Home | History | Annotate | Line # | Download | only in nvidia
tegra_soctherm.c revision 1.2
      1  1.2  jmcneill /* $NetBSD: tegra_soctherm.c,v 1.2 2015/12/13 17:39:19 jmcneill Exp $ */
      2  1.1  jmcneill 
      3  1.1  jmcneill /*-
      4  1.1  jmcneill  * Copyright (c) 2015 Jared D. McNeill <jmcneill (at) invisible.ca>
      5  1.1  jmcneill  * All rights reserved.
      6  1.1  jmcneill  *
      7  1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8  1.1  jmcneill  * modification, are permitted provided that the following conditions
      9  1.1  jmcneill  * are met:
     10  1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12  1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15  1.1  jmcneill  *
     16  1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.1  jmcneill  * SUCH DAMAGE.
     27  1.1  jmcneill  */
     28  1.1  jmcneill 
     29  1.1  jmcneill #include <sys/cdefs.h>
     30  1.2  jmcneill __KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.2 2015/12/13 17:39:19 jmcneill Exp $");
     31  1.1  jmcneill 
     32  1.1  jmcneill #include <sys/param.h>
     33  1.1  jmcneill #include <sys/bus.h>
     34  1.1  jmcneill #include <sys/device.h>
     35  1.1  jmcneill #include <sys/intr.h>
     36  1.1  jmcneill #include <sys/systm.h>
     37  1.1  jmcneill #include <sys/kernel.h>
     38  1.1  jmcneill #include <sys/kmem.h>
     39  1.1  jmcneill 
     40  1.1  jmcneill #include <dev/sysmon/sysmonvar.h>
     41  1.1  jmcneill 
     42  1.1  jmcneill #include <arm/nvidia/tegra_reg.h>
     43  1.1  jmcneill #include <arm/nvidia/tegra_socthermreg.h>
     44  1.1  jmcneill #include <arm/nvidia/tegra_var.h>
     45  1.1  jmcneill 
     46  1.2  jmcneill #include <dev/fdt/fdtvar.h>
     47  1.2  jmcneill 
     48  1.1  jmcneill #define FUSE_TSENSOR_CALIB_CP_TS_BASE	__BITS(12,0)
     49  1.1  jmcneill #define FUSE_TSENSOR_CALIB_FT_TS_BASE	__BITS(25,13)
     50  1.1  jmcneill 
     51  1.1  jmcneill #define FUSE_TSENSOR8_CALIB_REG		0x180
     52  1.1  jmcneill #define FUSE_TSENSOR8_CALIB_CP_TS_BASE	__BITS(9,0)
     53  1.1  jmcneill #define FUSE_TSENSOR8_CALIB_FT_TS_BASE	__BITS(20,10)
     54  1.1  jmcneill 
     55  1.1  jmcneill #define FUSE_SPARE_REALIGNMENT_REG	0x1fc
     56  1.1  jmcneill #define FUSE_SPARE_REALIGNMENT_CP	__BITS(5,0)
     57  1.1  jmcneill #define FUSE_SPARE_REALIGNMENT_FT	__BITS(25,21)
     58  1.1  jmcneill 
     59  1.1  jmcneill static int	tegra_soctherm_match(device_t, cfdata_t, void *);
     60  1.1  jmcneill static void	tegra_soctherm_attach(device_t, device_t, void *);
     61  1.1  jmcneill 
     62  1.1  jmcneill struct tegra_soctherm_config {
     63  1.1  jmcneill 	uint32_t init_pdiv;
     64  1.1  jmcneill 	uint32_t init_hotspot_off;
     65  1.1  jmcneill 	uint32_t nominal_calib_ft;
     66  1.1  jmcneill 	uint32_t nominal_calib_cp;
     67  1.1  jmcneill 	uint32_t tall;
     68  1.1  jmcneill 	uint32_t tsample;
     69  1.1  jmcneill 	uint32_t tiddq_en;
     70  1.1  jmcneill 	uint32_t ten_count;
     71  1.1  jmcneill 	uint32_t pdiv;
     72  1.1  jmcneill 	uint32_t tsample_ate;
     73  1.1  jmcneill 	uint32_t pdiv_ate;
     74  1.1  jmcneill };
     75  1.1  jmcneill 
     76  1.1  jmcneill static const struct tegra_soctherm_config tegra124_soctherm_config = {
     77  1.1  jmcneill 	.init_pdiv = 0x8888,
     78  1.1  jmcneill 	.init_hotspot_off = 0x60600,
     79  1.1  jmcneill 	.nominal_calib_ft = 105,
     80  1.1  jmcneill 	.nominal_calib_cp = 25,
     81  1.1  jmcneill 	.tall = 16300,
     82  1.1  jmcneill 	.tsample = 120,
     83  1.1  jmcneill 	.tiddq_en = 1,
     84  1.1  jmcneill 	.ten_count = 1,
