tegra_soctherm.c revision 1.9 1 1.9 skrll /* $NetBSD: tegra_soctherm.c,v 1.9 2019/10/13 06:11:31 skrll Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2015 Jared D. McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.9 skrll __KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.9 2019/10/13 06:11:31 skrll Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/bus.h>
34 1.1 jmcneill #include <sys/device.h>
35 1.1 jmcneill #include <sys/intr.h>
36 1.1 jmcneill #include <sys/systm.h>
37 1.1 jmcneill #include <sys/kernel.h>
38 1.1 jmcneill #include <sys/kmem.h>
39 1.1 jmcneill
40 1.1 jmcneill #include <dev/sysmon/sysmonvar.h>
41 1.1 jmcneill
42 1.1 jmcneill #include <arm/nvidia/tegra_reg.h>
43 1.1 jmcneill #include <arm/nvidia/tegra_socthermreg.h>
44 1.1 jmcneill #include <arm/nvidia/tegra_var.h>
45 1.1 jmcneill
46 1.2 jmcneill #include <dev/fdt/fdtvar.h>
47 1.2 jmcneill
48 1.1 jmcneill #define FUSE_TSENSOR_CALIB_CP_TS_BASE __BITS(12,0)
49 1.1 jmcneill #define FUSE_TSENSOR_CALIB_FT_TS_BASE __BITS(25,13)
50 1.1 jmcneill
51 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_REG 0x180
52 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_CP_TS_BASE __BITS(9,0)
53 1.1 jmcneill #define FUSE_TSENSOR8_CALIB_FT_TS_BASE __BITS(20,10)
54 1.1 jmcneill
55 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_REG 0x1fc
56 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_CP __BITS(5,0)
57 1.1 jmcneill #define FUSE_SPARE_REALIGNMENT_FT __BITS(25,21)
58 1.1 jmcneill
59 1.1 jmcneill static int tegra_soctherm_match(device_t, cfdata_t, void *);
60 1.1 jmcneill static void tegra_soctherm_attach(device_t, device_t, void *);
61 1.1 jmcneill
62 1.1 jmcneill struct tegra_soctherm_config {
63 1.1 jmcneill uint32_t init_pdiv;
64 1.1 jmcneill uint32_t init_hotspot_off;
65 1.1 jmcneill uint32_t nominal_calib_ft;
66 1.1 jmcneill uint32_t nominal_calib_cp;
67 1.1 jmcneill uint32_t tall;
68 1.1 jmcneill uint32_t tsample;
69 1.1 jmcneill uint32_t tiddq_en;
70 1.1 jmcneill uint32_t ten_count;
71 1.1 jmcneill uint32_t pdiv;
72 1.1 jmcneill uint32_t tsample_ate;
73 1.1 jmcneill uint32_t pdiv_ate;
74 1.1 jmcneill };
75 1.1 jmcneill
76 1.1 jmcneill static const struct tegra_soctherm_config tegra124_soctherm_config = {
77 1.1 jmcneill .init_pdiv = 0x8888,
78 1.1 jmcneill .init_hotspot_off = 0x60600,
79 1.1 jmcneill .nominal_calib_ft = 105,
80 1.1 jmcneill .nominal_calib_cp = 25,
81 1.1 jmcneill .tall = 16300,
82 1.1 jmcneill .tsample = 120,
83 1.1 jmcneill .tiddq_en = 1,
84 1.1 jmcneill .ten_count = 1,
85 1.1 jmcneill .pdiv = 8,
86 1.1 jmcneill .tsample_ate = 480,
87 1.1 jmcneill .pdiv_ate = 8
88 1.1 jmcneill };
89 1.1 jmcneill
90 1.1 jmcneill struct tegra_soctherm_sensor {
91 1.1 jmcneill envsys_data_t s_data;
92 1.1 jmcneill u_int s_base;
93 1.1 jmcneill u_int s_fuse;
94 1.1 jmcneill int s_fuse_corr_alpha;
95 1.1 jmcneill int s_fuse_corr_beta;
96 1.1 jmcneill int16_t s_therm_a;
97 1.1 jmcneill int16_t s_therm_b;
98 1.1 jmcneill };
99 1.1 jmcneill
100 1.1 jmcneill static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = {
101 1.1 jmcneill { .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098,
102 1.1 jmcneill .s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 },
103 1.1 jmcneill { .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084,
104 1.1 jmcneill .s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 },
105 1.1 jmcneill { .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088,
106 1.1 jmcneill .s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 },
