASE_DIVM, CAR_PLLD_BASE_DIVN, CAR_PLLD_BASE_DIVP),
466 1.1 jmcneill CLK_PLL("PLL_D2", "CLK_M", CAR_PLLD2_BASE_REG,
467 1.1 jmcneill CAR_PLLD2_BASE_DIVM, CAR_PLLD2_BASE_DIVN, CAR_PLLD2_BASE_DIVP),
468 1.1 jmcneill CLK_PLL("PLL_REF", "CLK_M", CAR_PLLREFE_BASE_REG,
469 1.1 jmcneill CAR_PLLREFE_BASE_DIVM, CAR_PLLREFE_BASE_DIVN, CAR_PLLREFE_BASE_DIVP),
470 1.1 jmcneill
471 1.2 jmcneill CLK_FIXED_DIV("PLL_U_480M", "PLL_U", 1),
472 1.2 jmcneill CLK_FIXED_DIV("PLL_U_48M", "PLL_U", 10),
473 1.2 jmcneill
474 1.1 jmcneill CLK_MUX("MUX_UARTA", CAR_CLKSRC_UARTA_REG, CAR_CLKSRC_UART_SRC,
475 1.1 jmcneill mux_uart_p),
476 1.1 jmcneill CLK_MUX("MUX_UARTB", CAR_CLKSRC_UARTB_REG, CAR_CLKSRC_UART_SRC,
477 1.1 jmcneill mux_uart_p),
478 1.1 jmcneill CLK_MUX("MUX_UARTC", CAR_CLKSRC_UARTC_REG, CAR_CLKSRC_UART_SRC,
479 1.1 jmcneill mux_uart_p),
480 1.1 jmcneill CLK_MUX("MUX_UARTD", CAR_CLKSRC_UARTD_REG, CAR_CLKSRC_UART_SRC,
481 1.1 jmcneill mux_uart_p),
482 1.1 jmcneill
483 1.1 jmcneill CLK_MUX("MUX_SDMMC1", CAR_CLKSRC_SDMMC1_REG, CAR_CLKSRC_SDMMC_SRC,
484 1.1 jmcneill mux_sdmmc1_p),
485 1.1 jmcneill CLK_MUX("MUX_SDMMC2", CAR_CLKSRC_SDMMC2_REG, CAR_CLKSRC_SDMMC_SRC,
486 1.1 jmcneill mux_sdmmc2_4_p),
487 1.1 jmcneill CLK_MUX("MUX_SDMMC3", CAR_CLKSRC_SDMMC3_REG, CAR_CLKSRC_SDMMC_SRC,
488 1.1 jmcneill mux_sdmmc3_p),
489 1.1 jmcneill CLK_MUX("MUX_SDMMC4", CAR_CLKSRC_SDMMC4_REG, CAR_CLKSRC_SDMMC_SRC,
490 1.1 jmcneill mux_sdmmc2_4_p),
491 1.1 jmcneill
492 1.1 jmcneill CLK_MUX("MUX_I2C1", CAR_CLKSRC_I2C1_REG, CAR_CLKSRC_I2C_SRC, mux_i2c_p),
493 1.1 jmcneill CLK_MUX("MUX_I2C2", CAR_CLKSRC_I2C2_REG, CAR_CLKSRC_I2C_SRC, mux_i2c_p),
494 1.1 jmcneill CLK_MUX("MUX_I2C3", CAR_CLKSRC_I2C3_REG, CAR_CLKSRC_I2C_SRC, mux_i2c_p),
495 1.1 jmcneill CLK_MUX("MUX_I2C4", CAR_CLKSRC_I2C4_REG, CAR_CLKSRC_I2C_SRC, mux_i2c_p),
496 1.1 jmcneill CLK_MUX("MUX_I2C5", CAR_CLKSRC_I2C5_REG, CAR_CLKSRC_I2C_SRC, mux_i2c_p),
497 1.1 jmcneill CLK_MUX("MUX_I2C6", CAR_CLKSRC_I2C6_REG, CAR_CLKSRC_I2C_SRC, mux_i2c_p),
498 1.1 jmcneill
499 1.2 jmcneill CLK_MUX("MUX_XUSB_HOST",
500 1.2 jmcneill CAR_CLKSRC_XUSB_HOST_REG, CAR_CLKSRC_XUSB_HOST_SRC,
501 1.2 jmcneill mux_xusb_host_p),
502 1.2 jmcneill CLK_MUX("MUX_XUSB_FALCON",
503 1.2 jmcneill CAR_CLKSRC_XUSB_FALCON_REG, CAR_CLKSRC_XUSB_FALCON_SRC,
504 1.2 jmcneill mux_xusb_host_p),
505 1.2 jmcneill CLK_MUX("MUX_XUSB_SS",
506 1.2 jmcneill CAR_CLKSRC_XUSB_SS_REG, CAR_CLKSRC_XUSB_SS_SRC,
507 1.2 jmcneill mux_xusb_ss_p),
508 1.2 jmcneill CLK_MUX("MUX_XUSB_FS",
509 1.2 jmcneill CAR_CLKSRC_XUSB_FS_REG, CAR_CLKSRC_XUSB_FS_SRC,
510 1.2 jmcneill mux_xusb_fs_p),
511 1.2 jmcneill
512 1.13 jmcneill CLK_MUX("MUX_MSELECT",
513 1.13 jmcneill CAR_CLKSRC_MSELECT_REG, CAR_CLKSRC_MSELECT_SRC,
514 1.13 jmcneill mux_mselect_p),
515 1.13 jmcneill
516 1.15 jmcneill CLK_MUX("MUX_TSENSOR",
517 1.15 jmcneill CAR_CLKSRC_TSENSOR_REG, CAR_CLKSRC_TSENSOR_SRC,
518 1.15 jmcneill mux_tsensor_p),
519 1.15 jmcneill CLK_MUX("MUX_SOC_THERM",
520 1.15 jmcneill CAR_CLKSRC_SOC_THERM_REG, CAR_CLKSRC_SOC_THERM_SRC,
521 1.15 jmcneill mux_soc_therm_p),
522 1.15 jmcneill
523 1.1 jmcneill CLK_DIV("DIV_UARTA", "MUX_UARTA",
524 1.1 jmcneill CAR_CLKSRC_UARTA_REG, CAR_CLKSRC_UART_DIV),
525 1.1 jmcneill CLK_DIV("DIV_UARTB", "MUX_UARTB",
526 1.1 jmcneill CAR_CLKSRC_UARTB_REG, CAR_CLKSRC_UART_DIV),
527 1.1 jmcneill CLK_DIV("DIV_UARTC", "MUX_UARTC",
528 1.1 jmcneill CAR_CLKSRC_UARTC_REG, CAR_CLKSRC_UART_DIV),
529 1.1 jmcneill CLK_DIV("DIV_UARTD", "MUX_UARTD",
530 1.1 jmcneill CAR_CLKSRC_UARTD_REG, CAR_CLKSRC_UART_DIV),
531 1.1 jmcneill
532 1.1 jmcneill CLK_DIV("DIV_SDMMC1", "MUX_SDMMC1",
533 1.1 jmcneill CAR_CLKSRC_SDMMC1_REG, CAR_CLKSRC_SDMMC_DIV),
534 1.1 jmcneill CLK_DIV("DIV_SDMMC2", "MUX_SDMMC2",
535 1.1 jmcneill CAR_CLKSRC_SDMMC2_REG, CAR_CLKSRC_SDMMC_DIV),
536 1.1 jmcneill CLK_DIV("DIV_SDMMC3", "MUX_SDMMC3",
537 1.1 jmcneill CAR_CLKSRC_SDMMC3_REG, CAR_CLKSRC_SDMMC_DIV),
538 1.1 jmcneill CLK_DIV("DIV_SDMMC4", "MUX_SDMMC4",
539 1.1 jmcneill CAR_CLKSRC_SDMMC4_REG, CAR_CLKSRC_SDMMC_DIV),
540 1.1 jmcneill
541 1.1 jmcneill CLK_DIV("DIV_I2C1", "MUX_I2C1",
542 1.1 jmcneill CAR_CLKSRC_I2C1_REG, CAR_CLKSRC_I2C_DIV),
543 1.1 jmcneill CLK_DIV("DIV_I2C2", "MUX_I2C2",
544 1.1 jmcneill CAR_CLKSRC_I2C2_REG, CAR_CLKSRC_I2C_DIV),
545 1.1 jmcneill CLK_DIV("DIV_I2C3", "MUX_I2C3",
546 1.1 jmcneill CAR_CLKSRC_I2C3_REG, CAR_CLKSRC_I2C_DIV),
547 1.1 jmcneill CLK_DIV("DIV_I2C4", "MUX_I2C4",
548 1.1 jmcneill CAR_CLKSRC_I2C4_REG, CAR_CLKSRC_I2C_DIV),
549 1.1 jmcneill CLK_DIV("DIV_I2C5", "MUX_I2C5",
550 1.1 jmcneill CAR_CLKSRC_I2C5_REG, CAR_CLKSRC_I2C_DIV),
551 1.1 jmcneill CLK_DIV("DIV_I2C6", "MUX_I2C6",
552 1.1 jmcneill CAR_CLKSRC_I2C6_REG, CAR_CLKSRC_I2C_DIV),
553 1.1 jmcneill
554 1.2 jmcneill CLK_DIV("XUSB_HOST_SRC", "MUX_XUSB_HOST",
555 1.2 jmcneill CAR_CLKSRC_XUSB_HOST_REG, CAR_CLKSRC_XUSB_HOST_DIV),
556 1.2 jmcneill CLK_DIV("XUSB_SS_SRC", "MUX_XUSB_SS",
557 1.2 jmcneill CAR_CLKSRC_XUSB_SS_REG, CAR_CLKSRC_XUSB_SS_DIV),
558 1.2 jmcneill CLK_DIV("XUSB_FS_SRC", "MUX_XUSB_FS",
559 1.2 jmcneill CAR_CLKSRC_XUSB_FS_REG, CAR_CLKSRC_XUSB_FS_DIV),
560 1.2 jmcneill CLK_DIV("XUSB_FALCON_SRC", "MUX_XUSB_FALCON",
561 1.2 jmcneill CAR_CLKSRC_XUSB_FALCON_REG, CAR_CLKSRC_XUSB_FALCON_DIV),
562 1.6 jmcneill CLK_DIV("USB2_HSIC_TRK", "CLK_M",
563 1.6 jmcneill CAR_CLKSRC_USB2_HSIC_TRK_REG, CAR_CLKSRC_USB2_HSIC_TRK_DIV),
564 1.11 jmcneill CLK_DIV("DIV_PLL_U_OUT1", "PLL_U",
565 1.11 jmcneill CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_OUT1_RATIO),
566 1.11 jmcneill CLK_DIV("DIV_PLL_U_OUT2", "PLL_U",
567 1.11 jmcneill CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_OUT2_RATIO),
568 1.11 jmcneill
569 1.13 jmcneill CLK_DIV("DIV_MSELECT", "MUX_MSELECT",
570 1.13 jmcneill CAR_CLKSRC_MSELECT_REG, CAR_CLKSRC_MSELECT_DIV),
571 1.13 jmcneill
572 1.15 jmcneill CLK_DIV("DIV_TSENSOR", "MUX_TSENSOR",
573 1.15 jmcneill CAR_CLKSRC_TSENSOR_REG, CAR_CLKSRC_TSENSOR_DIV),
574 1.15 jmcneill CLK_DIV("DIV_SOC_THERM", "MUX_SOC_THERM",
