Home | History | Annotate | Line # | Download | only in nvidia
tegra_soctherm.c revision 1.3.6.1
      1  1.3.6.1    bouyer /* $NetBSD: tegra_soctherm.c,v 1.3.6.1 2017/04/21 16:53:23 bouyer Exp $ */
      2      1.1  jmcneill 
      3      1.1  jmcneill /*-
      4      1.1  jmcneill  * Copyright (c) 2015 Jared D. McNeill <jmcneill (at) invisible.ca>
      5      1.1  jmcneill  * All rights reserved.
      6      1.1  jmcneill  *
      7      1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8      1.1  jmcneill  * modification, are permitted provided that the following conditions
      9      1.1  jmcneill  * are met:
     10      1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11      1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12      1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14      1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15      1.1  jmcneill  *
     16      1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17      1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18      1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19      1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20      1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21      1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22      1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23      1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24      1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25      1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26      1.1  jmcneill  * SUCH DAMAGE.
     27      1.1  jmcneill  */
     28      1.1  jmcneill 
     29      1.1  jmcneill #include <sys/cdefs.h>
     30  1.3.6.1    bouyer __KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.3.6.1 2017/04/21 16:53:23 bouyer Exp $");
     31      1.1  jmcneill 
     32      1.1  jmcneill #include <sys/param.h>
     33      1.1  jmcneill #include <sys/bus.h>
     34      1.1  jmcneill #include <sys/device.h>
     35      1.1  jmcneill #include <sys/intr.h>
     36      1.1  jmcneill #include <sys/systm.h>
     37      1.1  jmcneill #include <sys/kernel.h>
     38      1.1  jmcneill #include <sys/kmem.h>
     39      1.1  jmcneill 
     40      1.1  jmcneill #include <dev/sysmon/sysmonvar.h>
     41      1.1  jmcneill 
     42      1.1  jmcneill #include <arm/nvidia/tegra_reg.h>
     43      1.1  jmcneill #include <arm/nvidia/tegra_socthermreg.h>
     44      1.1  jmcneill #include <arm/nvidia/tegra_var.h>
     45      1.1  jmcneill 
     46      1.2  jmcneill #include <dev/fdt/fdtvar.h>
     47      1.2  jmcneill 
     48      1.1  jmcneill #define FUSE_TSENSOR_CALIB_CP_TS_BASE	__BITS(12,0)
     49      1.1  jmcneill #define FUSE_TSENSOR_CALIB_FT_TS_BASE	__BITS(25,13)
     50      1.1  jmcneill 
     51      1.1  jmcneill #define FUSE_TSENSOR8_CALIB_REG		0x180
     52      1.1  jmcneill #define FUSE_TSENSOR8_CALIB_CP_TS_BASE	__BITS(9,0)
     53      1.1  jmcneill #define FUSE_TSENSOR8_CALIB_FT_TS_BASE	__BITS(20,10)
     54      1.1  jmcneill 
     55      1.1  jmcneill #define FUSE_SPARE_REALIGNMENT_REG	0x1fc
     56      1.1  jmcneill #define FUSE_SPARE_REALIGNMENT_CP	__BITS(5,0)
     57      1.1  jmcneill #define FUSE_SPARE_REALIGNMENT_FT	__BITS(25,21)
     58      1.1  jmcneill 
     59      1.1  jmcneill static int	tegra_soctherm_match(device_t, cfdata_t, void *);
     60      1.1  jmcneill static void	tegra_soctherm_attach(device_t, device_t, void *);
     61      1.1  jmcneill 
     62      1.1  jmcneill struct tegra_soctherm_config {
     63      1.1  jmcneill 	uint32_t init_pdiv;
     64      1.1  jmcneill 	uint32_t init_hotspot_off;
     65      1.1  jmcneill 	uint32_t nominal_calib_ft;
     66      1.1  jmcneill 	uint32_t nominal_calib_cp;
     67      1.1  jmcneill 	uint32_t tall;
     68      1.1  jmcneill 	uint32_t tsample;
     69      1.1  jmcneill 	uint32_t tiddq_en;
