tegra_soctherm.c revision 1.2 1 1.2 jmcneill /* $NetBSD: tegra_soctherm.c,v 1.2 2015/12/13 17:39:19 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2015 Jared D. McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.2 jmcneill __KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.2 2015/12/13 17:39:19 jmcneill Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/bus.h>
34 1.1 jmcneill #include <sys/device.h>
35 1.1 jmcneill #include <sys/intr.h>
36 1.1 jmcneill #include <sys/systm.h>
37 1.1 jmcneill #include <sys/kernel.h>
38 1.1 jmcneill #include <sys/kmem.h>
39 1.1 jmcneill
40 1.1 jmcneill #include <dev/sysmon/sysmonvar.h>
41 1.1 jmcneill
42 1.1 jmcneill #include <arm/nvidia/tegra_reg.h>
43 1.1 jmcneill #include <arm/nvidia/tegra_socthermreg.h>
44 1.1 jmcneill #include <arm/nvidia/tegra_var.h>
45 1.1 jmcneill
46 1.2 jmcneill #include <dev/fdt/fdtvar.h>
47 1.2 jmcneill
48 1.1 jmcneill #define FUSE_TSENSOR_CALIB_CP_TS_BASE __BITS(12,0)
49 1.1 jmcneill #define FUSE_TSENSOR_CALIB_FT_TS_BASE __BITS(25,13)
50 1.1 jmcneill
51 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_REG 0x180
52 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_CP_TS_BASE __BITS(9,0)
53 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_FT_TS_BASE __BITS(20,10)
54 1.1 jmcneill
55 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_REG 0x1fc
56 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_CP __BITS(5,0)
57 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_FT __BITS(25,21)
58 1.1 jmcneill
59 1.1 jmcneill static int tegra_soctherm_match(device_t, cfdata_t, void *);
60 1.1 jmcneill static void tegra_soctherm_attach(device_t, device_t, void *);
61 1.1 jmcneill
62 1.1 jmcneill struct tegra_soctherm_config {
63 1.1 jmcneill uint32_t init_pdiv;
64 1.1 jmcneill uint32_t init_hotspot_off;
65 1.1 jmcneill uint32_t nominal_calib_ft;
66 1.1 jmcneill uint32_t nominal_calib_cp;
67 1.1 jmcneill uint32_t tall;
68 1.1 jmcneill uint32_t tsample;
69 1.1 jmcneill uint32_t tiddq_en;
70 1.1 jmcneill uint32_t ten_count;
71 1.1 jmcneill uint32_t pdiv;
72 1.1 jmcneill uint32_t tsample_ate;
73 1.1 jmcneill uint32_t pdiv_ate;
74 1.1 jmcneill };
75 1.1 jmcneill
76 1.1 jmcneill static const struct tegra_soctherm_config tegra124_soctherm_config = {
77 1.1 jmcneill .init_pdiv = 0x8888,
78 1.1 jmcneill .init_hotspot_off = 0x60600,
79 1.1 jmcneill .nominal_calib_ft = 105,
80 1.1 jmcneill .nominal_calib_cp = 25,
81 1.1 jmcneill .tall = 16300,
82 1.1 jmcneill .tsample = 120,
83 1.1 jmcneill .tiddq_en = 1,
84 1.1 jmcneill .ten_count = 1,
85 1.1 jmcneill .pdiv = 8,
86 1.1 jmcneill .tsample_ate = 480,
87 1.1 jmcneill .pdiv_ate = 8
88 1.1 jmcneill };
89 1.1 jmcneill
90 1.1 jmcneill struct tegra_soctherm_sensor {
91 1.1 jmcneill envsys_data_t s_data;
92 1.1 jmcneill u_int s_base;
93 1.1 jmcneill u_int s_fuse;
94 1.1 jmcneill int s_fuse_corr_alpha;
95 1.1 jmcneill int s_fuse_corr_beta;
96 1.1 jmcneill int16_t s_therm_a;
97 1.1 jmcneill int16_t s_therm_b;
98 1.1 jmcneill };
99 1.1 jmcneill
100 1.1 jmcneill static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = {
101 1.1 jmcneill { .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098,
102 1.1 jmcneill .s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 },
103 1.1 jmcneill { .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084,
104 1.1 jmcneill .s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 },
105 1.1 jmcneill { .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088,
106 1.1 jmcneill .s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 },
107 1.1 jmcneill { .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c,
108 1.1 jmcneill .s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 },
109 1.1 jmcneill { .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158,