     85  1.1  jmcneill 	.pdiv = 8,
     86  1.1  jmcneill 	.tsample_ate = 480,
     87  1.1  jmcneill 	.pdiv_ate = 8
     88  1.1  jmcneill };
     89  1.1  jmcneill 
     90  1.1  jmcneill struct tegra_soctherm_sensor {
     91  1.1  jmcneill 	envsys_data_t		s_data;
     92  1.1  jmcneill 	u_int			s_base;
     93  1.1  jmcneill 	u_int			s_fuse;
     94  1.1  jmcneill 	int			s_fuse_corr_alpha;
     95  1.1  jmcneill 	int			s_fuse_corr_beta;
     96  1.1  jmcneill 	int16_t			s_therm_a;
     97  1.1  jmcneill 	int16_t			s_therm_b;
     98  1.1  jmcneill };
     99  1.1  jmcneill 
    100  1.1  jmcneill static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = {
    101  1.1  jmcneill 	{ .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098,
    102  1.1  jmcneill 	  .s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 },
    103  1.1  jmcneill 	{ .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084,
    104  1.1  jmcneill 	  .s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 },
    105  1.1  jmcneill 	{ .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088,
    106  1.1  jmcneill 	  .s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 },
    107  1.1  jmcneill 	{ .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c,
    108  1.1  jmcneill 	  .s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 },
    109  1.1  jmcneill 	{ .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158,
    110  1.1  jmcneill 	  .s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 },
    111  1.1  jmcneill 	{ .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c,
    112  1.1  jmcneill 	  .s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 },
    113  1.1  jmcneill 	{ .s_data = { .desc = "GPU" },  .s_base = 0x180, .s_fuse = 0x154,
    114  1.1  jmcneill 	  .s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 },
    115  1.1  jmcneill 	{ .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160,
    116  1.1  jmcneill 	  .s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 },
    117  1.1  jmcneill };
    118  1.1  jmcneill 
    119  1.1  jmcneill struct tegra_soctherm_softc {
    120  1.1  jmcneill 	device_t		sc_dev;
    121  1.1  jmcneill 	bus_space_tag_t		sc_bst;
    122  1.1  jmcneill 	bus_space_handle_t	sc_bsh;
    123  1.1  jmcneill 
    124  1.1  jmcneill 	struct sysmon_envsys	*sc_sme;
    125  1.1  jmcneill 	struct tegra_soctherm_sensor *sc_sensors;
    126  1.1  jmcneill 	const struct tegra_soctherm_config *sc_config;
    127  1.1  jmcneill 
    128  1.1  jmcneill 	uint32_t		sc_base_cp;
    129  1.1  jmcneill 	uint32_t		sc_base_ft;
    130  1.1  jmcneill 	int32_t			sc_actual_temp_cp;
    131  1.1  jmcneill 	int32_t			sc_actual_temp_ft;
    132  1.1  jmcneill };
    133  1.1  jmcneill 
    134  1.1  jmcneill static void	tegra_soctherm_init_sensors(struct tegra_soctherm_softc *);
    135  1.1  jmcneill static void	tegra_soctherm_init_sensor(struct tegra_soctherm_softc *,
    136  1.1  jmcneill 		    struct tegra_soctherm_sensor *);
    137  1.1  jmcneill static void	tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *);
    138  1.1  jmcneill static int	tegra_soctherm_decodeint(uint32_t, uint32_t);
    139  1.1  jmcneill static int64_t	tegra_soctherm_divide(int64_t, int64_t);
    140  1.1  jmcneill 
    141  1.1  jmcneill CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc),
    142  1.1  jmcneill 	tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL);
    143  1.1  jmcneill 
    144  1.1  jmcneill #define SOCTHERM_READ(sc, reg)			\
    145  1.1  jmcneill     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    146  1.1  jmcneill #define SOCTHERM_WRITE(sc, reg, val)		\