     70      1.1  jmcneill 	uint32_t ten_count;
     71      1.1  jmcneill 	uint32_t pdiv;
     72      1.1  jmcneill 	uint32_t tsample_ate;
     73      1.1  jmcneill 	uint32_t pdiv_ate;
     74      1.1  jmcneill };
     75      1.1  jmcneill 
     76      1.1  jmcneill static const struct tegra_soctherm_config tegra124_soctherm_config = {
     77      1.1  jmcneill 	.init_pdiv = 0x8888,
     78      1.1  jmcneill 	.init_hotspot_off = 0x60600,
     79      1.1  jmcneill 	.nominal_calib_ft = 105,
     80      1.1  jmcneill 	.nominal_calib_cp = 25,
     81      1.1  jmcneill 	.tall = 16300,
     82      1.1  jmcneill 	.tsample = 120,
     83      1.1  jmcneill 	.tiddq_en = 1,
     84      1.1  jmcneill 	.ten_count = 1,
     85      1.1  jmcneill 	.pdiv = 8,
     86      1.1  jmcneill 	.tsample_ate = 480,
     87      1.1  jmcneill 	.pdiv_ate = 8
     88      1.1  jmcneill };
     89      1.1  jmcneill 
     90      1.1  jmcneill struct tegra_soctherm_sensor {
     91      1.1  jmcneill 	envsys_data_t		s_data;
     92      1.1  jmcneill 	u_int			s_base;
     93      1.1  jmcneill 	u_int			s_fuse;
     94      1.1  jmcneill 	int			s_fuse_corr_alpha;
     95      1.1  jmcneill 	int			s_fuse_corr_beta;
     96      1.1  jmcneill 	int16_t			s_therm_a;
     97      1.1  jmcneill 	int16_t			s_therm_b;
     98      1.1  jmcneill };
     99      1.1  jmcneill 
    100      1.1  jmcneill static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = {
    101      1.1  jmcneill 	{ .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098,
    102      1.1  jmcneill 	  .s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 },
    103      1.1  jmcneill 	{ .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084,
    104      1.1  jmcneill 	  .s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 },
    105      1.1  jmcneill 	{ .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088,
    106      1.1  jmcneill 	  .s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 },
    107      1.1  jmcneill 	{ .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c,
    108      1.1  jmcneill 	  .s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 },
    109      1.1  jmcneill 	{ .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158,
    110      1.1  jmcneill 	  .s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 },
    111      1.1  jmcneill 	{ .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c,
    112      1.1  jmcneill 	  .s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 },
    113      1.1  jmcneill 	{ .s_data = { .desc = "GPU" },  .s_base = 0x180, .s_fuse = 0x154,
    114      1.1  jmcneill 	  .s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 },
    115      1.1  jmcneill 	{ .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160,
    116      1.1  jmcneill 	  .s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 },
    117      1.1  jmcneill };
    118      1.1  jmcneill 
    119      1.1  jmcneill struct tegra_soctherm_softc {
    120      1.1  jmcneill 	device_t		sc_dev;
    121      1.1  jmcneill 	bus_space_tag_t		sc_bst;
    122      1.1  jmcneill 	bus_space_handle_t	sc_bsh;
    123      1.3  jmcneill 	struct clk		*sc_clk_tsensor;
    124      1.3  jmcneill 	struct clk		*sc_clk_soctherm;
    125      1.3  jmcneill 	struct fdtbus_reset	*sc_rst_soctherm;
    126      1.1  jmcneill 
    127      1.1  jmcneill 	struct sysmon_envsys	*sc_sme;
    128      1.1  jmcneill 	struct tegra_soctherm_sensor *sc_sensors;
    129      1.1  jmcneill 	const struct tegra_soctherm_config *sc_config;
    130      1.1  jmcneill 
    131      1.1  jmcneill 	uint32_t		sc_base_cp;
    132      1.1  jmcneill 	uint32_t		sc_base_ft;
    133      1.1  jmcneill 	int32_t			sc_actual_temp_cp;
    134      1.1  jmcneill 	int32_t			sc_actual_temp_ft;
    135      1.1  jmcneill };
    136      1.1  jmcneill 