110 1.1 jmcneill .s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 },
111 1.1 jmcneill { .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c,
112 1.1 jmcneill .s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 },
113 1.1 jmcneill { .s_data = { .desc = "GPU" }, .s_base = 0x180, .s_fuse = 0x154,
114 1.1 jmcneill .s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 },
115 1.1 jmcneill { .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160,
116 1.1 jmcneill .s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 },
117 1.1 jmcneill };
118 1.1 jmcneill
119 1.1 jmcneill struct tegra_soctherm_softc {
120 1.1 jmcneill device_t sc_dev;
121 1.1 jmcneill bus_space_tag_t sc_bst;
122 1.1 jmcneill bus_space_handle_t sc_bsh;
123 1.1 jmcneill
124 1.1 jmcneill struct sysmon_envsys *sc_sme;
125 1.1 jmcneill struct tegra_soctherm_sensor *sc_sensors;
126 1.1 jmcneill const struct tegra_soctherm_config *sc_config;
127 1.1 jmcneill
128 1.1 jmcneill uint32_t sc_base_cp;
129 1.1 jmcneill uint32_t sc_base_ft;
130 1.1 jmcneill int32_t sc_actual_temp_cp;
131 1.1 jmcneill int32_t sc_actual_temp_ft;
132 1.1 jmcneill };
133 1.1 jmcneill
134 1.1 jmcneill static void tegra_soctherm_init_sensors(struct tegra_soctherm_softc *);
135 1.1 jmcneill static void tegra_soctherm_init_sensor(struct tegra_soctherm_softc *,
136 1.1 jmcneill struct tegra_soctherm_sensor *);
137 1.1 jmcneill static void tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *);
138 1.1 jmcneill static int tegra_soctherm_decodeint(uint32_t, uint32_t);
139 1.1 jmcneill static int64_t tegra_soctherm_divide(int64_t, int64_t);
140 1.1 jmcneill
141 1.1 jmcneill CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc),
142 1.1 jmcneill tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL);
143 1.1 jmcneill
144 1.1 jmcneill #define SOCTHERM_READ(sc, reg) \
145 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
146 1.1 jmcneill #define SOCTHERM_WRITE(sc, reg, val) \
147 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
148 1.1 jmcneill #define SOCTHERM_SET_CLEAR(sc, reg, set, clr) \
149 1.1 jmcneill tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr))
150 1.1 jmcneill
151 1.1 jmcneill #define SENSOR_READ(sc, s, reg) \
152 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg))
153 1.1 jmcneill #define SENSOR_WRITE(sc, s, reg, val) \
154 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val))
155 1.1 jmcneill #define SENSOR_SET_CLEAR(sc, s, reg, set, clr) \
156 1.1 jmcneill tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr))
157 1.1 jmcneill
158 1.1 jmcneill static int
159 1.1 jmcneill tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux)
160 1.1 jmcneill {
161 1.2 jmcneill const char * const compatible[] = { "nvidia,tegra124-soctherm", NULL };
162 1.2 jmcneill struct fdt_attach_args * const faa = aux;
163 1.2 jmcneill
164 1.2 jmcneill return of_match_compatible(faa->faa_phandle, compatible);
165 1.1 jmcneill }
166 1.1 jmcneill
167 1.1 jmcneill static void
168 1.1 jmcneill tegra_soctherm_attach(device_t parent, device_t self, void *aux)
169 1.1 jmcneill {
170 1.1 jmcneill struct tegra_soctherm_softc * const sc = device_private(self);
171 1.2 jmcneill struct fdt_attach_args * const faa = aux;
172 1.2 jmcneill bus_addr_t addr;
173 1.2 jmcneill bus_size_t size;
174 1.2 jmcneill int error;
175 1.2 jmcneill
176 1.2 jmcneill if (fdtbus_get_reg(faa->faa_phandle, 0, &addr, &size) != 0) {
177 1.2 jmcneill aprint_error(": couldn't get registers\n");
178 1.2 jmcneill return;
179 1.2 jmcneill }
180 1.1 jmcneill
181 1.1 jmcneill sc->sc_dev = self;
182 1.2 jmcneill sc->sc_bst = faa->faa_bst;
183 1.2 jmcneill error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh);
184 1.2 jmcneill if (error) {