    147  1.1  jmcneill     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    148  1.1  jmcneill #define SOCTHERM_SET_CLEAR(sc, reg, set, clr)	\
    149  1.1  jmcneill     tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr))
    150  1.1  jmcneill 
    151  1.1  jmcneill #define SENSOR_READ(sc, s, reg)			\
    152  1.1  jmcneill     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg))
    153  1.1  jmcneill #define SENSOR_WRITE(sc, s, reg, val)		\
    154  1.1  jmcneill     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val))
    155  1.1  jmcneill #define SENSOR_SET_CLEAR(sc, s, reg, set, clr)	\
    156  1.1  jmcneill     tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr))
    157  1.1  jmcneill 
    158  1.1  jmcneill static int
    159  1.1  jmcneill tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux)
    160  1.1  jmcneill {
    161  1.2  jmcneill 	const char * const compatible[] = { "nvidia,tegra124-soctherm", NULL };
    162  1.2  jmcneill 	struct fdt_attach_args * const faa = aux;
    163  1.2  jmcneill 
    164  1.2  jmcneill 	return of_match_compatible(faa->faa_phandle, compatible);
    165  1.1  jmcneill }
    166  1.1  jmcneill 
    167  1.1  jmcneill static void
    168  1.1  jmcneill tegra_soctherm_attach(device_t parent, device_t self, void *aux)
    169  1.1  jmcneill {
    170  1.1  jmcneill 	struct tegra_soctherm_softc * const sc = device_private(self);
    171  1.2  jmcneill 	struct fdt_attach_args * const faa = aux;
    172  1.2  jmcneill 	bus_addr_t addr;
    173  1.2  jmcneill 	bus_size_t size;
    174  1.2  jmcneill 	int error;
    175  1.2  jmcneill 
    176  1.2  jmcneill 	if (fdtbus_get_reg(faa->faa_phandle, 0, &addr, &size) != 0) {
    177  1.2  jmcneill 		aprint_error(": couldn't get registers\n");
    178  1.2  jmcneill 		return;
    179  1.2  jmcneill 	}
    180  1.1  jmcneill 
    181  1.1  jmcneill 	sc->sc_dev = self;
    182  1.2  jmcneill 	sc->sc_bst = faa->faa_bst;
    183  1.2  jmcneill 	error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh);
    184  1.2  jmcneill 	if (error) {
    185  1.2  jmcneill 		aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
    186  1.2  jmcneill 		return;
    187  1.2  jmcneill 	}
    188  1.1  jmcneill 
    189  1.1  jmcneill 	aprint_naive("\n");
    190  1.1  jmcneill 	aprint_normal(": SOC_THERM\n");
    191  1.1  jmcneill 
    192  1.1  jmcneill 	if (tegra_chip_id() == CHIP_ID_TEGRA124) {
    193  1.1  jmcneill 		sc->sc_config = &tegra124_soctherm_config;
    194  1.1  jmcneill 	}
    195  1.1  jmcneill 
    196  1.1  jmcneill 	if (sc->sc_config == NULL) {
    197  1.1  jmcneill 		aprint_error_dev(self, "unsupported chip ID\n");
    198  1.1  jmcneill 		return;
    199  1.1  jmcneill 	}
    200  1.1  jmcneill 
    201  1.1  jmcneill 	tegra_car_soctherm_enable();
    202  1.1  jmcneill 
    203  1.1  jmcneill 	tegra_soctherm_init_sensors(sc);
    204  1.1  jmcneill }
    205  1.1  jmcneill 
    206  1.1  jmcneill static void
    207  1.1  jmcneill tegra_soctherm_init_sensors(struct tegra_soctherm_softc *sc)
    208  1.1  jmcneill {
    209  1.1  jmcneill 	const struct tegra_soctherm_config *config = sc->sc_config;
    210  1.1  jmcneill 	const u_int nsensors = __arraycount(tegra_soctherm_sensors);
    211  1.1  jmcneill 	const size_t len = sizeof(*sc->sc_sensors) * nsensors;
    212  1.1  jmcneill 	uint32_t val;
    213  1.1  jmcneill 	u_int n;
    214  1.1  jmcneill 
    215  1.1  jmcneill 	val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG);