    137      1.3  jmcneill static int	tegra_soctherm_init_clocks(struct tegra_soctherm_softc *);
    138  1.3.6.1    bouyer static void	tegra_soctherm_init_sensors(device_t);
    139      1.1  jmcneill static void	tegra_soctherm_init_sensor(struct tegra_soctherm_softc *,
    140      1.1  jmcneill 		    struct tegra_soctherm_sensor *);
    141      1.1  jmcneill static void	tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *);
    142      1.1  jmcneill static int	tegra_soctherm_decodeint(uint32_t, uint32_t);
    143      1.1  jmcneill static int64_t	tegra_soctherm_divide(int64_t, int64_t);
    144      1.1  jmcneill 
    145      1.1  jmcneill CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc),
    146      1.1  jmcneill 	tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL);
    147      1.1  jmcneill 
    148      1.1  jmcneill #define SOCTHERM_READ(sc, reg)			\
    149      1.1  jmcneill     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    150      1.1  jmcneill #define SOCTHERM_WRITE(sc, reg, val)		\
    151      1.1  jmcneill     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    152      1.1  jmcneill #define SOCTHERM_SET_CLEAR(sc, reg, set, clr)	\
    153      1.1  jmcneill     tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr))
    154      1.1  jmcneill 
    155      1.1  jmcneill #define SENSOR_READ(sc, s, reg)			\
    156      1.1  jmcneill     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg))
    157      1.1  jmcneill #define SENSOR_WRITE(sc, s, reg, val)		\
    158      1.1  jmcneill     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val))
    159      1.1  jmcneill #define SENSOR_SET_CLEAR(sc, s, reg, set, clr)	\
    160      1.1  jmcneill     tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr))
    161      1.1  jmcneill 
    162      1.1  jmcneill static int
    163      1.1  jmcneill tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux)
    164      1.1  jmcneill {
    165      1.2  jmcneill 	const char * const compatible[] = { "nvidia,tegra124-soctherm", NULL };
    166      1.2  jmcneill 	struct fdt_attach_args * const faa = aux;
    167      1.2  jmcneill 
    168      1.2  jmcneill 	return of_match_compatible(faa->faa_phandle, compatible);
    169      1.1  jmcneill }
    170      1.1  jmcneill 
    171      1.1  jmcneill static void
    172      1.1  jmcneill tegra_soctherm_attach(device_t parent, device_t self, void *aux)
    173      1.1  jmcneill {
    174      1.1  jmcneill 	struct tegra_soctherm_softc * const sc = device_private(self);
    175      1.2  jmcneill 	struct fdt_attach_args * const faa = aux;
    176      1.2  jmcneill 	bus_addr_t addr;
    177      1.2  jmcneill 	bus_size_t size;
    178      1.2  jmcneill 	int error;
    179      1.2  jmcneill 
    180      1.2  jmcneill 	if (fdtbus_get_reg(faa->faa_phandle, 0, &addr, &size) != 0) {
    181      1.2  jmcneill 		aprint_error(": couldn't get registers\n");
    182      1.2  jmcneill 		return;
    183      1.2  jmcneill 	}
    184      1.3  jmcneill 	sc->sc_clk_tsensor = fdtbus_clock_get(faa->faa_phandle, "tsensor");
    185      1.3  jmcneill 	if (sc->sc_clk_tsensor == NULL) {
    186      1.3  jmcneill 		aprint_error(": couldn't get clock tsensor\n");
    187      1.3  jmcneill 		return;
    188      1.3  jmcneill 	}
    189      1.3  jmcneill 	sc->sc_clk_soctherm = fdtbus_clock_get(faa->faa_phandle, "soctherm");
    190      1.3  jmcneill 	if (sc->sc_clk_soctherm == NULL) {
    191      1.3  jmcneill 		aprint_error(": couldn't get clock soctherm\n");
    192      1.3  jmcneill 		return;
    193      1.3  jmcneill 	}
    194      1.3  jmcneill 	sc->sc_rst_soctherm = fdtbus_reset_get(faa->faa_phandle, "soctherm");
    195      1.3  jmcneill 	if (sc->sc_rst_soctherm == NULL) {
    196      1.3  jmcneill 		aprint_error(": couldn't get reset soctherm\n");
    197      1.3  jmcneill 		return;
    198      1.3  jmcneill 	}