575 1.15 jmcneill CAR_CLKSRC_SOC_THERM_REG, CAR_CLKSRC_SOC_THERM_DIV),
576 1.15 jmcneill
577 1.11 jmcneill CLK_GATE("PLL_U_OUT1", "DIV_PLL_U_OUT1",
578 1.11 jmcneill CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_OUT1_CLKEN),
579 1.11 jmcneill CLK_GATE("PLL_U_OUT2", "DIV_PLL_U_OUT2",
580 1.11 jmcneill CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_OUT2_CLKEN),
581 1.2 jmcneill
582 1.13 jmcneill CLK_GATE("CML0", "PLL_E",
583 1.13 jmcneill CAR_PLLE_AUX_REG, CAR_PLLE_AUX_REG, CAR_PLLE_AUX_CML0_OEN),
584 1.13 jmcneill CLK_GATE("CML1", "PLL_E",
585 1.13 jmcneill CAR_PLLE_AUX_REG, CAR_PLLE_AUX_REG, CAR_PLLE_AUX_CML1_OEN),
586 1.13 jmcneill
587 1.1 jmcneill CLK_GATE_L("UARTA", "DIV_UARTA", CAR_DEV_L_UARTA),
588 1.1 jmcneill CLK_GATE_L("UARTB", "DIV_UARTB", CAR_DEV_L_UARTB),
589 1.1 jmcneill CLK_GATE_H("UARTC", "DIV_UARTC", CAR_DEV_H_UARTC),
590 1.1 jmcneill CLK_GATE_U("UARTD", "DIV_UARTD", CAR_DEV_U_UARTD),
591 1.1 jmcneill CLK_GATE_L("SDMMC1", "DIV_SDMMC1", CAR_DEV_L_SDMMC1),
592 1.1 jmcneill CLK_GATE_L("SDMMC2", "DIV_SDMMC2", CAR_DEV_L_SDMMC2),
593 1.1 jmcneill CLK_GATE_U("SDMMC3", "DIV_SDMMC3", CAR_DEV_U_SDMMC3),
594 1.1 jmcneill CLK_GATE_L("SDMMC4", "DIV_SDMMC4", CAR_DEV_L_SDMMC4),
595 1.1 jmcneill CLK_GATE_L("I2C1", "DIV_I2C1", CAR_DEV_L_I2C1),
596 1.1 jmcneill CLK_GATE_H("I2C2", "DIV_I2C2", CAR_DEV_H_I2C2),
597 1.1 jmcneill CLK_GATE_U("I2C3", "DIV_I2C3", CAR_DEV_U_I2C3),
598 1.1 jmcneill CLK_GATE_V("I2C4", "DIV_I2C4", CAR_DEV_V_I2C4),
599 1.1 jmcneill CLK_GATE_H("I2C5", "DIV_I2C5", CAR_DEV_H_I2C5),
600 1.1 jmcneill CLK_GATE_X("I2C6", "DIV_I2C6", CAR_DEV_X_I2C6),
601 1.11 jmcneill CLK_GATE_W("XUSB_GATE", "CLK_M", CAR_DEV_W_XUSB),
602 1.2 jmcneill CLK_GATE_U("XUSB_HOST", "XUSB_HOST_SRC", CAR_DEV_U_XUSB_HOST),
603 1.2 jmcneill CLK_GATE_W("XUSB_SS", "XUSB_SS_SRC", CAR_DEV_W_XUSB_SS),
604 1.2 jmcneill CLK_GATE_H("FUSE", "CLK_M", CAR_DEV_H_FUSE),
605 1.11 jmcneill CLK_GATE_Y("USB2_TRK", "USB2_HSIC_TRK", CAR_DEV_Y_USB2_TRK),
606 1.6 jmcneill CLK_GATE_Y("HSIC_TRK", "USB2_HSIC_TRK", CAR_DEV_Y_HSIC_TRK),
607 1.8 jmcneill CLK_GATE_H("APBDMA", "CLK_M", CAR_DEV_H_APBDMA),
608 1.10 jmcneill CLK_GATE_L("USBD", "PLL_U_480M", CAR_DEV_L_USBD),
609 1.10 jmcneill CLK_GATE_H("USB2", "PLL_U_480M", CAR_DEV_H_USB2),
610 1.13 jmcneill CLK_GATE_V("MSELECT", "DIV_MSELECT", CAR_DEV_V_MSELECT),
611 1.13 jmcneill CLK_GATE_U("PCIE", "CLK_M", CAR_DEV_U_PCIE),
612 1.13 jmcneill CLK_GATE_U("AFI", "MSELECT", CAR_DEV_U_AFI),
613 1.15 jmcneill CLK_GATE_V("TSENSOR", "DIV_TSENSOR", CAR_DEV_V_TSENSOR),
614 1.15 jmcneill CLK_GATE_U("SOC_THERM", "DIV_SOC_THERM", CAR_DEV_U_SOC_THERM),
615 1.1 jmcneill };
616 1.1 jmcneill
617 1.1 jmcneill struct tegra210_init_parent {
618 1.1 jmcneill const char *clock;
619 1.1 jmcneill const char *parent;
620 1.11 jmcneill u_int rate;
621 1.11 jmcneill u_int enable;
622 1.1 jmcneill } tegra210_init_parents[] = {
623 1.11 jmcneill { "SDMMC1", "PLL_P", 0, 0 },
624 1.11 jmcneill { "SDMMC2", "PLL_P", 0, 0 },
625 1.11 jmcneill { "SDMMC3", "PLL_P", 0, 0 },
626 1.11 jmcneill { "SDMMC4", "PLL_P", 0, 0 },
627 1.15 jmcneill { "SOC_THERM", "PLL_P", 0, 0 },
628 1.15 jmcneill { "TSENSOR", "CLK_M", 0, 0 },
629 1.11 jmcneill { "XUSB_GATE", NULL, 0, 1 },
630 1.11 jmcneill { "XUSB_HOST_SRC", "PLL_P", 102000000, 0 },
631 1.11 jmcneill { "XUSB_FALCON_SRC", "PLL_P", 204000000, 0 },
632 1.11 jmcneill { "XUSB_SS_SRC", "PLL_U_480M", 120000000, 0 },
633 1.11 jmcneill { "XUSB_FS_SRC", "PLL_U_48M", 48000000, 0 },
634 1.11 jmcneill { "PLL_U_OUT1", NULL, 48000000, 1 },
635 1.11 jmcneill { "PLL_U_OUT2", NULL, 60000000, 1 },
636 1.14 jmcneill { "CML0", NULL, 0, 1 },
637 1.14 jmcneill { "AFI", NULL, 0, 1 },
638 1.14 jmcneill { "PCIE", NULL, 0, 1 },
639 1.1 jmcneill };
640 1.1 jmcneill
641 1.1 jmcneill struct tegra210_car_rst {
642 1.1 jmcneill u_int set_reg;
643 1.1 jmcneill u_int clr_reg;
644 1.1 jmcneill u_int mask;
645 1.1 jmcneill };
646 1.1 jmcneill
647 1.1 jmcneill static struct tegra210_car_reset_reg {
648 1.1 jmcneill u_int set_reg;
649 1.1 jmcneill u_int clr_reg;
650 1.1 jmcneill } tegra210_car_reset_regs[] = {
651 1.1 jmcneill { CAR_RST_DEV_L_SET_REG, CAR_RST_DEV_L_CLR_REG },
652 1.1 jmcneill { CAR_RST_DEV_H_SET_REG, CAR_RST_DEV_H_CLR_REG },
653 1.1 jmcneill { CAR_RST_DEV_U_SET_REG, CAR_RST_DEV_U_CLR_REG },
654 1.1 jmcneill { CAR_RST_DEV_V_SET_REG, CAR_RST_DEV_V_CLR_REG },
655 1.1 jmcneill { CAR_RST_DEV_W_SET_REG, CAR_RST_DEV_W_CLR_REG },
656 1.1 jmcneill { CAR_RST_DEV_X_SET_REG, CAR_RST_DEV_X_CLR_REG },
657 1.1 jmcneill { CAR_RST_DEV_Y_SET_REG, CAR_RST_DEV_Y_CLR_REG },
658 1.1 jmcneill };
659 1.1 jmcneill
660 1.1 jmcneill static void * tegra210_car_reset_acquire(device_t, const void *, size_t);
661 1.1 jmcneill static void tegra210_car_reset_release(device_t, void *);
662 1.1 jmcneill static int tegra210_car_reset_assert(device_t, void *);
663 1.1 jmcneill static int tegra210_car_reset_deassert(device_t, void *);
664 1.1 jmcneill
665 1.1 jmcneill static const struct fdtbus_reset_controller_func tegra210_car_fdtreset_funcs = {
666 1.1 jmcneill .acquire = tegra210_car_reset_acquire,
667 1.1 jmcneill .release = tegra210_car_reset_release,
668 1.1 jmcneill .reset_assert = tegra210_car_reset_assert,
669 1.1 jmcneill .reset_deassert = tegra210_car_reset_deassert,
670 1.1 jmcneill };
671 1.1 jmcneill
672 1.1 jmcneill struct tegra210_car_softc {
673 1.1 jmcneill device_t sc_dev;
674 1.1 jmcneill bus_space_tag_t sc_bst;
675 1.1 jmcneill bus_space_handle_t sc_bsh;
676 1.1 jmcneill
677 1.1 jmcneill struct clk_domain sc_clkdom;
678 1.1 jmcneill
679 1.1 jmcneill u_int sc_clock_cells;
680 1.1 jmcneill u_int sc_reset_cells;
681 1.1 jmcneill
682 1.1 jmcneill kmutex_t sc_rndlock;
683 1.1 jmcneill krndsource_t sc_rndsource;
684 1.1 jmcneill };
685 1.1 jmcneill
686 1.1 jmcneill static void tegra210_car_init(struct tegra210_car_softc *);
687 1.2 jmcneill static void tegra210_car_utmip_init(struct tegra210_car_softc *);
688 1.2 jmcneill static void tegra210_car_xusb_init(struct tegra210_car_softc *);