107 1.1 jmcneill { .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c,
108 1.1 jmcneill .s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 },
109 1.1 jmcneill { .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158,
110 1.1 jmcneill .s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 },
111 1.1 jmcneill { .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c,
112 1.1 jmcneill .s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 },
113 1.1 jmcneill { .s_data = { .desc = "GPU" }, .s_base = 0x180, .s_fuse = 0x154,
114 1.1 jmcneill .s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 },
115 1.1 jmcneill { .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160,
116 1.1 jmcneill .s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 },
117 1.1 jmcneill };
118 1.1 jmcneill
119 1.1 jmcneill struct tegra_soctherm_softc {
120 1.1 jmcneill device_t sc_dev;
121 1.1 jmcneill bus_space_tag_t sc_bst;
122 1.1 jmcneill bus_space_handle_t sc_bsh;
123 1.3 jmcneill struct clk *sc_clk_tsensor;
124 1.3 jmcneill struct clk *sc_clk_soctherm;
125 1.3 jmcneill struct fdtbus_reset *sc_rst_soctherm;
126 1.1 jmcneill
127 1.1 jmcneill struct sysmon_envsys *sc_sme;
128 1.1 jmcneill struct tegra_soctherm_sensor *sc_sensors;
129 1.1 jmcneill const struct tegra_soctherm_config *sc_config;
130 1.1 jmcneill
131 1.1 jmcneill uint32_t sc_base_cp;
132 1.1 jmcneill uint32_t sc_base_ft;
133 1.1 jmcneill int32_t sc_actual_temp_cp;
134 1.1 jmcneill int32_t sc_actual_temp_ft;
135 1.1 jmcneill };
136 1.1 jmcneill
137 1.3 jmcneill static int tegra_soctherm_init_clocks(struct tegra_soctherm_softc *);
138 1.4 jmcneill static void tegra_soctherm_init_sensors(device_t);
139 1.1 jmcneill static void tegra_soctherm_init_sensor(struct tegra_soctherm_softc *,
140 1.1 jmcneill struct tegra_soctherm_sensor *);
141 1.1 jmcneill static void tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *);
142 1.1 jmcneill static int tegra_soctherm_decodeint(uint32_t, uint32_t);
143 1.1 jmcneill static int64_t tegra_soctherm_divide(int64_t, int64_t);
144 1.1 jmcneill
145 1.1 jmcneill CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc),
146 1.1 jmcneill tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL);
147 1.1 jmcneill
148 1.1 jmcneill #define SOCTHERM_READ(sc, reg) \
149 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
150 1.1 jmcneill #define SOCTHERM_WRITE(sc, reg, val) \
151 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
152 1.1 jmcneill #define SOCTHERM_SET_CLEAR(sc, reg, set, clr) \
153 1.1 jmcneill tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr))
154 1.1 jmcneill
155 1.1 jmcneill #define SENSOR_READ(sc, s, reg) \
156 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg))
157 1.1 jmcneill #define SENSOR_WRITE(sc, s, reg, val) \
158 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val))
159 1.1 jmcneill #define SENSOR_SET_CLEAR(sc, s, reg, set, clr) \
160 1.1 jmcneill tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr))
161 1.1 jmcneill
162 1.5 jmcneill static const struct of_compat_data compat_data[] = {
163 1.5 jmcneill { "nvidia,tegra124-soctherm", (uintptr_t)&tegra124_soctherm_config },
164 1.5 jmcneill { NULL }
165 1.5 jmcneill };
166 1.5 jmcneill
167 1.1 jmcneill static int
168 1.1 jmcneill tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux)
169 1.1 jmcneill {
170 1.2 jmcneill struct fdt_attach_args * const faa = aux;
171 1.2 jmcneill
172 1.5 jmcneill return of_match_compat_data(faa->faa_phandle, compat_data);
173 1.1 jmcneill }