    199      1.1  jmcneill 
    200      1.1  jmcneill 	sc->sc_dev = self;
    201      1.2  jmcneill 	sc->sc_bst = faa->faa_bst;
    202      1.2  jmcneill 	error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh);
    203      1.2  jmcneill 	if (error) {
    204      1.2  jmcneill 		aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
    205      1.2  jmcneill 		return;
    206      1.2  jmcneill 	}
    207      1.1  jmcneill 
    208      1.1  jmcneill 	aprint_naive("\n");
    209      1.1  jmcneill 	aprint_normal(": SOC_THERM\n");
    210      1.1  jmcneill 
    211      1.1  jmcneill 	if (tegra_chip_id() == CHIP_ID_TEGRA124) {
    212      1.1  jmcneill 		sc->sc_config = &tegra124_soctherm_config;
    213      1.1  jmcneill 	}
    214      1.1  jmcneill 
    215      1.1  jmcneill 	if (sc->sc_config == NULL) {
    216      1.1  jmcneill 		aprint_error_dev(self, "unsupported chip ID\n");
    217      1.1  jmcneill 		return;
    218      1.1  jmcneill 	}
    219      1.1  jmcneill 
    220      1.3  jmcneill 	if (tegra_soctherm_init_clocks(sc) != 0)
    221      1.3  jmcneill 		return;
    222      1.1  jmcneill 
    223  1.3.6.1    bouyer 	config_defer(self, tegra_soctherm_init_sensors);
    224      1.1  jmcneill }
    225      1.1  jmcneill 
    226      1.3  jmcneill static int
    227      1.3  jmcneill tegra_soctherm_init_clocks(struct tegra_soctherm_softc *sc)
    228      1.3  jmcneill {
    229      1.3  jmcneill 	int error;
    230      1.3  jmcneill 
    231      1.3  jmcneill 	fdtbus_reset_assert(sc->sc_rst_soctherm);
    232      1.3  jmcneill 
    233      1.3  jmcneill 	error = clk_set_rate(sc->sc_clk_soctherm, 51000000);
    234      1.3  jmcneill 	if (error) {
    235      1.3  jmcneill 		aprint_error_dev(sc->sc_dev,
    236      1.3  jmcneill 		    "couldn't set soctherm rate: %d\n", error);
    237      1.3  jmcneill 		return error;
    238      1.3  jmcneill 	}
    239      1.3  jmcneill 
    240      1.3  jmcneill 	error = clk_set_rate(sc->sc_clk_tsensor, 400000);
    241      1.3  jmcneill 	if (error) {
    242      1.3  jmcneill 		aprint_error_dev(sc->sc_dev,
    243      1.3  jmcneill 		    "couldn't set tsensor rate: %d\n", error);
    244      1.3  jmcneill 		return error;
    245      1.3  jmcneill 	}
    246      1.3  jmcneill 
    247      1.3  jmcneill 	error = clk_enable(sc->sc_clk_tsensor);
    248      1.3  jmcneill 	if (error) {
    249      1.3  jmcneill 		aprint_error_dev(sc->sc_dev, "couldn't enable tsensor: %d\n",
    250      1.3  jmcneill 		    error);
    251      1.3  jmcneill 		return error;
    252      1.3  jmcneill 	}
    253      1.3  jmcneill 
    254      1.3  jmcneill 	error = clk_enable(sc->sc_clk_soctherm);
    255      1.3  jmcneill 	if (error) {
    256      1.3  jmcneill 		aprint_error_dev(sc->sc_dev, "couldn't enable soctherm: %d\n",
    257      1.3  jmcneill 		    error);
    258      1.3  jmcneill 		return error;
    259      1.3  jmcneill 	}
    260      1.3  jmcneill 
    261      1.3  jmcneill 	fdtbus_reset_deassert(sc->sc_rst_soctherm);
    262      1.3  jmcneill 
    263      1.3  jmcneill 	return 0;
    264      1.3  jmcneill }
    265      1.3  jmcneill 
    266      1.1  jmcneill static void
    267  1.3.6.1    bouyer tegra_soctherm_init_sensors(device_t dev)
    268      1.1  jmcneill {
    269  1.3.6.1    bouyer 	struct tegra_soctherm_softc * const sc = device_private(dev);
    270      1.1  jmcneill 	const struct tegra_soctherm_config *config = sc->sc_config;
    271      1.1  jmcneill 	const u_int nsensors = __arraycount(tegra_soctherm_sensors);
    272      1.1  jmcneill 	const size_t len = sizeof(*sc->sc_sensors) * nsensors;
    273      1.1  jmcneill 	uint32_t val;
    274      1.1  jmcneill 	u_int n;
    275      1.1  jmcneill 
    276      1.1  jmcneill 	val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG);