689 1.1 jmcneill static void tegra210_car_watchdog_init(struct tegra210_car_softc *);
690 1.1 jmcneill static void tegra210_car_parent_init(struct tegra210_car_softc *);
691 1.1 jmcneill
692 1.2 jmcneill
693 1.1 jmcneill CFATTACH_DECL_NEW(tegra210_car, sizeof(struct tegra210_car_softc),
694 1.1 jmcneill tegra210_car_match, tegra210_car_attach, NULL, NULL);
695 1.1 jmcneill
696 1.1 jmcneill static int
697 1.1 jmcneill tegra210_car_match(device_t parent, cfdata_t cf, void *aux)
698 1.1 jmcneill {
699 1.1 jmcneill const char * const compatible[] = { "nvidia,tegra210-car", NULL };
700 1.1 jmcneill struct fdt_attach_args * const faa = aux;
701 1.1 jmcneill
702 1.1 jmcneill #if 0
703 1.1 jmcneill return of_match_compatible(faa->faa_phandle, compatible);
704 1.1 jmcneill #else
705 1.1 jmcneill if (of_match_compatible(faa->faa_phandle, compatible) == 0)
706 1.1 jmcneill return 0;
707 1.1 jmcneill
708 1.1 jmcneill return 999;
709 1.1 jmcneill #endif
710 1.1 jmcneill }
711 1.1 jmcneill
712 1.1 jmcneill static void
713 1.1 jmcneill tegra210_car_attach(device_t parent, device_t self, void *aux)
714 1.1 jmcneill {
715 1.1 jmcneill struct tegra210_car_softc * const sc = device_private(self);
716 1.1 jmcneill struct fdt_attach_args * const faa = aux;
717 1.1 jmcneill const int phandle = faa->faa_phandle;
718 1.1 jmcneill bus_addr_t addr;
719 1.1 jmcneill bus_size_t size;
720 1.1 jmcneill int error, n;
721 1.1 jmcneill
722 1.1 jmcneill if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
723 1.1 jmcneill aprint_error(": couldn't get registers\n");
724 1.1 jmcneill return;
725 1.1 jmcneill }
726 1.1 jmcneill
727 1.1 jmcneill sc->sc_dev = self;
728 1.1 jmcneill sc->sc_bst = faa->faa_bst;
729 1.1 jmcneill error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh);
730 1.1 jmcneill if (error) {
731 1.1 jmcneill aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
732 1.1 jmcneill return;
733 1.1 jmcneill }
734 1.1 jmcneill if (of_getprop_uint32(phandle, "#clock-cells", &sc->sc_clock_cells))
735 1.1 jmcneill sc->sc_clock_cells = 1;
736 1.1 jmcneill if (of_getprop_uint32(phandle, "#reset-cells", &sc->sc_reset_cells))
737 1.1 jmcneill sc->sc_reset_cells = 1;
738 1.1 jmcneill
739 1.1 jmcneill aprint_naive("\n");
740 1.1 jmcneill aprint_normal(": CAR\n");
741 1.1 jmcneill
742 1.1 jmcneill sc->sc_clkdom.funcs = &tegra210_car_clock_funcs;
743 1.1 jmcneill sc->sc_clkdom.priv = sc;
744 1.1 jmcneill for (n = 0; n < __arraycount(tegra210_car_clocks); n++)
745 1.1 jmcneill tegra210_car_clocks[n].base.domain = &sc->sc_clkdom;
746 1.1 jmcneill
747 1.1 jmcneill fdtbus_register_clock_controller(self, phandle,
748 1.1 jmcneill &tegra210_car_fdtclock_funcs);
749 1.1 jmcneill fdtbus_register_reset_controller(self, phandle,
750 1.1 jmcneill &tegra210_car_fdtreset_funcs);
751 1.1 jmcneill
752 1.1 jmcneill tegra210_car_init(sc);
753 1.1 jmcneill
754 1.1 jmcneill #ifdef TEGRA210_CAR_DEBUG
755 1.1 jmcneill for (n = 0; n < __arraycount(tegra210_car_clocks); n++) {
756 1.1 jmcneill struct clk *clk = TEGRA_CLK_BASE(&tegra210_car_clocks[n]);
757 1.1 jmcneill struct clk *clk_parent = clk_get_parent(clk);
758 1.1 jmcneill device_printf(self, "clk %s (parent %s): ", clk->name,
759 1.1 jmcneill clk_parent ? clk_parent->name : "none");
760 1.1 jmcneill printf("%u Hz\n", clk_get_rate(clk));
761 1.1 jmcneill }
762 1.1 jmcneill #endif
763 1.1 jmcneill }
764 1.1 jmcneill
765 1.1 jmcneill static void
766 1.1 jmcneill tegra210_car_init(struct tegra210_car_softc *sc)
767 1.1 jmcneill {
768 1.1 jmcneill tegra210_car_parent_init(sc);
769 1.1 jmcneill tegra210_car_utmip_init(sc);
770 1.1 jmcneill tegra210_car_xusb_init(sc);
771 1.1 jmcneill tegra210_car_watchdog_init(sc);
772 1.1 jmcneill }
773 1.1 jmcneill
774 1.1 jmcneill static void
775 1.1 jmcneill tegra210_car_parent_init(struct tegra210_car_softc *sc)
776 1.1 jmcneill {
777 1.1 jmcneill struct clk *clk, *clk_parent;
778 1.1 jmcneill int error;
779 1.1 jmcneill u_int n;
780 1.1 jmcneill
781 1.1 jmcneill for (n = 0; n < __arraycount(tegra210_init_parents); n++) {
782 1.1 jmcneill clk = clk_get(&sc->sc_clkdom, tegra210_init_parents[n].clock);
783 1.11 jmcneill KASSERTMSG(clk != NULL, "tegra210 clock %s not found", tegra210_init_parents[n].clock);
784 1.11 jmcneill
785 1.11 jmcneill if (tegra210_init_parents[n].parent != NULL) {
786 1.11 jmcneill clk_parent = clk_get(&sc->sc_clkdom,
787 1.11 jmcneill tegra210_init_parents[n].parent);
788 1.11 jmcneill KASSERT(clk_parent != NULL);
789 1.11 jmcneill
790 1.11 jmcneill error = clk_set_parent(clk, clk_parent);
791 1.11 jmcneill if (error) {
792 1.11 jmcneill aprint_error_dev(sc->sc_dev,
793 1.11 jmcneill "couldn't set '%s' parent to '%s': %d\n",
794 1.11 jmcneill clk->name, clk_parent->name, error);
795 1.11 jmcneill }
796 1.11 jmcneill clk_put(clk_parent);
797 1.11 jmcneill }
798 1.11 jmcneill if (tegra210_init_parents[n].rate != 0) {
799 1.11 jmcneill error = clk_set_rate(clk, tegra210_init_parents[n].rate);
800 1.11 jmcneill if (error) {
801 1.11 jmcneill aprint_error_dev(sc->sc_dev,
802 1.11 jmcneill "couldn't set '%s' rate to %u Hz: %d\n",
803 1.11 jmcneill clk->name, tegra210_init_parents[n].rate,
804 1.11 jmcneill error);
805 1.11 jmcneill }
806 1.11 jmcneill }
807 1.11 jmcneill if (tegra210_init_parents[n].enable) {
808 1.11 jmcneill error = clk_enable(clk);
809 1.11 jmcneill if (error) {
810 1.11 jmcneill aprint_error_dev(sc->sc_dev,
811 1.11 jmcneill "couldn't enable '%s': %d\n", clk->name,
812 1.11 jmcneill error);
813 1.11 jmcneill }
814 1.1 jmcneill }
815 1.1 jmcneill clk_put(clk);
816 1.1 jmcneill }
817 1.1 jmcneill }
818 1.1 jmcneill
819 1.1 jmcneill static void
820 1.1 jmcneill tegra210_car_utmip_init(struct tegra210_car_softc *sc)
821 1.1 jmcneill {
822 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
823 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
824 1.1 jmcneill
825 1.7 jmcneill /*
826 1.7 jmcneill * Set up the UTMI PLL.