185 1.2 jmcneill aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
186 1.2 jmcneill return;
187 1.2 jmcneill }
188 1.1 jmcneill
189 1.1 jmcneill aprint_naive("\n");
190 1.1 jmcneill aprint_normal(": SOC_THERM\n");
191 1.1 jmcneill
192 1.1 jmcneill if (tegra_chip_id() == CHIP_ID_TEGRA124) {
193 1.1 jmcneill sc->sc_config = &tegra124_soctherm_config;
194 1.1 jmcneill }
195 1.1 jmcneill
196 1.1 jmcneill if (sc->sc_config == NULL) {
197 1.1 jmcneill aprint_error_dev(self, "unsupported chip ID\n");
198 1.1 jmcneill return;
199 1.1 jmcneill }
200 1.1 jmcneill
201 1.1 jmcneill tegra_car_soctherm_enable();
202 1.1 jmcneill
203 1.1 jmcneill tegra_soctherm_init_sensors(sc);
204 1.1 jmcneill }
205 1.1 jmcneill
206 1.1 jmcneill static void
207 1.1 jmcneill tegra_soctherm_init_sensors(struct tegra_soctherm_softc *sc)
208 1.1 jmcneill {
209 1.1 jmcneill const struct tegra_soctherm_config *config = sc->sc_config;
210 1.1 jmcneill const u_int nsensors = __arraycount(tegra_soctherm_sensors);
211 1.1 jmcneill const size_t len = sizeof(*sc->sc_sensors) * nsensors;
212 1.1 jmcneill uint32_t val;
213 1.1 jmcneill u_int n;
214 1.1 jmcneill
215 1.1 jmcneill val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG);
216 1.1 jmcneill sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE);
217 1.1 jmcneill sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE);
218 1.1 jmcneill val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG);
219 1.1 jmcneill const int calib_cp = tegra_soctherm_decodeint(val,
220 1.1 jmcneill FUSE_SPARE_REALIGNMENT_CP);
221 1.1 jmcneill const int calib_ft = tegra_soctherm_decodeint(val,
222 1.1 jmcneill FUSE_SPARE_REALIGNMENT_FT);
223 1.1 jmcneill sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp;
224 1.1 jmcneill sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft;
225 1.1 jmcneill
226 1.1 jmcneill sc->sc_sme = sysmon_envsys_create();
227 1.1 jmcneill sc->sc_sme->sme_name = device_xname(sc->sc_dev);
228 1.1 jmcneill sc->sc_sme->sme_cookie = sc;
229 1.1 jmcneill sc->sc_sme->sme_refresh = tegra_soctherm_refresh;
230 1.1 jmcneill
231 1.1 jmcneill sc->sc_sensors = kmem_zalloc(len, KM_SLEEP);
232 1.1 jmcneill for (n = 0; n < nsensors; n++) {
233 1.1 jmcneill sc->sc_sensors[n] = tegra_soctherm_sensors[n];
234 1.1 jmcneill tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]);
235 1.1 jmcneill }
236 1.1 jmcneill
237 1.1 jmcneill SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv);
238 1.1 jmcneill SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG,
239 1.1 jmcneill config->init_hotspot_off);
240 1.1 jmcneill
241 1.1 jmcneill sysmon_envsys_register(sc->sc_sme);
242 1.1 jmcneill }
243 1.1 jmcneill
244 1.1 jmcneill static void
245 1.1 jmcneill tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc,
246 1.1 jmcneill struct tegra_soctherm_sensor *s)
247 1.1 jmcneill {
248 1.1 jmcneill const struct tegra_soctherm_config *config = sc->sc_config;
249 1.1 jmcneill int64_t temp_a, temp_b, tmp;
250 1.1 jmcneill uint32_t val;
251 1.1 jmcneill
252 1.1 jmcneill val = tegra_fuse_read(s->s_fuse);
253 1.1 jmcneill const int calib_cp = tegra_soctherm_decodeint(val,
254 1.1 jmcneill FUSE_TSENSOR_CALIB_CP_TS_BASE);
255 1.1 jmcneill const int calib_ft = tegra_soctherm_decodeint(val,
256 1.1 jmcneill FUSE_TSENSOR_CALIB_FT_TS_BASE);
257 1.1 jmcneill const int actual_cp = sc->sc_base_cp * 64 + calib_cp;
258 1.1 jmcneill const int actual_ft = sc->sc_base_ft * 32 + calib_ft;
259 1.1 jmcneill
260 1.1 jmcneill const int64_t d_sensor = actual_ft - actual_cp;
261 1.1 jmcneill const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp;
262 1.1 jmcneill const int mult = config->pdiv * config->tsample_ate;
263 1.1 jmcneill const int div = config->tsample * config->pdiv_ate;
264 1.1 jmcneill