174 1.1 jmcneill
175 1.1 jmcneill static void
176 1.1 jmcneill tegra_soctherm_attach(device_t parent, device_t self, void *aux)
177 1.1 jmcneill {
178 1.1 jmcneill struct tegra_soctherm_softc * const sc = device_private(self);
179 1.2 jmcneill struct fdt_attach_args * const faa = aux;
180 1.5 jmcneill const int phandle = faa->faa_phandle;
181 1.2 jmcneill bus_addr_t addr;
182 1.2 jmcneill bus_size_t size;
183 1.2 jmcneill int error;
184 1.2 jmcneill
185 1.5 jmcneill if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
186 1.2 jmcneill aprint_error(": couldn't get registers\n");
187 1.2 jmcneill return;
188 1.2 jmcneill }
189 1.5 jmcneill sc->sc_clk_tsensor = fdtbus_clock_get(phandle, "tsensor");
190 1.3 jmcneill if (sc->sc_clk_tsensor == NULL) {
191 1.3 jmcneill aprint_error(": couldn't get clock tsensor\n");
192 1.3 jmcneill return;
193 1.3 jmcneill }
194 1.5 jmcneill sc->sc_clk_soctherm = fdtbus_clock_get(phandle, "soctherm");
195 1.3 jmcneill if (sc->sc_clk_soctherm == NULL) {
196 1.3 jmcneill aprint_error(": couldn't get clock soctherm\n");
197 1.3 jmcneill return;
198 1.3 jmcneill }
199 1.5 jmcneill sc->sc_rst_soctherm = fdtbus_reset_get(phandle, "soctherm");
200 1.3 jmcneill if (sc->sc_rst_soctherm == NULL) {
201 1.3 jmcneill aprint_error(": couldn't get reset soctherm\n");
202 1.3 jmcneill return;
203 1.3 jmcneill }
204 1.1 jmcneill
205 1.1 jmcneill sc->sc_dev = self;
206 1.2 jmcneill sc->sc_bst = faa->faa_bst;
207 1.2 jmcneill error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh);
208 1.2 jmcneill if (error) {
209 1.9 skrll aprint_error(": couldn't map %#" PRIxBUSADDR ": %d", addr, error);
210 1.2 jmcneill return;
211 1.2 jmcneill }
212 1.1 jmcneill
213 1.1 jmcneill aprint_naive("\n");
214 1.1 jmcneill aprint_normal(": SOC_THERM\n");
215 1.1 jmcneill
216 1.6 jmcneill sc->sc_config = (void *)of_search_compatible(phandle, compat_data)->data;
217 1.1 jmcneill if (sc->sc_config == NULL) {
218 1.5 jmcneill aprint_error_dev(self, "unsupported SoC\n");
219 1.1 jmcneill return;
220 1.1 jmcneill }
221 1.1 jmcneill
222 1.3 jmcneill if (tegra_soctherm_init_clocks(sc) != 0)
223 1.3 jmcneill return;
224 1.1 jmcneill
225 1.4 jmcneill config_defer(self, tegra_soctherm_init_sensors);
226 1.1 jmcneill }
227 1.1 jmcneill
228 1.3 jmcneill static int
229 1.3 jmcneill tegra_soctherm_init_clocks(struct tegra_soctherm_softc *sc)
230 1.3 jmcneill {
231 1.3 jmcneill int error;
232 1.3 jmcneill
233 1.3 jmcneill fdtbus_reset_assert(sc->sc_rst_soctherm);
234 1.3 jmcneill
235 1.3 jmcneill error = clk_set_rate(sc->sc_clk_soctherm, 51000000);
236 1.3 jmcneill if (error) {
237 1.3 jmcneill aprint_error_dev(sc->sc_dev,
238 1.3 jmcneill "couldn't set soctherm rate: %d\n", error);
239 1.3 jmcneill return error;
240 1.3 jmcneill }
241 1.3 jmcneill
242 1.3 jmcneill error = clk_set_rate(sc->sc_clk_tsensor, 400000);
243 1.3 jmcneill if (error) {
244 1.3 jmcneill aprint_error_dev(sc->sc_dev,
245 1.3 jmcneill "couldn't set tsensor rate: %d\n", error);
246 1.3 jmcneill return error;
247 1.3 jmcneill }
248 1.3 jmcneill
249 1.3 jmcneill error = clk_enable(sc->sc_clk_tsensor);
250 1.3 jmcneill if (error) {
251 1.3 jmcneill aprint_error_dev(sc->sc_dev, "couldn't enable tsensor: %d\n",
252 1.3 jmcneill error);
253 1.3 jmcneill return error;
254 1.3 jmcneill }
255 1.3 jmcneill
256 1.3 jmcneill error = clk_enable(sc->sc_clk_soctherm);
257 1.3 jmcneill if (error) {
258 1.3 jmcneill aprint_error_dev(sc->sc_dev, "couldn't enable soctherm: %d\n",
259 1.3 jmcneill error);
260 1.3 jmcneill return error;