    216  1.1  jmcneill 	sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE);
    217  1.1  jmcneill 	sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE);
    218  1.1  jmcneill 	val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG);
    219  1.1  jmcneill 	const int calib_cp = tegra_soctherm_decodeint(val,
    220  1.1  jmcneill 	    FUSE_SPARE_REALIGNMENT_CP);
    221  1.1  jmcneill 	const int calib_ft = tegra_soctherm_decodeint(val,
    222  1.1  jmcneill 	    FUSE_SPARE_REALIGNMENT_FT);
    223  1.1  jmcneill 	sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp;
    224  1.1  jmcneill 	sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft;
    225  1.1  jmcneill 
    226  1.1  jmcneill 	sc->sc_sme = sysmon_envsys_create();
    227  1.1  jmcneill 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    228  1.1  jmcneill 	sc->sc_sme->sme_cookie = sc;
    229  1.1  jmcneill 	sc->sc_sme->sme_refresh = tegra_soctherm_refresh;
    230  1.1  jmcneill 
    231  1.1  jmcneill 	sc->sc_sensors = kmem_zalloc(len, KM_SLEEP);
    232  1.1  jmcneill 	for (n = 0; n < nsensors; n++) {
    233  1.1  jmcneill 		sc->sc_sensors[n] = tegra_soctherm_sensors[n];
    234  1.1  jmcneill 		tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]);
    235  1.1  jmcneill 	}
    236  1.1  jmcneill 
    237  1.1  jmcneill 	SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv);
    238  1.1  jmcneill 	SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG,
    239  1.1  jmcneill 	    config->init_hotspot_off);
    240  1.1  jmcneill 
    241  1.1  jmcneill 	sysmon_envsys_register(sc->sc_sme);
    242  1.1  jmcneill }
    243  1.1  jmcneill 
    244  1.1  jmcneill static void
    245  1.1  jmcneill tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc,
    246  1.1  jmcneill     struct tegra_soctherm_sensor *s)
    247  1.1  jmcneill {
    248  1.1  jmcneill 	const struct tegra_soctherm_config *config = sc->sc_config;
    249  1.1  jmcneill 	int64_t temp_a, temp_b, tmp;
    250  1.1  jmcneill 	uint32_t val;
    251  1.1  jmcneill 
    252  1.1  jmcneill 	val = tegra_fuse_read(s->s_fuse);
    253  1.1  jmcneill 	const int calib_cp = tegra_soctherm_decodeint(val,
    254  1.1  jmcneill 	    FUSE_TSENSOR_CALIB_CP_TS_BASE);
    255  1.1  jmcneill 	const int calib_ft = tegra_soctherm_decodeint(val,
    256  1.1  jmcneill 	    FUSE_TSENSOR_CALIB_FT_TS_BASE);
    257  1.1  jmcneill 	const int actual_cp = sc->sc_base_cp * 64 + calib_cp;
    258  1.1  jmcneill 	const int actual_ft = sc->sc_base_ft * 32 + calib_ft;
    259  1.1  jmcneill 
    260  1.1  jmcneill 	const int64_t d_sensor = actual_ft - actual_cp;
    261  1.1  jmcneill 	const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp;
    262  1.1  jmcneill 	const int mult = config->pdiv * config->tsample_ate;
    263  1.1  jmcneill 	const int div = config->tsample * config->pdiv_ate;
    264  1.1  jmcneill 
    265  1.1  jmcneill 	temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult,
    266  1.1  jmcneill 	    d_sensor * div);
    267  1.1  jmcneill 	tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp -
    268  1.1  jmcneill 	      (int64_t)actual_cp * sc->sc_actual_temp_ft;
    269  1.1  jmcneill 	temp_b = tegra_soctherm_divide(tmp, d_sensor);
    270  1.1  jmcneill 	temp_a = tegra_soctherm_divide(
    271  1.1  jmcneill 	    temp_a * s->s_fuse_corr_alpha, 1000000);
    272  1.1  jmcneill 	temp_b = (uint16_t)tegra_soctherm_divide(
    273  1.1  jmcneill 	    temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000);
    274  1.1  jmcneill 
    275  1.1  jmcneill 	s->s_therm_a = (int16_t)temp_a;
    276  1.1  jmcneill 	s->s_therm_b = (int16_t)temp_b;