265 1.1 jmcneill temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult,
266 1.1 jmcneill d_sensor * div);
267 1.1 jmcneill tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp -
268 1.1 jmcneill (int64_t)actual_cp * sc->sc_actual_temp_ft;
269 1.1 jmcneill temp_b = tegra_soctherm_divide(tmp, d_sensor);
270 1.1 jmcneill temp_a = tegra_soctherm_divide(
271 1.1 jmcneill temp_a * s->s_fuse_corr_alpha, 1000000);
272 1.1 jmcneill temp_b = (uint16_t)tegra_soctherm_divide(
273 1.1 jmcneill temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000);
274 1.1 jmcneill
275 1.1 jmcneill s->s_therm_a = (int16_t)temp_a;
276 1.1 jmcneill s->s_therm_b = (int16_t)temp_b;
277 1.1 jmcneill
278 1.1 jmcneill SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
279 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR |
280 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STOP, 0);
281 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
282 1.1 jmcneill __SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) |
283 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STOP);
284 1.1 jmcneill
285 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET,
286 1.1 jmcneill __SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) |
287 1.1 jmcneill __SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) |
288 1.1 jmcneill __SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) |
289 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE);
290 1.1 jmcneill
291 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET,
292 1.1 jmcneill __SHIFTIN((uint16_t)s->s_therm_a,
293 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG2_THERM_A) |
294 1.1 jmcneill __SHIFTIN((uint16_t)s->s_therm_b,
295 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG2_THERM_B));
296 1.1 jmcneill
297 1.1 jmcneill SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
298 1.1 jmcneill 0, SOC_THERM_TSENSOR_CONFIG0_STOP);
299 1.1 jmcneill
300 1.1 jmcneill s->s_data.units = ENVSYS_STEMP;
301 1.1 jmcneill s->s_data.state = ENVSYS_SINVALID;
302 1.1 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data);
303 1.1 jmcneill }
304 1.1 jmcneill
305 1.1 jmcneill static void
306 1.1 jmcneill tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
307 1.1 jmcneill {
308 1.1 jmcneill struct tegra_soctherm_softc * const sc = sme->sme_cookie;
309 1.1 jmcneill struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata;
310 1.1 jmcneill uint32_t status;
311 1.1 jmcneill
312 1.1 jmcneill status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET);
313 1.1 jmcneill if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) {
314 1.1 jmcneill const u_int temp = __SHIFTOUT(status,
315 1.1 jmcneill SOC_THERM_TSENSOR_STATUS1_TEMP);
316 1.1 jmcneill int64_t val = ((temp >> 8) & 0xff) * 1000000;
317 1.1 jmcneill if (temp & 0x80)
318 1.1 jmcneill val += 500000;
319 1.1 jmcneill if (temp & 0x02)
320 1.1 jmcneill val = -val;
321 1.1 jmcneill edata->value_cur = val + 273150000;
322 1.1 jmcneill edata->state = ENVSYS_SVALID;
323 1.1 jmcneill } else {
324 1.1 jmcneill edata->state = ENVSYS_SINVALID;
325 1.1 jmcneill }
326 1.1 jmcneill }
327 1.1 jmcneill
328 1.1 jmcneill static int
329 1.1 jmcneill tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask)
330 1.1 jmcneill {
331 1.1 jmcneill const uint32_t v = __SHIFTOUT(val, bitmask);
332 1.1 jmcneill const int bits = popcount32(bitmask);
333 1.1 jmcneill int ret = v << (32 - bits);
334 1.1 jmcneill return ret >> (32 - bits);
335 1.1 jmcneill }
336 1.1 jmcneill
337 1.1 jmcneill static int64_t
338 1.1 jmcneill tegra_soctherm_divide(int64_t num, int64_t denom)
339 1.1 jmcneill {
340 1.1 jmcneill int64_t ret = ((num << 16) * 2 + 1) / (2 * denom);
341 1.1 jmcneill return ret >> 16;
342 1.1 jmcneill }
343