    277      1.1  jmcneill 	sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE);
    278      1.1  jmcneill 	sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE);
    279      1.1  jmcneill 	val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG);
    280      1.1  jmcneill 	const int calib_cp = tegra_soctherm_decodeint(val,
    281      1.1  jmcneill 	    FUSE_SPARE_REALIGNMENT_CP);
    282      1.1  jmcneill 	const int calib_ft = tegra_soctherm_decodeint(val,
    283      1.1  jmcneill 	    FUSE_SPARE_REALIGNMENT_FT);
    284      1.1  jmcneill 	sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp;
    285      1.1  jmcneill 	sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft;
    286      1.1  jmcneill 
    287      1.1  jmcneill 	sc->sc_sme = sysmon_envsys_create();
    288      1.1  jmcneill 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    289      1.1  jmcneill 	sc->sc_sme->sme_cookie = sc;
    290      1.1  jmcneill 	sc->sc_sme->sme_refresh = tegra_soctherm_refresh;
    291      1.1  jmcneill 
    292      1.1  jmcneill 	sc->sc_sensors = kmem_zalloc(len, KM_SLEEP);
    293      1.1  jmcneill 	for (n = 0; n < nsensors; n++) {
    294      1.1  jmcneill 		sc->sc_sensors[n] = tegra_soctherm_sensors[n];
    295      1.1  jmcneill 		tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]);
    296      1.1  jmcneill 	}
    297      1.1  jmcneill 
    298      1.1  jmcneill 	SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv);
    299      1.1  jmcneill 	SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG,
    300      1.1  jmcneill 	    config->init_hotspot_off);
    301      1.1  jmcneill 
    302      1.1  jmcneill 	sysmon_envsys_register(sc->sc_sme);
    303      1.1  jmcneill }
    304      1.1  jmcneill 
    305      1.1  jmcneill static void
    306      1.1  jmcneill tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc,
    307      1.1  jmcneill     struct tegra_soctherm_sensor *s)
    308      1.1  jmcneill {
    309      1.1  jmcneill 	const struct tegra_soctherm_config *config = sc->sc_config;
    310      1.1  jmcneill 	int64_t temp_a, temp_b, tmp;
    311      1.1  jmcneill 	uint32_t val;
    312      1.1  jmcneill 
    313      1.1  jmcneill 	val = tegra_fuse_read(s->s_fuse);
    314      1.1  jmcneill 	const int calib_cp = tegra_soctherm_decodeint(val,
    315      1.1  jmcneill 	    FUSE_TSENSOR_CALIB_CP_TS_BASE);
    316      1.1  jmcneill 	const int calib_ft = tegra_soctherm_decodeint(val,
    317      1.1  jmcneill 	    FUSE_TSENSOR_CALIB_FT_TS_BASE);
    318      1.1  jmcneill 	const int actual_cp = sc->sc_base_cp * 64 + calib_cp;
    319      1.1  jmcneill 	const int actual_ft = sc->sc_base_ft * 32 + calib_ft;
    320      1.1  jmcneill 
    321      1.1  jmcneill 	const int64_t d_sensor = actual_ft - actual_cp;
    322      1.1  jmcneill 	const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp;
    323      1.1  jmcneill 	const int mult = config->pdiv * config->tsample_ate;
    324      1.1  jmcneill 	const int div = config->tsample * config->pdiv_ate;
    325      1.1  jmcneill 
    326      1.1  jmcneill 	temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult,
    327      1.1  jmcneill 	    d_sensor * div);
    328      1.1  jmcneill 	tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp -
    329      1.1  jmcneill 	      (int64_t)actual_cp * sc->sc_actual_temp_ft;
    330      1.1  jmcneill 	temp_b = tegra_soctherm_divide(tmp, d_sensor);
    331      1.1  jmcneill 	temp_a = tegra_soctherm_divide(
    332      1.1  jmcneill 	    temp_a * s->s_fuse_corr_alpha, 1000000);
    333      1.1  jmcneill 	temp_b = (uint16_t)tegra_soctherm_divide(
    334      1.1  jmcneill 	    temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000);
    335      1.1  jmcneill 
    336      1.1  jmcneill 	s->s_therm_a = (int16_t)temp_a;
    337      1.1  jmcneill 	s->s_therm_b = (int16_t)temp_b;