827 1.7 jmcneill */
828 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG3_REG,
829 1.7 jmcneill 0, CAR_UTMIP_PLL_CFG3_REF_SRC_SEL);
830 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG3_REG,
831 1.7 jmcneill 0, CAR_UTMIP_PLL_CFG3_REF_DIS);
832 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIPLL_HW_PWRDN_CFG0_REG,
833 1.7 jmcneill 0, CAR_UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE);
834 1.7 jmcneill delay(10);
835 1.7 jmcneill /* TODO UTMIP_PLL_CFG0 */
836 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG2_REG,
837 1.7 jmcneill CAR_UTMIP_PLL_CFG2_PHY_XTAL_CLOCKEN, 0);
838 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG2_REG,
839 1.7 jmcneill 0, CAR_UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT); /* Don't care */
840 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG2_REG,
841 1.7 jmcneill 0, CAR_UTMIP_PLL_CFG2_STABLE_COUNT);
842 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG1_REG,
843 1.7 jmcneill 0, CAR_UTMIP_PLL_CFG1_ENABLE_DLY_COUNT);
844 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG1_REG,
845 1.7 jmcneill 0x3, CAR_UTMIP_PLL_CFG1_XTAL_FREQ_COUNT);
846 1.7 jmcneill
847 1.14 jmcneill bus_space_write_4(bst, bsh, CAR_CLK_ENB_U_SET_REG, CAR_DEV_U_AFI);
848 1.14 jmcneill bus_space_write_4(bst, bsh, CAR_CLK_ENB_U_SET_REG, CAR_DEV_U_PCIE);
849 1.14 jmcneill
850 1.10 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_L_CLR_REG, CAR_DEV_L_USBD);
851 1.10 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_H_CLR_REG, CAR_DEV_H_USB2);
852 1.7 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_W_CLR_REG, CAR_DEV_W_XUSB);
853 1.14 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_U_CLR_REG, CAR_DEV_U_AFI);
854 1.14 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_U_CLR_REG, CAR_DEV_U_PCIE);
855 1.14 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_U_CLR_REG, CAR_DEV_U_PCIEXCLK);
856 1.7 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_Y_CLR_REG, CAR_DEV_Y_PEX_USB_UPHY);
857 1.7 jmcneill bus_space_write_4(bst, bsh, CAR_RST_DEV_Y_CLR_REG, CAR_DEV_Y_SATA_USB_UPHY);
858 1.1 jmcneill
859 1.1 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG2_REG,
860 1.7 jmcneill CAR_UTMIP_PLL_CFG2_PD_SAMP_A_POWERUP |
861 1.7 jmcneill CAR_UTMIP_PLL_CFG2_PD_SAMP_B_POWERUP |
862 1.7 jmcneill CAR_UTMIP_PLL_CFG2_PD_SAMP_C_POWERUP,
863 1.1 jmcneill CAR_UTMIP_PLL_CFG2_PD_SAMP_A_POWERDOWN |
864 1.1 jmcneill CAR_UTMIP_PLL_CFG2_PD_SAMP_B_POWERDOWN |
865 1.7 jmcneill CAR_UTMIP_PLL_CFG2_PD_SAMP_C_POWERDOWN);
866 1.1 jmcneill
867 1.7 jmcneill /*
868 1.7 jmcneill * Set up UTMI PLL under hardware control
869 1.7 jmcneill */
870 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIP_PLL_CFG1_REG, 0,
871 1.7 jmcneill CAR_UTMIP_PLL_CFG1_PLL_ENABLE_POWERUP | CAR_UTMIP_PLL_CFG1_PLL_ENABLE_POWERDOWN);
872 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIPLL_HW_PWRDN_CFG0_REG,
873 1.7 jmcneill 0, CAR_UTMIPLL_HW_PWRDN_CFG0_IDDQ_SWCTL);
874 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIPLL_HW_PWRDN_CFG0_REG,
875 1.7 jmcneill CAR_UTMIPLL_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE, 0);
876 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIPLL_HW_PWRDN_CFG0_REG,
877 1.7 jmcneill 0, CAR_UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL);
878 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIPLL_HW_PWRDN_CFG0_REG,
879 1.7 jmcneill CAR_UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET, 0);
880 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CLK_RST_CONTROLLER_XUSB_PLL_CFG0_REG,
881 1.7 jmcneill 0, CLK_RST_CONTROLLER_XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY);
882 1.7 jmcneill delay(1);
883 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_UTMIPLL_HW_PWRDN_CFG0_REG,
884 1.7 jmcneill CAR_UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE, 0);
885 1.1 jmcneill }
886 1.1 jmcneill
887 1.1 jmcneill static void
888 1.1 jmcneill tegra210_car_xusb_init(struct tegra210_car_softc *sc)
889 1.1 jmcneill {
890 1.1 jmcneill const bus_space_tag_t bst = sc->sc_bst;
891 1.1 jmcneill const bus_space_handle_t bsh = sc->sc_bsh;
892 1.1 jmcneill uint32_t val;
893 1.1 jmcneill
894 1.4 jmcneill /*
895 1.5 jmcneill * Set up the PLLU.
896 1.4 jmcneill */
897 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG, CAR_PLLU_BASE_OVERRIDE, 0);
898 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_MISC_REG, CAR_PLLU_MISC_IDDQ, 0);
899 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_MISC_REG, 0, CAR_PLLU_MISC_IDDQ);
900 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_OUTA_REG, 0, CAR_PLLU_OUTA_OUT1_RSTN);
901 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_OUTA_REG, 0, CAR_PLLU_OUTA_OUT2_RSTN);
902 1.4 jmcneill delay(5);
903 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG,
904 1.7 jmcneill __SHIFTIN(0x19, CAR_PLLU_BASE_DIVN) |
905 1.7 jmcneill __SHIFTIN(0x2, CAR_PLLU_BASE_DIVM) |
906 1.7 jmcneill __SHIFTIN(0x1, CAR_PLLU_BASE_DIVP),
907 1.7 jmcneill CAR_PLLU_BASE_DIVN | CAR_PLLU_BASE_DIVM | CAR_PLLU_BASE_DIVP);
908 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG, CAR_PLLU_BASE_ENABLE, 0);
909 1.4 jmcneill do {
910 1.4 jmcneill delay(2);
911 1.4 jmcneill val = bus_space_read_4(bst, bsh, CAR_PLLU_BASE_REG);
912 1.4 jmcneill } while ((val & CAR_PLLU_BASE_LOCK) == 0);
913 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG, CAR_PLLU_BASE_CLKENABLE_ICUSB, 0);
914 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG, CAR_PLLU_BASE_CLKENABLE_HSIC, 0);
915 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG, CAR_PLLU_BASE_CLKENABLE_USB, 0);
916 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_OUT1_RSTN, 0);
917 1.4 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_OUTA_REG, CAR_PLLU_OUTA_OUT2_RSTN, 0);
918 1.4 jmcneill delay(2);
919 1.1 jmcneill
920 1.5 jmcneill /*
921 1.10 jmcneill * Now switch PLLU to hw controlled mode.
922 1.10 jmcneill */
923 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG, 0, CAR_PLLU_BASE_OVERRIDE);
924 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_REG,
925 1.10 jmcneill CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE |
926 1.10 jmcneill CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_USE_SWITCH_DETECT |
927 1.10 jmcneill CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_USE_LOCKDET,
928 1.10 jmcneill CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL |
929 1.10 jmcneill CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_CLK_SWITCH_SWCTL);
930 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CLK_RST_CONTROLLER_XUSB_PLL_CFG0_REG, 0,
931 1.10 jmcneill CLK_RST_CONTROLLER_XUSB_PLL_CFG0_PLLU_LOCK_DLY);
932 1.10 jmcneill delay(1);
933 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_REG,
934 1.10 jmcneill CLK_RST_CONTROLLER_PLLU_HW_PWRDN_CFG0_SEQ_ENABLE, 0);
935 1.10 jmcneill delay(1);
936 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLU_BASE_REG, 0, CAR_PLLU_BASE_CLKENABLE_USB);
937 1.10 jmcneill
938 1.10 jmcneill /*
939 1.7 jmcneill * Set up PLLREFE
940 1.7 jmcneill */
941 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLREFE_MISC_REG,
942 1.7 jmcneill 0, CAR_PLLREFE_MISC_IDDQ);
943 1.7 jmcneill delay(5);
944 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLREFE_BASE_REG,
945 1.7 jmcneill __SHIFTIN(0x4, CAR_PLLREFE_BASE_DIVM) |
946 1.7 jmcneill __SHIFTIN(0x41, CAR_PLLREFE_BASE_DIVN) |
947 1.7 jmcneill __SHIFTIN(0x0, CAR_PLLREFE_BASE_DIVP) |
948 1.7 jmcneill __SHIFTIN(0x0, CAR_PLLREFE_BASE_KCP),
949 1.7 jmcneill CAR_PLLREFE_BASE_DIVM |
950 1.7 jmcneill CAR_PLLREFE_BASE_DIVN |
951 1.7 jmcneill CAR_PLLREFE_BASE_DIVP |
952 1.7 jmcneill CAR_PLLREFE_BASE_KCP);
953 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLREFE_BASE_REG,
954 1.7 jmcneill CAR_PLLREFE_BASE_ENABLE, 0);
955 1.7 jmcneill do {
956 1.7 jmcneill delay(2);
957 1.7 jmcneill val = bus_space_read_4(bst, bsh, CAR_PLLREFE_MISC_REG);
958 1.7 jmcneill } while ((val & CAR_PLLREFE_MISC_LOCK) == 0);
959 1.7 jmcneill
960 1.7 jmcneill /*
961 1.5 jmcneill * Set up the PLLE.
