1 1.13 thorpej /* $NetBSD: tegra_soctherm.c,v 1.13 2021/01/27 03:10:19 thorpej Exp $ */ 2 1.1 jmcneill 3 1.1 jmcneill /*- 4 1.1 jmcneill * Copyright (c) 2015 Jared D. McNeill <jmcneill (at) invisible.ca> 5 1.1 jmcneill * All rights reserved. 6 1.1 jmcneill * 7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without 8 1.1 jmcneill * modification, are permitted provided that the following conditions 9 1.1 jmcneill * are met: 10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright 11 1.1 jmcneill * notice, this list of conditions and the following disclaimer. 12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the 14 1.1 jmcneill * documentation and/or other materials provided with the distribution. 15 1.1 jmcneill * 16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 1.1 jmcneill * SUCH DAMAGE. 27 1.1 jmcneill */ 28 1.1 jmcneill 29 1.1 jmcneill #include <sys/cdefs.h> 30 1.13 thorpej __KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.13 2021/01/27 03:10:19 thorpej Exp $"); 31 1.1 jmcneill 32 1.1 jmcneill #include <sys/param.h> 33 1.1 jmcneill #include <sys/bus.h> 34 1.1 jmcneill #include <sys/device.h> 35 1.1 jmcneill #include <sys/intr.h> 36 1.1 jmcneill #include <sys/systm.h> 37 1.1 jmcneill #include <sys/kernel.h> 38 1.1 jmcneill #include <sys/kmem.h> 39 1.1 jmcneill 40 1.1 jmcneill #include <dev/sysmon/sysmonvar.h> 41 1.1 jmcneill 42 1.1 jmcneill #include <arm/nvidia/tegra_reg.h> 43 1.1 jmcneill #include <arm/nvidia/tegra_socthermreg.h> 44 1.1 jmcneill #include <arm/nvidia/tegra_var.h> 45 1.1 jmcneill 46 1.2 jmcneill #include <dev/fdt/fdtvar.h> 47 1.2 jmcneill 48 1.1 jmcneill #define FUSE_TSENSOR_CALIB_CP_TS_BASE __BITS(12,0) 49 1.1 jmcneill #define FUSE_TSENSOR_CALIB_FT_TS_BASE __BITS(25,13) 50 1.1 jmcneill 51 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_REG 0x180 52 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_CP_TS_BASE __BITS(9,0) 53 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_FT_TS_BASE __BITS(20,10) 54 1.1 jmcneill 55 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_REG 0x1fc 56 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_CP __BITS(5,0) 57 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_FT __BITS(25,21) 58 1.1 jmcneill 59 1.1 jmcneill static int tegra_soctherm_match(device_t, cfdata_t, void *); 60 1.1 jmcneill static void tegra_soctherm_attach(device_t, device_t, void *); 61 1.1 jmcneill 62 1.1 jmcneill struct tegra_soctherm_config { 63 1.1 jmcneill uint32_t init_pdiv; 64 1.1 jmcneill uint32_t init_hotspot_off; 65 1.1 jmcneill uint32_t nominal_calib_ft; 66 1.1 jmcneill uint32_t nominal_calib_cp; 67 1.1 jmcneill uint32_t tall; 68 1.1 jmcneill uint32_t tsample; 69 1.1 jmcneill uint32_t tiddq_en; 70 1.1 jmcneill uint32_t ten_count; 71 1.1 jmcneill uint32_t pdiv; 72 1.1 jmcneill uint32_t tsample_ate; 73 1.1 jmcneill uint32_t pdiv_ate; 74 1.1 jmcneill }; 75 1.1 jmcneill 76 1.1 jmcneill static const struct tegra_soctherm_config tegra124_soctherm_config = { 77 1.1 jmcneill .init_pdiv = 0x8888, 78 1.1 jmcneill .init_hotspot_off = 0x60600, 79 1.1 jmcneill .nominal_calib_ft = 105, 80 1.1 jmcneill .nominal_calib_cp = 25, 81 1.1 jmcneill .tall = 16300, 82 1.1 jmcneill .tsample = 120, 83 1.1 jmcneill .tiddq_en = 1, 84 1.1 jmcneill .ten_count = 1, 85 1.1 jmcneill .pdiv = 8, 86 1.1 jmcneill .tsample_ate = 480, 87 1.1 jmcneill .pdiv_ate = 8 88 1.1 jmcneill }; 89 1.1 jmcneill 90 1.1 jmcneill struct tegra_soctherm_sensor { 91 1.1 jmcneill envsys_data_t s_data; 92 1.1 jmcneill u_int s_base; 93 1.1 jmcneill u_int s_fuse; 94 1.1 jmcneill int s_fuse_corr_alpha; 95 1.1 jmcneill int s_fuse_corr_beta; 96 1.1 jmcneill int16_t s_therm_a; 97 1.1 jmcneill int16_t s_therm_b; 98 1.1 jmcneill }; 99 1.1 jmcneill 100 1.1 jmcneill static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = { 101 1.1 jmcneill { .