261 1.3 jmcneill }
262 1.3 jmcneill
263 1.3 jmcneill fdtbus_reset_deassert(sc->sc_rst_soctherm);
264 1.3 jmcneill
265 1.3 jmcneill return 0;
266 1.3 jmcneill }
267 1.3 jmcneill
268 1.1 jmcneill static void
269 1.4 jmcneill tegra_soctherm_init_sensors(device_t dev)
270 1.1 jmcneill {
271 1.4 jmcneill struct tegra_soctherm_softc * const sc = device_private(dev);
272 1.1 jmcneill const struct tegra_soctherm_config *config = sc->sc_config;
273 1.1 jmcneill const u_int nsensors = __arraycount(tegra_soctherm_sensors);
274 1.1 jmcneill const size_t len = sizeof(*sc->sc_sensors) * nsensors;
275 1.1 jmcneill uint32_t val;
276 1.1 jmcneill u_int n;
277 1.1 jmcneill
278 1.1 jmcneill val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG);
279 1.1 jmcneill sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE);
280 1.1 jmcneill sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE);
281 1.1 jmcneill val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG);
282 1.1 jmcneill const int calib_cp = tegra_soctherm_decodeint(val,
283 1.1 jmcneill FUSE_SPARE_REALIGNMENT_CP);
284 1.1 jmcneill const int calib_ft = tegra_soctherm_decodeint(val,
285 1.1 jmcneill FUSE_SPARE_REALIGNMENT_FT);
286 1.1 jmcneill sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp;
287 1.1 jmcneill sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft;
288 1.1 jmcneill
289 1.1 jmcneill sc->sc_sme = sysmon_envsys_create();
290 1.1 jmcneill sc->sc_sme->sme_name = device_xname(sc->sc_dev);
291 1.1 jmcneill sc->sc_sme->sme_cookie = sc;
292 1.1 jmcneill sc->sc_sme->sme_refresh = tegra_soctherm_refresh;
293 1.1 jmcneill
294 1.1 jmcneill sc->sc_sensors = kmem_zalloc(len, KM_SLEEP);
295 1.1 jmcneill for (n = 0; n < nsensors; n++) {
296 1.1 jmcneill sc->sc_sensors[n] = tegra_soctherm_sensors[n];
297 1.1 jmcneill tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]);
298 1.1 jmcneill }
299 1.1 jmcneill
300 1.1 jmcneill SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv);
301 1.1 jmcneill SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG,
302 1.1 jmcneill config->init_hotspot_off);
303 1.1 jmcneill
304 1.1 jmcneill sysmon_envsys_register(sc->sc_sme);
305 1.1 jmcneill }
306 1.1 jmcneill
307 1.1 jmcneill static void
308 1.1 jmcneill tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc,
309 1.1 jmcneill struct tegra_soctherm_sensor *s)
310 1.1 jmcneill {
311 1.1 jmcneill const struct tegra_soctherm_config *config = sc->sc_config;
312 1.1 jmcneill int64_t temp_a, temp_b, tmp;
313 1.1 jmcneill uint32_t val;
314 1.1 jmcneill
315 1.1 jmcneill val = tegra_fuse_read(s->s_fuse);
316 1.1 jmcneill const int calib_cp = tegra_soctherm_decodeint(val,
317 1.1 jmcneill FUSE_TSENSOR_CALIB_CP_TS_BASE);
318 1.1 jmcneill const int calib_ft = tegra_soctherm_decodeint(val,
319 1.1 jmcneill FUSE_TSENSOR_CALIB_FT_TS_BASE);
320 1.1 jmcneill const int actual_cp = sc->sc_base_cp * 64 + calib_cp;
321 1.1 jmcneill const int actual_ft = sc->sc_base_ft * 32 + calib_ft;
322 1.1 jmcneill
323 1.1 jmcneill const int64_t d_sensor = actual_ft - actual_cp;
324 1.1 jmcneill const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp;
325 1.1 jmcneill const int mult = config->pdiv * config->tsample_ate;
326 1.1 jmcneill const int div = config->tsample * config->pdiv_ate;
327 1.1 jmcneill
328 1.1 jmcneill temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult,
329 1.1 jmcneill d_sensor * div);
330 1.1 jmcneill tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp -
331 1.1 jmcneill (int64_t)actual_cp * sc->sc_actual_temp_ft;