962 1.5 jmcneill */
963 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_AUX_REG, 0, CAR_PLLE_AUX_REF_SEL_PLLREFE);
964 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_AUX_REG, 0, CAR_PLLE_AUX_REF_SRC);
965 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_MISC_REG, 0, CAR_PLLE_MISC_IDDQ_OVERRIDE);
966 1.5 jmcneill delay(5);
967 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_BASE_REG,
968 1.7 jmcneill __SHIFTIN(0xe, CAR_PLLE_BASE_DIVP_CML) |
969 1.7 jmcneill __SHIFTIN(0x7d, CAR_PLLE_BASE_DIVN) |
970 1.7 jmcneill __SHIFTIN(0x2, CAR_PLLE_BASE_DIVM),
971 1.7 jmcneill CAR_PLLE_BASE_DIVP_CML |
972 1.7 jmcneill CAR_PLLE_BASE_DIVN |
973 1.7 jmcneill CAR_PLLE_BASE_DIVM);
974 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_MISC_REG,
975 1.7 jmcneill CAR_PLLE_MISC_PTS,
976 1.7 jmcneill CAR_PLLE_MISC_KCP | CAR_PLLE_MISC_VREG_CTRL | CAR_PLLE_MISC_KVCO);
977 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_BASE_REG, CAR_PLLE_BASE_ENABLE, 0);
978 1.5 jmcneill do {
979 1.5 jmcneill delay(2);
980 1.5 jmcneill val = bus_space_read_4(bst, bsh, CAR_PLLE_MISC_REG);
981 1.5 jmcneill } while ((val & CAR_PLLE_MISC_LOCK) == 0);
982 1.7 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_SS_CNTL_REG,
983 1.7 jmcneill __SHIFTIN(1, CAR_PLLE_SS_CNTL_SSCINC) |
984 1.7 jmcneill __SHIFTIN(0x23, CAR_PLLE_SS_CNTL_SSCINCINTRV) |
985 1.7 jmcneill __SHIFTIN(0x21, CAR_PLLE_SS_CNTL_SSCMAX),
986 1.7 jmcneill CAR_PLLE_SS_CNTL_SSCINC |
987 1.7 jmcneill CAR_PLLE_SS_CNTL_SSCINCINTRV |
988 1.7 jmcneill CAR_PLLE_SS_CNTL_SSCMAX |
989 1.7 jmcneill CAR_PLLE_SS_CNTL_SSCINVERT |
990 1.7 jmcneill CAR_PLLE_SS_CNTL_SSCCENTER |
991 1.7 jmcneill CAR_PLLE_SS_CNTL_BYPASS_SS |
992 1.7 jmcneill CAR_PLLE_SS_CNTL_SSCBYP);
993 1.5 jmcneill delay(1);
994 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_SS_CNTL_REG, 0, CAR_PLLE_SS_CNTL_INTERP_RESET);
995 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_MISC_REG, 0, CAR_PLLE_MISC_IDDQ_SWCTL);
996 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_AUX_REG, 0, CAR_PLLE_AUX_SS_SWCTL);
997 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_AUX_REG, 0, CAR_PLLE_AUX_ENABLE_SWCTL);
998 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_AUX_REG, CAR_PLLE_AUX_SS_SEQ_INCLUDE, 0);
999 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_AUX_REG, CAR_PLLE_AUX_USE_LOCKDET, 0);
1000 1.5 jmcneill delay(1);
1001 1.5 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLE_AUX_REG, CAR_PLLE_AUX_SEQ_ENABLE, 0);
1002 1.5 jmcneill
1003 1.1 jmcneill bus_space_write_4(bst, bsh, CAR_CLK_ENB_W_SET_REG, CAR_DEV_W_XUSB);
1004 1.7 jmcneill bus_space_write_4(bst, bsh, CAR_CLK_ENB_W_SET_REG, CAR_DEV_W_XUSB_PADCTL);
1005 1.1 jmcneill }
1006 1.1 jmcneill
1007 1.1 jmcneill static void
1008 1.1 jmcneill tegra210_car_watchdog_init(struct tegra210_car_softc *sc)
1009 1.1 jmcneill {
1010 1.1 jmcneill const bus_space_tag_t bst = sc->sc_bst;
1011 1.1 jmcneill const bus_space_handle_t bsh = sc->sc_bsh;
1012 1.1 jmcneill
1013 1.1 jmcneill /* Enable watchdog timer reset for system */
1014 1.1 jmcneill tegra_reg_set_clear(bst, bsh, CAR_RST_SOURCE_REG,
1015 1.1 jmcneill CAR_RST_SOURCE_WDT_EN|CAR_RST_SOURCE_WDT_SYS_RST_EN, 0);
1016 1.1 jmcneill }
1017 1.1 jmcneill
1018 1.1 jmcneill static struct tegra_clk *
1019 1.1 jmcneill tegra210_car_clock_find(const char *name)
1020 1.1 jmcneill {
1021 1.1 jmcneill u_int n;
1022 1.1 jmcneill
1023 1.1 jmcneill for (n = 0; n < __arraycount(tegra210_car_clocks); n++) {
1024 1.1 jmcneill if (strcmp(tegra210_car_clocks[n].base.name, name) == 0) {
1025 1.1 jmcneill return &tegra210_car_clocks[n];
1026 1.1 jmcneill }
1027 1.1 jmcneill }
1028 1.1 jmcneill
1029 1.1 jmcneill return NULL;
1030 1.1 jmcneill }
1031 1.1 jmcneill
1032 1.1 jmcneill static struct tegra_clk *
1033 1.1 jmcneill tegra210_car_clock_find_by_id(u_int clock_id)
1034 1.1 jmcneill {
1035 1.1 jmcneill u_int n;
1036 1.1 jmcneill
1037 1.1 jmcneill for (n = 0; n < __arraycount(tegra210_car_clock_ids); n++) {
1038 1.1 jmcneill if (tegra210_car_clock_ids[n].id == clock_id) {
1039 1.1 jmcneill const char *name = tegra210_car_clock_ids[n].name;
1040 1.1 jmcneill return tegra210_car_clock_find(name);
1041 1.1 jmcneill }
1042 1.1 jmcneill }
1043 1.1 jmcneill
1044 1.1 jmcneill return NULL;
1045 1.1 jmcneill }
1046 1.1 jmcneill
1047 1.1 jmcneill static struct clk *
1048 1.1 jmcneill tegra210_car_clock_decode(device_t dev, const void *data, size_t len)
1049 1.1 jmcneill {
1050 1.1 jmcneill struct tegra210_car_softc * const sc = device_private(dev);
1051 1.1 jmcneill struct tegra_clk *tclk;
1052 1.1 jmcneill
1053 1.1 jmcneill if (len != sc->sc_clock_cells * 4) {
1054 1.1 jmcneill return NULL;
1055 1.1 jmcneill }
1056 1.1 jmcneill
1057 1.1 jmcneill const u_int clock_id = be32dec(data);
1058 1.1 jmcneill
1059 1.1 jmcneill tclk = tegra210_car_clock_find_by_id(clock_id);
1060 1.1 jmcneill if (tclk)
1061 1.1 jmcneill return TEGRA_CLK_BASE(tclk);
1062 1.1 jmcneill
1063 1.1 jmcneill return NULL;
1064 1.1 jmcneill }
1065 1.1 jmcneill
1066 1.1 jmcneill static struct clk *
1067 1.1 jmcneill tegra210_car_clock_get(void *priv, const char *name)
1068 1.1 jmcneill {
1069 1.1 jmcneill struct tegra_clk *tclk;
1070 1.1 jmcneill
1071 1.1 jmcneill tclk = tegra210_car_clock_find(name);
1072 1.1 jmcneill if (tclk == NULL)
1073 1.1 jmcneill return NULL;
1074 1.1 jmcneill
1075 1.1 jmcneill atomic_inc_uint(&tclk->refcnt);
1076 1.1 jmcneill
1077 1.1 jmcneill return TEGRA_CLK_BASE(tclk);
1078 1.1 jmcneill }
1079 1.1 jmcneill
1080 1.1 jmcneill static void
1081 1.1 jmcneill tegra210_car_clock_put(void *priv, struct clk *clk)
1082 1.1 jmcneill {
1083 1.1 jmcneill struct tegra_clk *tclk = TEGRA_CLK_PRIV(clk);
1084 1.1 jmcneill
1085 1.1 jmcneill KASSERT(tclk->refcnt > 0);
1086 1.1 jmcneill
1087 1.1 jmcneill atomic_dec_uint(&tclk->refcnt);
1088 1.1 jmcneill }
1089 1.1 jmcneill
1090 1.1 jmcneill static u_int
1091 1.1 jmcneill tegra210_car_clock_get_rate_pll(struct tegra210_car_softc *sc,
1092 1.1 jmcneill struct tegra_clk *tclk)
1093 1.1 jmcneill {
1094 1.1 jmcneill struct tegra_pll_clk *tpll = &tclk->u.pll;
1095 1.1 jmcneill struct tegra_clk *tclk_parent;
1096 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
1097 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1098 1.1 jmcneill u_int divm, divn, divp;
1099 1.1 jmcneill uint64_t rate;
1100 1.1 jmcneill
1101 1.1 jmcneill KASSERT(tclk->type == TEGRA_CLK_PLL);
1102 1.1 jmcneill
1103 1.1 jmcneill tclk_parent = tegra210_car_clock_find(tclk->parent);
1104 1.1 jmcneill KASSERT(tclk_parent != NULL);
1105 1.1 jmcneill
1106 1.1 jmcneill const u_int rate_parent = tegra210_car_clock_get_rate(sc,
1107 1.1 jmcneill TEGRA_CLK_BASE(tclk_parent));
1108 1.1 jmcneill
1109 1.1 jmcneill const uint32_t base = bus_space_read_4(bst, bsh, tpll->base_reg);
1110 1.1 jmcneill divm = __SHIFTOUT(base, tpll->divm_mask);
1111 1.1 jmcneill divn = __SHIFTOUT(base, tpll->divn_mask);
1112 1.1 jmcneill if (tpll->base_reg == CAR_PLLU_BASE_REG) {
1113 1.1 jmcneill divp = __SHIFTOUT(base, tpll->divp_mask) ? 0 : 1;
1114 1.1 jmcneill } else if (tpll->base_reg == CAR_PLLP_BASE_REG) {
1115 1.1 jmcneill /* XXX divp is not applied to PLLP's primary output */
1116 1.1 jmcneill divp = 0;
1117 1.7 jmcneill } else if (tpll->base_reg == CAR_PLLE_BASE_REG) {
1118 1.7 jmcneill divp = 0;
1119 1.7 jmcneill divm *= __SHIFTOUT(base, tpll->divp_mask);
1120 1.1 jmcneill } else {
1121 1.1 jmcneill divp = __SHIFTOUT(base, tpll->divp_mask);
1122 1.1 jmcneill }
1123 1.1 jmcneill
1124 1.1 jmcneill rate = (uint64_t)rate_parent * divn;