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098, 102 1.1 jmcneill .s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 }, 103 1.1 jmcneill { .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084, 104 1.1 jmcneill .s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 }, 105 1.1 jmcneill { .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088, 106 1.1 jmcneill .s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 }, 107 1.1 jmcneill { .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c, 108 1.1 jmcneill .s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 }, 109 1.1 jmcneill { .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158, 110 1.1 jmcneill .s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 }, 111 1.1 jmcneill { .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c, 112 1.1 jmcneill .s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 }, 113 1.1 jmcneill { .s_data = { .desc = "GPU" }, .s_base = 0x180, .s_fuse = 0x154, 114 1.1 jmcneill .s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 }, 115 1.1 jmcneill { .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160, 116 1.1 jmcneill .s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 }, 117 1.1 jmcneill }; 118 1.1 jmcneill 119 1.1 jmcneill struct tegra_soctherm_softc { 120 1.1 jmcneill device_t sc_dev; 121 1.1 jmcneill bus_space_tag_t sc_bst; 122 1.1 jmcneill bus_space_handle_t sc_bsh; 123 1.3 jmcneill struct clk *sc_clk_tsensor; 124 1.3 jmcneill struct clk *sc_clk_soctherm; 125 1.3 jmcneill struct fdtbus_reset *sc_rst_soctherm; 126 1.1 jmcneill 127 1.1 jmcneill struct sysmon_envsys *sc_sme; 128 1.1 jmcneill struct tegra_soctherm_sensor *sc_sensors; 129 1.1 jmcneill const struct tegra_soctherm_config *sc_config; 130 1.1 jmcneill 131 1.1 jmcneill uint32_t sc_base_cp; 132 1.1 jmcneill uint32_t sc_base_ft; 133 1.1 jmcneill int32_t sc_actual_temp_cp; 134 1.1 jmcneill int32_t sc_actual_temp_ft; 135 1.1 jmcneill }; 136 1.1 jmcneill 137 1.3 jmcneill static int tegra_soctherm_init_clocks(struct tegra_soctherm_softc *); 138 1.4 jmcneill static void tegra_soctherm_init_sensors(device_t); 139 1.1 jmcneill static void tegra_soctherm_init_sensor(struct tegra_soctherm_softc *, 140 1.1 jmcneill struct tegra_soctherm_sensor *); 141 1.1 jmcneill static void tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *); 142 1.1 jmcneill static int tegra_soctherm_decodeint(uint32_t, uint32_t); 143 1.1 jmcneill static int64_t tegra_soctherm_divide(int64_t, int64_t); 144 1.1 jmcneill 145 1.1 jmcneill CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc), 146 1.1 jmcneill tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL); 147 1.1 jmcneill 148 1.1 jmcneill #define SOCTHERM_READ(sc, reg) \ 149 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) 150 1.1 jmcneill #define SOCTHERM_WRITE(sc, reg, val) \ 151 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 152 1.1 jmcneill #define SOCTHERM_SET_CLEAR(sc, reg, set, clr) \ 153 1.1 jmcneill tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr)) 154 1.1 jmcneill 155 1.1 jmcneill #define SENSOR_READ(sc, s, reg) \ 156 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg)) 157 1.1 jmcneill #define SENSOR_WRITE(sc, s, reg, val) \ 158 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val)) 159 1.1 jmcneill #define SENSOR_SET_CLEAR(sc, s, reg, set, clr) \ 160 1.1 jmcneill tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr)) 161 1.1 jmcneill 162 1.10 thorpej static const struct device_compatible_entry compat_data[] = { 163 1.10 thorpej { .compat = "nvidia,tegra124-soctherm", 164 1.10 thorpej .data = &tegra124_soctherm_config }, 165 1.10 thorpej 166 1.12 thorpej DEVICE_COMPAT_EOL 167 1.5 jmcneill }; 168 1.5 jmcneill 169 1.1 jmcneill static int 170 1.1 jmcneill tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux) 171 1.1 jmcneill { 172 1.2 jmcneill struct fdt_attach_args * const faa = aux; 173 1.2 jmcneill 174 1.13 thorpej return of_compatible_match(faa->faa_phandle, compat_data); 175 1.1 jmcneill } 176 1.1 jmcneill 177 1.1 jmcneill static void 178 1.1 jmcneill tegra_soctherm_attach(device_t parent, device_t self, void *aux) 179 1.1 jmcneill { 180 1.1 jmcneill struct tegra_soctherm_softc * const sc = device_private(self); 181 1.2 jmcneill struct fdt_attach_args * const faa = aux; 182 1.5 jmcneill const int phandle = faa->faa_phandle; 183 1.2 jmcneill bus_addr_t addr; 184 1.2 jmcneill bus_size_t size; 185 1.2 jmcneill int error; 186 1.2 jmcneill 187 1.5 jmcneill if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { 188 1.2 jmcneill aprint_error(": couldn't get registers\n"); 189 1.2 jmcneill return; 190 1.2 jmcneill } 191 1.5 jmcneill sc->sc_clk_tsensor = fdtbus_clock_get(phandle, "tsensor"); 192 1.3 jmcneill if (sc->sc_clk_tsensor == NULL) { 193 1.3 jmcneill aprint_error(": couldn't get clock tsensor\n"); 194 1.3 jmcneill return; 195 1.3 jmcneill } 196 1.5 jmcneill sc->sc_clk_soctherm = fdtbus_clock_get(phandle, "soctherm"); 197 1.3 jmcneill if (sc->sc_clk_soctherm == NULL) { 198 1.3 jmcneill aprint_error(": couldn't get clock soctherm\n"); 199 1.3 jmcneill return; 200 1.3 jmcneill } 201 1.5 jmcneill sc->sc_rst_soctherm = fdtbus_reset_get(phandle, "soctherm"); 202 1.3 jmcneill if (sc->sc_rst_soctherm == NULL) { 203 1.3 jmcneill aprint_error(": couldn't get reset soctherm\n"); 204 1.3 jmcneill return; 205 1.3 jmcneill } 206 1.1 jmcneill 207 1.1 jmcneill sc->sc_dev = self; 208 1.2 jmcneill sc->sc_bst = faa->faa_bst; 209 1.2 jmcneill error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh); 210 1.2 jmcneill if (error) { 211 1.9 skrll aprint_error(": couldn't map %#" PRIxBUSADDR ": %d", addr, error); 212 1.2 jmcneill return; 213 1.2 jmcneill } 214 1.1 jmcneill 215 1.1 jmcneill aprint_naive("\n"); 216 1.1 jmcneill aprint_normal(": SOC_THERM\n"); 217 1.1 jmcneill 218 1.13 thorpej sc->sc_config = of_compatible_lookup(phandle, compat_data)->data; 219 1.1 jmcneill if (sc->sc_config == NULL) { 220 1.5 jmcneill aprint_error_dev(self, "unsupported SoC\n"); 221 1.1 jmcneill return; 222 1.1 jmcneill } 223 1.1 jmcneill 224 1.3 jmcneill if (tegra_soctherm_init_clocks(sc) != 0) 225 1.3 jmcneill return; 226 1.1 jmcneill 227 1.4 jmcneill config_defer(self, tegra_soctherm_init_sensors); 228 1.1 jmcneill } 229 1.1 jmcneill 230 1.3 jmcneill static int 231 1.3 jmcneill tegra_soctherm_init_clocks(struct tegra_soctherm_softc *sc) 232 1.3 jmcneill { 233 1.3 jmcneill int error; 234 1.3 jmcneill 235 1.3 jmcneill fdtbus_reset_assert(sc->sc_rst_soctherm); 236 1.3 jmcneill 237 1.3 jmcneill error = clk_set_rate(sc->sc_clk_soctherm, 51000000); 238 1.3 jmcneill if (error) { 239 1.3 jmcneill aprint_error_dev(sc->sc_dev, 240 1.3 jmcneill "couldn't set soctherm rate: %d\n", error); 241 1.3 jmcneill return error; 242 1.3 jmcneill } 243 1.3 jmcneill 244 1.3 jmcneill error = clk_set_rate(sc->sc_clk_tsensor, 400000); 245 1.3 jmcneill if (error) { 246 1.3 jmcneill aprint_error_dev(sc->sc_dev, 247 1.3 jmcneill "couldn't set tsensor rate: %d\n", error); 248 1.3 jmcneill return error; 249 1.3 jmcneill } 250 1.3 jmcneill 251 1.3 jmcneill error = clk_enable(sc->sc_clk_tsensor); 252 1.3 jmcneill if (error) { 253 1.3 jmcneill aprint_error_dev(sc->sc_dev, "couldn't enable tsensor: %d\n", 