    338      1.1  jmcneill 
    339      1.1  jmcneill 	SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
    340      1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR |
    341      1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG0_STOP, 0);
    342      1.1  jmcneill 	SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
    343      1.1  jmcneill 	    __SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) |
    344      1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG0_STOP);
    345      1.1  jmcneill 
    346      1.1  jmcneill 	SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET,
    347      1.1  jmcneill 	    __SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) |
    348      1.1  jmcneill 	    __SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) |
    349      1.1  jmcneill 	    __SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) |
    350      1.1  jmcneill 	    SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE);
    351      1.1  jmcneill 
    352      1.1  jmcneill 	SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET,
    353      1.1  jmcneill 	    __SHIFTIN((uint16_t)s->s_therm_a,
    354      1.1  jmcneill 		      SOC_THERM_TSENSOR_CONFIG2_THERM_A) |
    355      1.1  jmcneill 	    __SHIFTIN((uint16_t)s->s_therm_b,
    356      1.1  jmcneill 		      SOC_THERM_TSENSOR_CONFIG2_THERM_B));
    357      1.1  jmcneill 
    358      1.1  jmcneill 	SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
    359      1.1  jmcneill 	    0, SOC_THERM_TSENSOR_CONFIG0_STOP);
    360      1.1  jmcneill 
    361      1.1  jmcneill 	s->s_data.units = ENVSYS_STEMP;
    362      1.1  jmcneill 	s->s_data.state = ENVSYS_SINVALID;
    363      1.1  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data);
    364      1.1  jmcneill }
    365      1.1  jmcneill 
    366      1.1  jmcneill static void
    367      1.1  jmcneill tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    368      1.1  jmcneill {
    369      1.1  jmcneill 	struct tegra_soctherm_softc * const sc = sme->sme_cookie;
    370      1.1  jmcneill 	struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata;
    371      1.1  jmcneill 	uint32_t status;
    372      1.1  jmcneill 
    373      1.1  jmcneill 	status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET);
    374      1.1  jmcneill 	if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) {
    375      1.1  jmcneill 		const u_int temp = __SHIFTOUT(status,
    376      1.1  jmcneill 		    SOC_THERM_TSENSOR_STATUS1_TEMP);
    377      1.1  jmcneill 		int64_t val = ((temp >> 8) & 0xff) * 1000000;
    378      1.1  jmcneill 		if (temp & 0x80)
    379      1.1  jmcneill 			val += 500000;
    380      1.1  jmcneill 		if (temp & 0x02)
    381      1.1  jmcneill 			val = -val;
    382      1.1  jmcneill 		edata->value_cur = val + 273150000;
    383      1.1  jmcneill 		edata->state = ENVSYS_SVALID;
    384      1.1  jmcneill 	} else {
    385      1.1  jmcneill 		edata->state = ENVSYS_SINVALID;
    386      1.1  jmcneill 	}
    387      1.1  jmcneill }
    388      1.1  jmcneill 
    389      1.1  jmcneill static int
    390      1.1  jmcneill tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask)
    391      1.1  jmcneill {
    392      1.1  jmcneill 	const uint32_t v = __SHIFTOUT(val, bitmask);
    393      1.1  jmcneill 	const int bits = popcount32(bitmask);
    394      1.1  jmcneill 	int ret = v << (32 - bits);
    395      1.1  jmcneill 	return ret >> (32 - bits);
    396      1.1  jmcneill }
    397      1.1  jmcneill 
    398      1.1  jmcneill static int64_t
    399      1.1  jmcneill tegra_soctherm_divide(int64_t num, int64_t denom)
    400      1.1  jmcneill {
    401      1.1  jmcneill 	int64_t ret = ((num << 16) * 2 + 1) / (2 * denom);
    402      1.1  jmcneill 	return ret >> 16;
    403      1.1  jmcneill }
    404