1125 1.1 jmcneill return rate / (divm << divp);
1126 1.1 jmcneill }
1127 1.1 jmcneill
1128 1.1 jmcneill static int
1129 1.1 jmcneill tegra210_car_clock_set_rate_pll(struct tegra210_car_softc *sc,
1130 1.1 jmcneill struct tegra_clk *tclk, u_int rate)
1131 1.1 jmcneill {
1132 1.1 jmcneill struct tegra_pll_clk *tpll = &tclk->u.pll;
1133 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
1134 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1135 1.1 jmcneill struct clk *clk_parent;
1136 1.1 jmcneill uint32_t bp, base;
1137 1.1 jmcneill
1138 1.1 jmcneill clk_parent = tegra210_car_clock_get_parent(sc, TEGRA_CLK_BASE(tclk));
1139 1.1 jmcneill if (clk_parent == NULL)
1140 1.1 jmcneill return EIO;
1141 1.1 jmcneill const u_int rate_parent = tegra210_car_clock_get_rate(sc, clk_parent);
1142 1.1 jmcneill if (rate_parent == 0)
1143 1.1 jmcneill return EIO;
1144 1.1 jmcneill
1145 1.1 jmcneill if (tpll->base_reg == CAR_PLLX_BASE_REG) {
1146 1.1 jmcneill const u_int divm = 1;
1147 1.1 jmcneill const u_int divn = rate / rate_parent;
1148 1.1 jmcneill const u_int divp = 0;
1149 1.1 jmcneill
1150 1.1 jmcneill bp = bus_space_read_4(bst, bsh, CAR_CCLKG_BURST_POLICY_REG);
1151 1.1 jmcneill bp &= ~CAR_CCLKG_BURST_POLICY_CPU_STATE;
1152 1.1 jmcneill bp |= __SHIFTIN(CAR_CCLKG_BURST_POLICY_CPU_STATE_IDLE,
1153 1.1 jmcneill CAR_CCLKG_BURST_POLICY_CPU_STATE);
1154 1.1 jmcneill bp &= ~CAR_CCLKG_BURST_POLICY_CWAKEUP_IDLE_SOURCE;
1155 1.1 jmcneill bp |= __SHIFTIN(CAR_CCLKG_BURST_POLICY_CWAKEUP_SOURCE_CLKM,
1156 1.1 jmcneill CAR_CCLKG_BURST_POLICY_CWAKEUP_IDLE_SOURCE);
1157 1.1 jmcneill bus_space_write_4(bst, bsh, CAR_CCLKG_BURST_POLICY_REG, bp);
1158 1.1 jmcneill
1159 1.1 jmcneill base = bus_space_read_4(bst, bsh, CAR_PLLX_BASE_REG);
1160 1.1 jmcneill base &= ~CAR_PLLX_BASE_DIVM;
1161 1.1 jmcneill base &= ~CAR_PLLX_BASE_DIVN;
1162 1.1 jmcneill base &= ~CAR_PLLX_BASE_DIVP;
1163 1.1 jmcneill base |= __SHIFTIN(divm, CAR_PLLX_BASE_DIVM);
1164 1.1 jmcneill base |= __SHIFTIN(divn, CAR_PLLX_BASE_DIVN);
1165 1.1 jmcneill base |= __SHIFTIN(divp, CAR_PLLX_BASE_DIVP);
1166 1.1 jmcneill bus_space_write_4(bst, bsh, CAR_PLLX_BASE_REG, base);
1167 1.1 jmcneill
1168 1.1 jmcneill tegra_reg_set_clear(bst, bsh, CAR_PLLX_MISC_REG,
1169 1.1 jmcneill CAR_PLLX_MISC_LOCK_ENABLE, 0);
1170 1.1 jmcneill do {
1171 1.1 jmcneill delay(2);
1172 1.1 jmcneill base = bus_space_read_4(bst, bsh, tpll->base_reg);
1173 1.1 jmcneill } while ((base & CAR_PLLX_BASE_LOCK) == 0);
1174 1.1 jmcneill delay(100);
1175 1.1 jmcneill
1176 1.1 jmcneill bp &= ~CAR_CCLKG_BURST_POLICY_CPU_STATE;
1177 1.1 jmcneill bp |= __SHIFTIN(CAR_CCLKG_BURST_POLICY_CPU_STATE_RUN,
1178 1.1 jmcneill CAR_CCLKG_BURST_POLICY_CPU_STATE);
1179 1.1 jmcneill bp &= ~CAR_CCLKG_BURST_POLICY_CWAKEUP_IDLE_SOURCE;
1180 1.1 jmcneill bp |= __SHIFTIN(CAR_CCLKG_BURST_POLICY_CWAKEUP_SOURCE_PLLX_OUT0_LJ,
1181 1.1 jmcneill CAR_CCLKG_BURST_POLICY_CWAKEUP_IDLE_SOURCE);
1182 1.1 jmcneill bus_space_write_4(bst, bsh, CAR_CCLKG_BURST_POLICY_REG, bp);
1183 1.1 jmcneill
1184 1.1 jmcneill return 0;
1185 1.1 jmcneill } else if (tpll->base_reg == CAR_PLLD2_BASE_REG) {
1186 1.1 jmcneill const u_int divm = 1;
1187 1.1 jmcneill const u_int pldiv = 1;
1188 1.1 jmcneill const u_int divn = (rate << pldiv) / rate_parent;
1189 1.1 jmcneill
1190 1.1 jmcneill /* Set frequency */
1191 1.1 jmcneill tegra_reg_set_clear(bst, bsh, tpll->base_reg,
1192 1.1 jmcneill __SHIFTIN(divm, CAR_PLLD2_BASE_DIVM) |
1193 1.1 jmcneill __SHIFTIN(divn, CAR_PLLD2_BASE_DIVN) |
1194 1.1 jmcneill __SHIFTIN(pldiv, CAR_PLLD2_BASE_DIVP),
1195 1.1 jmcneill CAR_PLLD2_BASE_REF_SRC_SEL |
1196 1.1 jmcneill CAR_PLLD2_BASE_DIVM |
1197 1.1 jmcneill CAR_PLLD2_BASE_DIVN |
1198 1.1 jmcneill CAR_PLLD2_BASE_DIVP);
1199 1.1 jmcneill
1200 1.1 jmcneill return 0;
1201 1.1 jmcneill } else {
1202 1.3 jmcneill aprint_error_dev(sc->sc_dev, "failed to set %s rate to %u\n",
1203 1.3 jmcneill tclk->base.name, rate);
1204 1.1 jmcneill /* TODO */
1205 1.1 jmcneill return EOPNOTSUPP;
1206 1.1 jmcneill }
1207 1.1 jmcneill }
1208 1.1 jmcneill
1209 1.1 jmcneill static int
1210 1.1 jmcneill tegra210_car_clock_set_parent_mux(struct tegra210_car_softc *sc,
1211 1.1 jmcneill struct tegra_clk *tclk, struct tegra_clk *tclk_parent)
1212 1.1 jmcneill {
1213 1.1 jmcneill struct tegra_mux_clk *tmux = &tclk->u.mux;
1214 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
1215 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1216 1.1 jmcneill uint32_t v;
1217 1.1 jmcneill u_int src;
1218 1.1 jmcneill
1219 1.1 jmcneill KASSERT(tclk->type == TEGRA_CLK_MUX);
1220 1.1 jmcneill
1221 1.1 jmcneill for (src = 0; src < tmux->nparents; src++) {
1222 1.1 jmcneill if (tmux->parents[src] == NULL) {
1223 1.1 jmcneill continue;
1224 1.1 jmcneill }
1225 1.1 jmcneill if (strcmp(tmux->parents[src], tclk_parent->base.name) == 0) {
1226 1.1 jmcneill break;
1227 1.1 jmcneill }
1228 1.1 jmcneill }
1229 1.1 jmcneill if (src == tmux->nparents) {
1230 1.1 jmcneill return EINVAL;
1231 1.1 jmcneill }
1232 1.1 jmcneill
1233 1.1 jmcneill v = bus_space_read_4(bst, bsh, tmux->reg);
1234 1.1 jmcneill v &= ~tmux->bits;
1235 1.1 jmcneill v |= __SHIFTIN(src, tmux->bits);
1236 1.1 jmcneill bus_space_write_4(bst, bsh, tmux->reg, v);
1237 1.1 jmcneill
1238 1.1 jmcneill return 0;
1239 1.1 jmcneill }
1240 1.1 jmcneill
1241 1.1 jmcneill static struct tegra_clk *
1242 1.1 jmcneill tegra210_car_clock_get_parent_mux(struct tegra210_car_softc *sc,
1243 1.1 jmcneill struct tegra_clk *tclk)
1244 1.1 jmcneill {
1245 1.1 jmcneill struct tegra_mux_clk *tmux = &tclk->u.mux;
1246 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
1247 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1248 1.1 jmcneill
1249 1.1 jmcneill KASSERT(tclk->type == TEGRA_CLK_MUX);
1250 1.1 jmcneill
1251 1.1 jmcneill const uint32_t v = bus_space_read_4(bst, bsh, tmux->reg);
1252 1.1 jmcneill const u_int src = __SHIFTOUT(v, tmux->bits);
1253 1.1 jmcneill
1254 1.1 jmcneill KASSERT(src < tmux->nparents);
1255 1.1 jmcneill
1256 1.1 jmcneill if (tmux->parents[src] == NULL) {
1257 1.1 jmcneill return NULL;
1258 1.1 jmcneill }
1259 1.1 jmcneill
1260 1.1 jmcneill return tegra210_car_clock_find(tmux->parents[src]);
1261 1.1 jmcneill }
1262 1.1 jmcneill
1263 1.1 jmcneill static u_int
1264 1.1 jmcneill tegra210_car_clock_get_rate_fixed_div(struct tegra210_car_softc *sc,
1265 1.1 jmcneill struct tegra_clk *tclk)
1266 1.1 jmcneill {
1267 1.1 jmcneill struct tegra_fixed_div_clk *tfixed_div = &tclk->u.fixed_div;
1268 1.1 jmcneill struct clk *clk_parent;
1269 1.1 jmcneill
1270 1.1 jmcneill clk_parent = tegra210_car_clock_get_parent(sc, TEGRA_CLK_BASE(tclk));
1271 1.1 jmcneill if (clk_parent == NULL)
1272 1.1 jmcneill return 0;
1273 1.1 jmcneill const u_int parent_rate = tegra210_car_clock_get_rate(sc, clk_parent);
1274 1.1 jmcneill
1275 1.1 jmcneill return parent_rate / tfixed_div->div;
1276 1.1 jmcneill }
1277 1.1 jmcneill
1278 1.1 jmcneill static u_int
1279 1.1 jmcneill tegra210_car_clock_get_rate_div(struct tegra210_car_softc *sc,
1280 1.1 jmcneill struct tegra_clk *tclk)
1281 1.1 jmcneill {
1282 1.1 jmcneill struct tegra_div_clk *tdiv = &tclk->u.div;
1283 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
1284 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1285 1.1 jmcneill struct clk *clk_parent;
1286 1.1 jmcneill u_int rate;
1287 1.1 jmcneill
1288 1.1 jmcneill KASSERT(tclk->type == TEGRA_CLK_DIV);
1289 1.1 jmcneill
1290 1.1 jmcneill clk_parent = tegra210_car_clock_get_parent(sc, TEGRA_CLK_BASE(tclk));