254 1.3 jmcneill error); 255 1.3 jmcneill return error; 256 1.3 jmcneill } 257 1.3 jmcneill 258 1.3 jmcneill error = clk_enable(sc->sc_clk_soctherm); 259 1.3 jmcneill if (error) { 260 1.3 jmcneill aprint_error_dev(sc->sc_dev, "couldn't enable soctherm: %d\n", 261 1.3 jmcneill error); 262 1.3 jmcneill return error; 263 1.3 jmcneill } 264 1.3 jmcneill 265 1.3 jmcneill fdtbus_reset_deassert(sc->sc_rst_soctherm); 266 1.3 jmcneill 267 1.3 jmcneill return 0; 268 1.3 jmcneill } 269 1.3 jmcneill 270 1.1 jmcneill static void 271 1.4 jmcneill tegra_soctherm_init_sensors(device_t dev) 272 1.1 jmcneill { 273 1.4 jmcneill struct tegra_soctherm_softc * const sc = device_private(dev); 274 1.1 jmcneill const struct tegra_soctherm_config *config = sc->sc_config; 275 1.1 jmcneill const u_int nsensors = __arraycount(tegra_soctherm_sensors); 276 1.1 jmcneill const size_t len = sizeof(*sc->sc_sensors) * nsensors; 277 1.1 jmcneill uint32_t val; 278 1.1 jmcneill u_int n; 279 1.1 jmcneill 280 1.1 jmcneill val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG); 281 1.1 jmcneill sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE); 282 1.1 jmcneill sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE); 283 1.1 jmcneill val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG); 284 1.1 jmcneill const int calib_cp = tegra_soctherm_decodeint(val, 285 1.1 jmcneill FUSE_SPARE_REALIGNMENT_CP); 286 1.1 jmcneill const int calib_ft = tegra_soctherm_decodeint(val, 287 1.1 jmcneill FUSE_SPARE_REALIGNMENT_FT); 288 1.1 jmcneill sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp; 289 1.1 jmcneill sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft; 290 1.1 jmcneill 291 1.1 jmcneill sc->sc_sme = sysmon_envsys_create(); 292 1.1 jmcneill sc->sc_sme->sme_name = device_xname(sc->sc_dev); 293 1.1 jmcneill sc->sc_sme->sme_cookie = sc; 294 1.1 jmcneill sc->sc_sme->sme_refresh = tegra_soctherm_refresh; 295 1.1 jmcneill 296 1.1 jmcneill sc->sc_sensors = kmem_zalloc(len, KM_SLEEP); 297 1.1 jmcneill for (n = 0; n < nsensors; n++) { 298 1.1 jmcneill sc->sc_sensors[n] = tegra_soctherm_sensors[n]; 299 1.1 jmcneill tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]); 300 1.1 jmcneill } 301 1.1 jmcneill 302 1.1 jmcneill SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv); 303 1.1 jmcneill SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG, 304 1.1 jmcneill config->init_hotspot_off); 305 1.1 jmcneill 306 1.1 jmcneill sysmon_envsys_register(sc->sc_sme); 307 1.1 jmcneill } 308 1.1 jmcneill 309 1.1 jmcneill static void 310 1.1 jmcneill tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc, 311 1.1 jmcneill struct tegra_soctherm_sensor *s) 312 1.1 jmcneill { 313 1.1 jmcneill const struct tegra_soctherm_config *config = sc->sc_config; 314 1.1 jmcneill int64_t temp_a, temp_b, tmp; 315 1.1 jmcneill uint32_t val; 316 1.1 jmcneill 317 1.1 jmcneill val = tegra_fuse_read(s->s_fuse); 318 1.1 jmcneill const int calib_cp = tegra_soctherm_decodeint(val, 319 1.1 jmcneill FUSE_TSENSOR_CALIB_CP_TS_BASE); 320 1.1 jmcneill const int calib_ft = tegra_soctherm_decodeint(val, 321 1.1 jmcneill FUSE_TSENSOR_CALIB_FT_TS_BASE); 322 1.1 jmcneill const int actual_cp = sc->sc_base_cp * 64 + calib_cp; 323 1.1 jmcneill const int actual_ft = sc->sc_base_ft * 32 + calib_ft; 324 1.1 jmcneill 325 1.1 jmcneill const int64_t d_sensor = actual_ft - actual_cp; 326 1.1 jmcneill const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp; 327 1.1 jmcneill const int mult = config->pdiv * config->tsample_ate; 328 1.1 jmcneill const int div = config->tsample * config->pdiv_ate; 329 1.1 jmcneill 330 1.1 jmcneill temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult, 331 1.1 