    277  1.1  jmcneill 
    278  1.1  jmcneill 	SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
    279  1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR |
    280  1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG0_STOP, 0);
    281  1.1  jmcneill 	SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
    282  1.1  jmcneill 	    __SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) |
    283  1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG0_STOP);
    284  1.1  jmcneill 
    285  1.1  jmcneill 	SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET,
    286  1.1  jmcneill 	    __SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) |
    287  1.1  jmcneill 	    __SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) |
    288  1.1  jmcneill 	    __SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) |
    289  1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE);
    290  1.1  jmcneill 
    291  1.1  jmcneill 	SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET,
    292  1.1  jmcneill 	    __SHIFTIN((uint16_t)s->s_therm_a,
    293  1.1  jmcneill 		      SOC_THERM_TSENSOR_CONFIG2_THERM_A) |
    294  1.1  jmcneill 	    __SHIFTIN((uint16_t)s->s_therm_b,
    295  1.1  jmcneill 		      SOC_THERM_TSENSOR_CONFIG2_THERM_B));
    296  1.1  jmcneill 
    297  1.1  jmcneill 	SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
    298  1.1  jmcneill 	    0, SOC_THERM_TSENSOR_CONFIG0_STOP);
    299  1.1  jmcneill 
    300  1.1  jmcneill 	s->s_data.units = ENVSYS_STEMP;
    301  1.1  jmcneill 	s->s_data.state = ENVSYS_SINVALID;
    302  1.1  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data);
    303  1.1  jmcneill }
    304  1.1  jmcneill 
    305  1.1  jmcneill static void
    306  1.1  jmcneill tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    307  1.1  jmcneill {
    308  1.1  jmcneill 	struct tegra_soctherm_softc * const sc = sme->sme_cookie;
    309  1.1  jmcneill 	struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata;
    310  1.1  jmcneill 	uint32_t status;
    311  1.1  jmcneill 
    312  1.1  jmcneill 	status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET);
    313  1.1  jmcneill 	if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) {
    314  1.1  jmcneill 		const u_int temp = __SHIFTOUT(status,
    315  1.1  jmcneill 		    SOC_THERM_TSENSOR_STATUS1_TEMP);
    316  1.1  jmcneill 		int64_t val = ((temp >> 8) & 0xff) * 1000000;
    317  1.1  jmcneill 		if (temp & 0x80)
    318  1.1  jmcneill 			val += 500000;
    319  1.1  jmcneill 		if (temp & 0x02)
    320  1.1  jmcneill 			val = -val;
    321  1.1  jmcneill 		edata->value_cur = val + 273150000;
    322  1.1  jmcneill 		edata->state = ENVSYS_SVALID;
    323  1.1  jmcneill 	} else {
    324  1.1  jmcneill 		edata->state = ENVSYS_SINVALID;
    325  1.1  jmcneill 	}
    326  1.1  jmcneill }
    327  1.1  jmcneill 
    328  1.1  jmcneill static int
    329  1.1  jmcneill tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask)
    330  1.1  jmcneill {
    331  1.1  jmcneill 	const uint32_t v = __SHIFTOUT(val, bitmask);
    332  1.1  jmcneill 	const int bits = popcount32(bitmask);
    333  1.1  jmcneill 	int ret = v << (32 - bits);
    334  1.1  jmcneill 	return ret >> (32 - bits);
    335  1.1  jmcneill }
    336  1.1  jmcneill 
    337  1.1  jmcneill static int64_t
    338  1.1  jmcneill tegra_soctherm_divide(int64_t num, int64_t denom)
    339  1.1  jmcneill {
    340  1.1  jmcneill 	int64_t ret = ((num << 16) * 2 + 1) / (2 * denom);
    341  1.1  jmcneill 	return ret >> 16;
    342  1.1  jmcneill }
    343