1291 1.1 jmcneill const u_int parent_rate = tegra210_car_clock_get_rate(sc, clk_parent);
1292 1.1 jmcneill
1293 1.1 jmcneill const uint32_t v = bus_space_read_4(bst, bsh, tdiv->reg);
1294 1.1 jmcneill u_int raw_div = __SHIFTOUT(v, tdiv->bits);
1295 1.1 jmcneill
1296 1.1 jmcneill switch (tdiv->reg) {
1297 1.1 jmcneill case CAR_CLKSRC_I2C1_REG:
1298 1.1 jmcneill case CAR_CLKSRC_I2C2_REG:
1299 1.1 jmcneill case CAR_CLKSRC_I2C3_REG:
1300 1.1 jmcneill case CAR_CLKSRC_I2C4_REG:
1301 1.1 jmcneill case CAR_CLKSRC_I2C5_REG:
1302 1.1 jmcneill case CAR_CLKSRC_I2C6_REG:
1303 1.1 jmcneill rate = parent_rate / (raw_div + 1);
1304 1.1 jmcneill break;
1305 1.1 jmcneill case CAR_CLKSRC_UARTA_REG:
1306 1.1 jmcneill case CAR_CLKSRC_UARTB_REG:
1307 1.1 jmcneill case CAR_CLKSRC_UARTC_REG:
1308 1.1 jmcneill case CAR_CLKSRC_UARTD_REG:
1309 1.1 jmcneill if (v & CAR_CLKSRC_UART_DIV_ENB) {
1310 1.1 jmcneill rate = parent_rate / ((raw_div / 2) + 1);
1311 1.1 jmcneill } else {
1312 1.1 jmcneill rate = parent_rate;
1313 1.1 jmcneill }
1314 1.1 jmcneill break;
1315 1.1 jmcneill case CAR_CLKSRC_SDMMC2_REG:
1316 1.1 jmcneill case CAR_CLKSRC_SDMMC4_REG:
1317 1.1 jmcneill switch (__SHIFTOUT(v, CAR_CLKSRC_SDMMC_SRC)) {
1318 1.1 jmcneill case 1:
1319 1.1 jmcneill case 2:
1320 1.1 jmcneill case 5:
1321 1.1 jmcneill raw_div = 0; /* ignore divisor for _LJ options */
1322 1.1 jmcneill break;
1323 1.1 jmcneill }
1324 1.1 jmcneill /* FALLTHROUGH */
1325 1.1 jmcneill default:
1326 1.1 jmcneill rate = parent_rate / ((raw_div / 2) + 1);
1327 1.1 jmcneill break;
1328 1.1 jmcneill }
1329 1.1 jmcneill
1330 1.1 jmcneill return rate;
1331 1.1 jmcneill }
1332 1.1 jmcneill
1333 1.1 jmcneill static int
1334 1.1 jmcneill tegra210_car_clock_set_rate_div(struct tegra210_car_softc *sc,
1335 1.1 jmcneill struct tegra_clk *tclk, u_int rate)
1336 1.1 jmcneill {
1337 1.1 jmcneill struct tegra_div_clk *tdiv = &tclk->u.div;
1338 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
1339 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1340 1.1 jmcneill struct clk *clk_parent;
1341 1.1 jmcneill u_int raw_div;
1342 1.1 jmcneill uint32_t v;
1343 1.1 jmcneill
1344 1.1 jmcneill KASSERT(tclk->type == TEGRA_CLK_DIV);
1345 1.1 jmcneill
1346 1.1 jmcneill clk_parent = tegra210_car_clock_get_parent(sc, TEGRA_CLK_BASE(tclk));
1347 1.1 jmcneill if (clk_parent == NULL)
1348 1.1 jmcneill return EINVAL;
1349 1.1 jmcneill const u_int parent_rate = tegra210_car_clock_get_rate(sc, clk_parent);
1350 1.1 jmcneill
1351 1.1 jmcneill v = bus_space_read_4(bst, bsh, tdiv->reg);
1352 1.1 jmcneill
1353 1.1 jmcneill raw_div = __SHIFTOUT(tdiv->bits, tdiv->bits);
1354 1.1 jmcneill
1355 1.1 jmcneill switch (tdiv->reg) {
1356 1.1 jmcneill case CAR_CLKSRC_UARTA_REG:
1357 1.1 jmcneill case CAR_CLKSRC_UARTB_REG:
1358 1.1 jmcneill case CAR_CLKSRC_UARTC_REG:
1359 1.1 jmcneill case CAR_CLKSRC_UARTD_REG:
1360 1.1 jmcneill if (rate == parent_rate) {
1361 1.1 jmcneill v &= ~CAR_CLKSRC_UART_DIV_ENB;
1362 1.1 jmcneill } else if (rate) {
1363 1.1 jmcneill v |= CAR_CLKSRC_UART_DIV_ENB;
1364 1.3 jmcneill raw_div = (parent_rate / rate) * 2;
1365 1.3 jmcneill if (raw_div >= 2)
1366 1.3 jmcneill raw_div -= 2;
1367 1.1 jmcneill }
1368 1.1 jmcneill break;
1369 1.1 jmcneill case CAR_CLKSRC_I2C1_REG:
1370 1.1 jmcneill case CAR_CLKSRC_I2C2_REG:
1371 1.1 jmcneill case CAR_CLKSRC_I2C3_REG:
1372 1.1 jmcneill case CAR_CLKSRC_I2C4_REG:
1373 1.1 jmcneill case CAR_CLKSRC_I2C5_REG:
1374 1.1 jmcneill case CAR_CLKSRC_I2C6_REG:
1375 1.1 jmcneill if (rate)
1376 1.1 jmcneill raw_div = (parent_rate / rate) - 1;
1377 1.1 jmcneill break;
1378 1.1 jmcneill case CAR_CLKSRC_SDMMC1_REG:
1379 1.1 jmcneill case CAR_CLKSRC_SDMMC2_REG:
1380 1.1 jmcneill case CAR_CLKSRC_SDMMC3_REG:
1381 1.1 jmcneill case CAR_CLKSRC_SDMMC4_REG:
1382 1.1 jmcneill if (rate) {
1383 1.1 jmcneill for (raw_div = 0x00; raw_div <= 0xff; raw_div++) {
1384 1.1 jmcneill u_int calc_rate =
1385 1.1 jmcneill parent_rate / ((raw_div / 2) + 1);
1386 1.1 jmcneill if (calc_rate <= rate)
1387 1.1 jmcneill break;
1388 1.1 jmcneill }
1389 1.1 jmcneill if (raw_div == 0x100)
1390 1.1 jmcneill return EINVAL;
1391 1.1 jmcneill }
1392 1.1 jmcneill break;
1393 1.1 jmcneill default:
1394 1.3 jmcneill if (rate) {
1395 1.3 jmcneill raw_div = (parent_rate / rate) * 2;
1396 1.3 jmcneill if (raw_div >= 2)
1397 1.3 jmcneill raw_div -= 2;
1398 1.3 jmcneill }
1399 1.1 jmcneill break;
1400 1.1 jmcneill }
1401 1.1 jmcneill
1402 1.1 jmcneill v &= ~tdiv->bits;
1403 1.1 jmcneill v |= __SHIFTIN(raw_div, tdiv->bits);
1404 1.1 jmcneill
1405 1.1 jmcneill bus_space_write_4(bst, bsh, tdiv->reg, v);
1406 1.1 jmcneill
1407 1.1 jmcneill return 0;
1408 1.1 jmcneill }
1409 1.1 jmcneill
1410 1.1 jmcneill static int
1411 1.1 jmcneill tegra210_car_clock_enable_gate(struct tegra210_car_softc *sc,
1412 1.1 jmcneill struct tegra_clk *tclk, bool enable)
1413 1.1 jmcneill {
1414 1.1 jmcneill struct tegra_gate_clk *tgate = &tclk->u.gate;
1415 1.1 jmcneill bus_space_tag_t bst = sc->sc_bst;
1416 1.1 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1417 1.1 jmcneill bus_size_t reg;
1418 1.1 jmcneill
1419 1.1 jmcneill KASSERT(tclk->type == TEGRA_CLK_GATE);
1420 1.1 jmcneill
1421 1.1 jmcneill if (tgate->set_reg == tgate->clr_reg) {
1422 1.1 jmcneill uint32_t v = bus_space_read_4(bst, bsh, tgate->set_reg);
1423 1.1 jmcneill if (enable) {
1424 1.1 jmcneill v |= tgate->bits;
1425 1.1 jmcneill } else {
1426 1.1 jmcneill v &= ~tgate->bits;
1427 1.1 jmcneill }
1428 1.1 jmcneill bus_space_write_4(bst, bsh, tgate->set_reg, v);
1429 1.1 jmcneill } else {
1430 1.1 jmcneill if (enable) {
1431 1.1 jmcneill reg = tgate->set_reg;
1432 1.1 jmcneill } else {
1433 1.1 jmcneill reg = tgate->clr_reg;
1434 1.1 jmcneill }
1435 1.1 jmcneill bus_space_write_4(bst, bsh, reg, tgate->bits);
1436 1.1 jmcneill }
1437 1.1 jmcneill
1438 1.1 jmcneill return 0;
1439 1.1 jmcneill }
1440 1.1 jmcneill
1441 1.1 jmcneill static u_int
1442 1.1 jmcneill tegra210_car_clock_get_rate(void *priv, struct clk *clk)
1443 1.1 jmcneill {
1444 1.1 jmcneill struct tegra_clk *tclk = TEGRA_CLK_PRIV(clk);
1445 1.1 jmcneill struct clk *clk_parent;
1446 1.1 jmcneill
1447 1.1 jmcneill switch (tclk->type) {
1448 1.1 jmcneill case TEGRA_CLK_FIXED:
1449 1.1 jmcneill return tclk->u.fixed.rate;
1450 1.1 jmcneill case TEGRA_CLK_PLL:
1451 1.1 jmcneill return tegra210_car_clock_get_rate_pll(priv, tclk);
1452 1.1 jmcneill case TEGRA_CLK_MUX:
1453 1.1 jmcneill case TEGRA_CLK_GATE:
1454 1.1 jmcneill clk_parent = tegra210_car_clock_get_parent(priv, clk);
1455 1.1 jmcneill if (clk_parent == NULL)
1456 1.1 jmcneill return EINVAL;
1457 1.1 jmcneill return tegra210_car_clock_get_rate(priv, clk_parent);
1458 1.1 jmcneill case TEGRA_CLK_FIXED_DIV:
1459 1.1 jmcneill return tegra210_car_clock_get_rate_fixed_div(priv, tclk);
1460 1.1 jmcneill case TEGRA_CLK_DIV:
1461 1.1 jmcneill return tegra210_car_clock_get_rate_div(priv, tclk);
1462 1.1 jmcneill default:
1463 1.1 jmcneill panic("tegra210: unknown tclk type %d", tclk->type);
1464 1.1 jmcneill }
1465 1.1 jmcneill }
1466 1.1 jmcneill
1467 1.1 jmcneill static int
1468 1.1 jmcneill tegra210_car_clock_set_rate(void *priv, struct clk *clk, u_int rate)
1469 1.1 jmcneill {
1470 1.1 jmcneill struct tegra_clk *tclk = TEGRA_CLK_PRIV(clk);
1471 1.1 jmcneill struct clk *clk_parent;
1472 1.1 jmcneill
1473 1.1 jmcneill KASSERT((clk->flags & CLK_SET_RATE_PARENT) == 0);
1474 1.1 jmcneill
1475 1.1 jmcneill switch (tclk->type) {
1476 1.1 jmcneill case TEGRA_CLK_FIXED:
1477 1.1 jmcneill case TEGRA_CLK_MUX:
1478 1.1 jmcneill return EIO;