jmcneill d_sensor * div); 332 1.1 jmcneill tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp - 333 1.1 jmcneill (int64_t)actual_cp * sc->sc_actual_temp_ft; 334 1.1 jmcneill temp_b = tegra_soctherm_divide(tmp, d_sensor); 335 1.1 jmcneill temp_a = tegra_soctherm_divide( 336 1.1 jmcneill temp_a * s->s_fuse_corr_alpha, 1000000); 337 1.1 jmcneill temp_b = (uint16_t)tegra_soctherm_divide( 338 1.1 jmcneill temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000); 339 1.1 jmcneill 340 1.1 jmcneill s->s_therm_a = (int16_t)temp_a; 341 1.1 jmcneill s->s_therm_b = (int16_t)temp_b; 342 1.1 jmcneill 343 1.1 jmcneill SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET, 344 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR | 345 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STOP, 0); 346 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET, 347 1.1 jmcneill __SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) | 348 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STOP); 349 1.1 jmcneill 350 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET, 351 1.1 jmcneill __SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) | 352 1.1 jmcneill __SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) | 353 1.1 jmcneill __SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) | 354 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE); 355 1.1 jmcneill 356 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET, 357 1.1 jmcneill __SHIFTIN((uint16_t)s->s_therm_a, 358 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG2_THERM_A) | 359 1.1 jmcneill __SHIFTIN((uint16_t)s->s_therm_b, 360 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG2_THERM_B)); 361 1.1 jmcneill 362 1.1 jmcneill SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET, 363 1.1 jmcneill 0, SOC_THERM_TSENSOR_CONFIG0_STOP); 364 1.1 jmcneill 365 1.1 jmcneill s->s_data.units = ENVSYS_STEMP; 366 1.1 jmcneill s->s_data.state = ENVSYS_SINVALID; 367 1.1 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data); 368 1.1 jmcneill } 369 1.1 jmcneill 370 1.1 jmcneill static void 371 1.1 jmcneill tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 372 1.1 jmcneill { 373 1.1 jmcneill struct tegra_soctherm_softc * const sc = sme->sme_cookie; 374 1.1 jmcneill struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata; 375 1.1 jmcneill uint32_t status; 376 1.1 jmcneill 377 1.1 jmcneill status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET); 378 1.1 jmcneill if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) { 379 1.1 jmcneill const u_int temp = __SHIFTOUT(status, 380 1.1 jmcneill SOC_THERM_TSENSOR_STATUS1_TEMP); 381 1.1 jmcneill int64_t val = ((temp >> 8) & 0xff) * 1000000; 382 1.1 jmcneill if (temp & 0x80) 383 1.1 jmcneill val += 500000; 384 1.1 jmcneill if (temp & 0x02) 385 1.1 jmcneill val = -val; 386 1.1 jmcneill edata->value_cur = val + 273150000; 387 1.1 jmcneill edata->state = ENVSYS_SVALID; 388 1.1 jmcneill } else { 389 1.1 jmcneill edata->state = ENVSYS_SINVALID; 390 1.1 jmcneill } 391 1.1 jmcneill } 392 1.1 jmcneill 393 1.1 jmcneill static int 394 1.1 jmcneill tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask) 395 1.1 jmcneill { 396 1.1 jmcneill const uint32_t v = __SHIFTOUT(val, bitmask); 397 1.1 jmcneill const int bits = popcount32(bitmask); 398 1.1 jmcneill int ret = v << (32 - bits); 399 1.1 jmcneill return ret >> (32 - bits); 400 1.1 jmcneill } 401 1.1 jmcneill 402 1.1 jmcneill static int64_t 403 1.1 jmcneill tegra_soctherm_divide(int64_t num, int64_t denom) 404 1.1 jmcneill { 405 1.1 jmcneill int64_t ret = ((num << 16) * 2 + 1) / (2 * denom); 406 1.1 jmcneill return ret >> 16; 407 1.1 jmcneill } 408