332 1.1 jmcneill temp_b = tegra_soctherm_divide(tmp, d_sensor);
333 1.1 jmcneill temp_a = tegra_soctherm_divide(
334 1.1 jmcneill temp_a * s->s_fuse_corr_alpha, 1000000);
335 1.1 jmcneill temp_b = (uint16_t)tegra_soctherm_divide(
336 1.1 jmcneill temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000);
337 1.1 jmcneill
338 1.1 jmcneill s->s_therm_a = (int16_t)temp_a;
339 1.1 jmcneill s->s_therm_b = (int16_t)temp_b;
340 1.1 jmcneill
341 1.1 jmcneill SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
342 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR |
343 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STOP, 0);
344 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
345 1.1 jmcneill __SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) |
346 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG0_STOP);
347 1.1 jmcneill
348 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET,
349 1.1 jmcneill __SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) |
350 1.1 jmcneill __SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) |
351 1.1 jmcneill __SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) |
352 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE);
353 1.1 jmcneill
354 1.1 jmcneill SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET,
355 1.1 jmcneill __SHIFTIN((uint16_t)s->s_therm_a,
356 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG2_THERM_A) |
357 1.1 jmcneill __SHIFTIN((uint16_t)s->s_therm_b,
358 1.1 jmcneill SOC_THERM_TSENSOR_CONFIG2_THERM_B));
359 1.1 jmcneill
360 1.1 jmcneill SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
361 1.1 jmcneill 0, SOC_THERM_TSENSOR_CONFIG0_STOP);
362 1.1 jmcneill
363 1.1 jmcneill s->s_data.units = ENVSYS_STEMP;
364 1.1 jmcneill s->s_data.state = ENVSYS_SINVALID;
365 1.1 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data);
366 1.1 jmcneill }
367 1.1 jmcneill
368 1.1 jmcneill static void
369 1.1 jmcneill tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
370 1.1 jmcneill {
371 1.1 jmcneill struct tegra_soctherm_softc * const sc = sme->sme_cookie;
372 1.1 jmcneill struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata;
373 1.1 jmcneill uint32_t status;
374 1.1 jmcneill
375 1.1 jmcneill status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET);
376 1.1 jmcneill if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) {
377 1.1 jmcneill const u_int temp = __SHIFTOUT(status,
378 1.1 jmcneill SOC_THERM_TSENSOR_STATUS1_TEMP);
379 1.1 jmcneill int64_t val = ((temp >> 8) & 0xff) * 1000000;
380 1.1 jmcneill if (temp & 0x80)
381 1.1 jmcneill val += 500000;
382 1.1 jmcneill if (temp & 0x02)
383 1.1 jmcneill val = -val;
384 1.1 jmcneill edata->value_cur = val + 273150000;
385 1.1 jmcneill edata->state = ENVSYS_SVALID;
386 1.1 jmcneill } else {
387 1.1 jmcneill edata->state = ENVSYS_SINVALID;
388 1.1 jmcneill }
389 1.1 jmcneill }
390 1.1 jmcneill
391 1.1 jmcneill static int
392 1.1 jmcneill tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask)
393 1.1 jmcneill {
394 1.1 jmcneill const uint32_t v = __SHIFTOUT(val, bitmask);
395 1.1 jmcneill const int bits = popcount32(bitmask);
396 1.1 jmcneill int ret = v << (32 - bits);
397 1.1 jmcneill return ret >> (32 - bits);
398 1.1 jmcneill }
399 1.1 jmcneill
400 1.1 jmcneill static int64_t
401 1.1 jmcneill tegra_soctherm_divide(int64_t num, int64_t denom)
402 1.1 jmcneill {
403 1.1 jmcneill int64_t ret = ((num << 16) * 2 + 1) / (2 * denom);
404 1.1 jmcneill return ret >> 16;
405 1.1 jmcneill }
406