1479 1.1 jmcneill case TEGRA_CLK_FIXED_DIV:
1480 1.1 jmcneill clk_parent = tegra210_car_clock_get_parent(priv, clk);
1481 1.1 jmcneill if (clk_parent == NULL)
1482 1.1 jmcneill return EIO;
1483 1.1 jmcneill return tegra210_car_clock_set_rate(priv, clk_parent,
1484 1.1 jmcneill rate * tclk->u.fixed_div.div);
1485 1.1 jmcneill case TEGRA_CLK_GATE:
1486 1.1 jmcneill return EINVAL;
1487 1.1 jmcneill case TEGRA_CLK_PLL:
1488 1.1 jmcneill return tegra210_car_clock_set_rate_pll(priv, tclk, rate);
1489 1.1 jmcneill case TEGRA_CLK_DIV:
1490 1.1 jmcneill return tegra210_car_clock_set_rate_div(priv, tclk, rate);
1491 1.1 jmcneill default:
1492 1.1 jmcneill panic("tegra210: unknown tclk type %d", tclk->type);
1493 1.1 jmcneill }
1494 1.1 jmcneill }
1495 1.1 jmcneill
1496 1.1 jmcneill static int
1497 1.1 jmcneill tegra210_car_clock_enable(void *priv, struct clk *clk)
1498 1.1 jmcneill {
1499 1.1 jmcneill struct tegra_clk *tclk = TEGRA_CLK_PRIV(clk);
1500 1.1 jmcneill struct clk *clk_parent;
1501 1.1 jmcneill
1502 1.1 jmcneill if (tclk->type != TEGRA_CLK_GATE) {
1503 1.1 jmcneill clk_parent = tegra210_car_clock_get_parent(priv, clk);
1504 1.1 jmcneill if (clk_parent == NULL)
1505 1.1 jmcneill return 0;
1506 1.1 jmcneill return tegra210_car_clock_enable(priv, clk_parent);
1507 1.1 jmcneill }
1508 1.1 jmcneill
1509 1.1 jmcneill return tegra210_car_clock_enable_gate(priv, tclk, true);
1510 1.1 jmcneill }
1511 1.1 jmcneill
1512 1.1 jmcneill static int
1513 1.1 jmcneill tegra210_car_clock_disable(void *priv, struct clk *clk)
1514 1.1 jmcneill {
1515 1.1 jmcneill struct tegra_clk *tclk = TEGRA_CLK_PRIV(clk);
1516 1.1 jmcneill
1517 1.1 jmcneill if (tclk->type != TEGRA_CLK_GATE)
1518 1.1 jmcneill return EINVAL;
1519 1.1 jmcneill
1520 1.1 jmcneill return tegra210_car_clock_enable_gate(priv, tclk, false);
1521 1.1 jmcneill }
1522 1.1 jmcneill
1523 1.1 jmcneill static int
1524 1.1 jmcneill tegra210_car_clock_set_parent(void *priv, struct clk *clk,
1525 1.1 jmcneill struct clk *clk_parent)
1526 1.1 jmcneill {
1527 1.1 jmcneill struct tegra_clk *tclk = TEGRA_CLK_PRIV(clk);
1528 1.1 jmcneill struct tegra_clk *tclk_parent = TEGRA_CLK_PRIV(clk_parent);
1529 1.1 jmcneill struct clk *nclk_parent;
1530 1.1 jmcneill
1531 1.1 jmcneill if (tclk->type != TEGRA_CLK_MUX) {
1532 1.1 jmcneill nclk_parent = tegra210_car_clock_get_parent(priv, clk);
1533 1.1 jmcneill if (nclk_parent == clk_parent || nclk_parent == NULL)
1534 1.1 jmcneill return EINVAL;
1535 1.1 jmcneill return tegra210_car_clock_set_parent(priv, nclk_parent,
1536 1.1 jmcneill clk_parent);
1537 1.1 jmcneill }
1538 1.1 jmcneill
1539 1.1 jmcneill return tegra210_car_clock_set_parent_mux(priv, tclk, tclk_parent);
1540 1.1 jmcneill }
1541 1.1 jmcneill
1542 1.1 jmcneill static struct clk *
1543 1.1 jmcneill tegra210_car_clock_get_parent(void *priv, struct clk *clk)
1544 1.1 jmcneill {
1545 1.1 jmcneill struct tegra_clk *tclk = TEGRA_CLK_PRIV(clk);
1546 1.1 jmcneill struct tegra_clk *tclk_parent = NULL;
1547 1.1 jmcneill
1548 1.1 jmcneill switch (tclk->type) {
1549 1.1 jmcneill case TEGRA_CLK_FIXED:
1550 1.1 jmcneill case TEGRA_CLK_PLL:
1551 1.1 jmcneill case TEGRA_CLK_FIXED_DIV:
1552 1.1 jmcneill case TEGRA_CLK_DIV:
1553 1.1 jmcneill case TEGRA_CLK_GATE:
1554 1.1 jmcneill if (tclk->parent) {
1555 1.1 jmcneill tclk_parent = tegra210_car_clock_find(tclk->parent);
1556 1.1 jmcneill }
1557 1.1 jmcneill break;
1558 1.1 jmcneill case TEGRA_CLK_MUX:
1559 1.1 jmcneill tclk_parent = tegra210_car_clock_get_parent_mux(priv, tclk);
1560 1.1 jmcneill break;
1561 1.1 jmcneill }
1562 1.1 jmcneill
1563 1.1 jmcneill if (tclk_parent == NULL)
1564 1.1 jmcneill return NULL;
1565 1.1 jmcneill
1566 1.1 jmcneill return TEGRA_CLK_BASE(tclk_parent);
1567 1.1 jmcneill }
1568 1.1 jmcneill
1569 1.1 jmcneill static void *
1570 1.1 jmcneill tegra210_car_reset_acquire(device_t dev, const void *data, size_t len)
1571 1.1 jmcneill {
1572 1.1 jmcneill struct tegra210_car_softc * const sc = device_private(dev);
1573 1.1 jmcneill struct tegra210_car_rst *rst;
1574 1.1 jmcneill
1575 1.1 jmcneill if (len != sc->sc_reset_cells * 4)
1576 1.1 jmcneill return NULL;
1577 1.1 jmcneill
1578 1.1 jmcneill const u_int reset_id = be32dec(data);
1579 1.1 jmcneill
1580 1.1 jmcneill if (reset_id >= __arraycount(tegra210_car_reset_regs) * 32)
1581 1.1 jmcneill return NULL;
1582 1.1 jmcneill
1583 1.1 jmcneill const u_int reg = reset_id / 32;
1584 1.1 jmcneill
1585 1.1 jmcneill rst = kmem_alloc(sizeof(*rst), KM_SLEEP);
1586 1.1 jmcneill rst->set_reg = tegra210_car_reset_regs[reg].set_reg;
1587 1.1 jmcneill rst->clr_reg = tegra210_car_reset_regs[reg].clr_reg;
1588 1.1 jmcneill rst->mask = __BIT(reset_id % 32);
1589 1.1 jmcneill
1590 1.1 jmcneill return rst;
1591 1.1 jmcneill }
1592 1.1 jmcneill
1593 1.1 jmcneill static void
1594 1.1 jmcneill tegra210_car_reset_release(device_t dev, void *priv)
1595 1.1 jmcneill {
1596 1.1 jmcneill struct tegra210_car_rst *rst = priv;
1597 1.1 jmcneill
1598 1.1 jmcneill kmem_free(rst, sizeof(*rst));
1599 1.1 jmcneill }
1600 1.1 jmcneill
1601 1.1 jmcneill static int
1602 1.1 jmcneill tegra210_car_reset_assert(device_t dev, void *priv)
1603 1.1 jmcneill {
1604 1.1 jmcneill struct tegra210_car_softc * const sc = device_private(dev);
1605 1.1 jmcneill struct tegra210_car_rst *rst = priv;
1606 1.1 jmcneill
1607 1.1 jmcneill bus_space_write_4(sc->sc_bst, sc->sc_bsh, rst->set_reg, rst->mask);
1608 1.1 jmcneill
1609 1.1 jmcneill return 0;
1610 1.1 jmcneill }
1611 1.1 jmcneill
1612 1.1 jmcneill static int
1613 1.1 jmcneill tegra210_car_reset_deassert(device_t dev, void *priv)
1614 1.1 jmcneill {
1615 1.1 jmcneill struct tegra210_car_softc * const sc = device_private(dev);
1616 1.1 jmcneill struct tegra210_car_rst *rst = priv;
1617 1.1 jmcneill
1618 1.1 jmcneill bus_space_write_4(sc->sc_bst, sc->sc_bsh, rst->clr_reg, rst->mask);
1619 1.1 jmcneill
1620 1.1 jmcneill return 0;
1621 1.1 jmcneill }
1622 1.10 jmcneill
1623 1.10 jmcneill void
1624 1.10 jmcneill tegra210_car_xusbio_enable_hw_control(void)
1625 1.10 jmcneill {
1626 1.10 jmcneill device_t dev = device_find_by_driver_unit("tegra210car", 0);
1627 1.10 jmcneill KASSERT(dev != NULL);
1628 1.10 jmcneill struct tegra210_car_softc * const sc = device_private(dev);
1629 1.10 jmcneill bus_space_tag_t bst = sc->sc_bst;
1630 1.10 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1631 1.10 jmcneill
1632 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CAR_XUSBIO_PLL_CFG0_REG,
1633 1.10 jmcneill 0,
1634 1.10 jmcneill CAR_XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL |
1635 1.10 jmcneill CAR_XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL);
1636 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CAR_XUSBIO_PLL_CFG0_REG,
1637 1.10 jmcneill CAR_XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ |
1638 1.10 jmcneill CAR_XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET,
1639 1.10 jmcneill 0);
1640 1.10 jmcneill }
1641 1.10 jmcneill
1642 1.10 jmcneill void
1643 1.10 jmcneill tegra210_car_xusbio_enable_hw_seq(void)
1644 1.10 jmcneill {
1645 1.10 jmcneill device_t dev = device_find_by_driver_unit("tegra210car", 0);
1646 1.10 jmcneill KASSERT(dev != NULL);
1647 1.10 jmcneill struct tegra210_car_softc * const sc = device_private(dev);
1648 1.10 jmcneill bus_space_tag_t bst = sc->sc_bst;
1649 1.10 jmcneill bus_space_handle_t bsh = sc->sc_bsh;
1650 1.10 jmcneill
1651 1.10 jmcneill tegra_reg_set_clear(bst, bsh, CAR_XUSBIO_PLL_CFG0_REG,
1652 1.10 jmcneill CAR_XUSBIO_PLL_CFG0_SEQ_ENABLE, 0);
1653 1.10 jmcneill }
1654