tegra_soctherm.c revision 1.1 1 /* $NetBSD: tegra_soctherm.c,v 1.1 2015/11/21 22:55:32 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2015 Jared D. McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "locators.h"
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.1 2015/11/21 22:55:32 jmcneill Exp $");
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/device.h>
37 #include <sys/intr.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43
44 #include <arm/nvidia/tegra_reg.h>
45 #include <arm/nvidia/tegra_socthermreg.h>
46 #include <arm/nvidia/tegra_var.h>
47
48 #define FUSE_TSENSOR_CALIB_CP_TS_BASE __BITS(12,0)
49 #define FUSE_TSENSOR_CALIB_FT_TS_BASE __BITS(25,13)
50
51 #define FUSE_TSENSOR8_CALIB_REG 0x180
52 #define FUSE_TSENSOR8_CALIB_CP_TS_BASE __BITS(9,0)
53 #define FUSE_TSENSOR8_CALIB_FT_TS_BASE __BITS(20,10)
54
55 #define FUSE_SPARE_REALIGNMENT_REG 0x1fc
56 #define FUSE_SPARE_REALIGNMENT_CP __BITS(5,0)
57 #define FUSE_SPARE_REALIGNMENT_FT __BITS(25,21)
58
59 static int tegra_soctherm_match(device_t, cfdata_t, void *);
60 static void tegra_soctherm_attach(device_t, device_t, void *);
61
62 struct tegra_soctherm_config {
63 uint32_t init_pdiv;
64 uint32_t init_hotspot_off;
65 uint32_t nominal_calib_ft;
66 uint32_t nominal_calib_cp;
67 uint32_t tall;
68 uint32_t tsample;
69 uint32_t tiddq_en;
70 uint32_t ten_count;
71 uint32_t pdiv;
72 uint32_t tsample_ate;
73 uint32_t pdiv_ate;
74 };
75
76 static const struct tegra_soctherm_config tegra124_soctherm_config = {
77 .init_pdiv = 0x8888,
78 .init_hotspot_off = 0x60600,
79 .nominal_calib_ft = 105,
80 .nominal_calib_cp = 25,
81 .tall = 16300,
82 .tsample = 120,
83 .tiddq_en = 1,
84 .ten_count = 1,
85 .pdiv = 8,
86 .tsample_ate = 480,
87 .pdiv_ate = 8
88 };
89
90 struct tegra_soctherm_sensor {
91 envsys_data_t s_data;
92 u_int s_base;
93 u_int s_fuse;
94 int s_fuse_corr_alpha;
95 int s_fuse_corr_beta;
96 int16_t s_therm_a;
97 int16_t s_therm_b;
98 };
99
100 static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = {
101 { .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098,
102 .s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 },
103 { .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084,
104 .s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 },
105 { .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088,
106 .s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 },
107 { .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c,
108 .s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 },
109 { .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158,
110 .s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 },
111 { .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c,
112 .s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 },
113 { .s_data = { .desc = "GPU" }, .s_base = 0x180, .s_fuse = 0x154,
114 .s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 },
115 { .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160,
116 .s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 },
117 };
118
119 struct tegra_soctherm_softc {
120 device_t sc_dev;
121 bus_space_tag_t sc_bst;
122 bus_space_handle_t sc_bsh;
123
124 struct sysmon_envsys *sc_sme;
125 struct tegra_soctherm_sensor *sc_sensors;
126 const struct tegra_soctherm_config *sc_config;
127
128 uint32_t sc_base_cp;
129 uint32_t sc_base_ft;
130 int32_t sc_actual_temp_cp;
131 int32_t sc_actual_temp_ft;
132 };
133
134 static void tegra_soctherm_init_sensors(struct tegra_soctherm_softc *);
135 static void tegra_soctherm_init_sensor(struct tegra_soctherm_softc *,
136 struct tegra_soctherm_sensor *);
137 static void tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *);
138 static int tegra_soctherm_decodeint(uint32_t, uint32_t);
139 static int64_t tegra_soctherm_divide(int64_t, int64_t);
140
141 CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc),
142 tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL);
143
144 #define SOCTHERM_READ(sc, reg) \
145 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
146 #define SOCTHERM_WRITE(sc, reg, val) \
147 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
148 #define SOCTHERM_SET_CLEAR(sc, reg, set, clr) \
149 tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr))
150
151 #define SENSOR_READ(sc, s, reg) \
152 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg))
153 #define SENSOR_WRITE(sc, s, reg, val) \
154 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val))
155 #define SENSOR_SET_CLEAR(sc, s, reg, set, clr) \
156 tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr))
157
158 static int
159 tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux)
160 {
161 return 1;
162 }
163
164 static void
165 tegra_soctherm_attach(device_t parent, device_t self, void *aux)
166 {
167 struct tegra_soctherm_softc * const sc = device_private(self);
168 struct tegraio_attach_args * const tio = aux;
169 const struct tegra_locators * const loc = &tio->tio_loc;
170
171 sc->sc_dev = self;
172 sc->sc_bst = tio->tio_bst;
173 bus_space_subregion(tio->tio_bst, tio->tio_bsh,
174 loc->loc_offset, loc->loc_size, &sc->sc_bsh);
175
176 aprint_naive("\n");
177 aprint_normal(": SOC_THERM\n");
178
179 if (tegra_chip_id() == CHIP_ID_TEGRA124) {
180 sc->sc_config = &tegra124_soctherm_config;
181 }
182
183 if (sc->sc_config == NULL) {
184 aprint_error_dev(self, "unsupported chip ID\n");
185 return;
186 }
187
188 tegra_car_soctherm_enable();
189
190 tegra_soctherm_init_sensors(sc);
191 }
192
193 static void
194 tegra_soctherm_init_sensors(struct tegra_soctherm_softc *sc)
195 {
196 const struct tegra_soctherm_config *config = sc->sc_config;
197 const u_int nsensors = __arraycount(tegra_soctherm_sensors);
198 const size_t len = sizeof(*sc->sc_sensors) * nsensors;
199 uint32_t val;
200 u_int n;
201
202 val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG);
203 sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE);
204 sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE);
205 val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG);
206 const int calib_cp = tegra_soctherm_decodeint(val,
207 FUSE_SPARE_REALIGNMENT_CP);
208 const int calib_ft = tegra_soctherm_decodeint(val,
209 FUSE_SPARE_REALIGNMENT_FT);
210 sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp;
211 sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft;
212
213 sc->sc_sme = sysmon_envsys_create();
214 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
215 sc->sc_sme->sme_cookie = sc;
216 sc->sc_sme->sme_refresh = tegra_soctherm_refresh;
217
218 sc->sc_sensors = kmem_zalloc(len, KM_SLEEP);
219 for (n = 0; n < nsensors; n++) {
220 sc->sc_sensors[n] = tegra_soctherm_sensors[n];
221 tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]);
222 }
223
224 SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv);
225 SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG,
226 config->init_hotspot_off);
227
228 sysmon_envsys_register(sc->sc_sme);
229 }
230
231 static void
232 tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc,
233 struct tegra_soctherm_sensor *s)
234 {
235 const struct tegra_soctherm_config *config = sc->sc_config;
236 int64_t temp_a, temp_b, tmp;
237 uint32_t val;
238
239 val = tegra_fuse_read(s->s_fuse);
240 const int calib_cp = tegra_soctherm_decodeint(val,
241 FUSE_TSENSOR_CALIB_CP_TS_BASE);
242 const int calib_ft = tegra_soctherm_decodeint(val,
243 FUSE_TSENSOR_CALIB_FT_TS_BASE);
244 const int actual_cp = sc->sc_base_cp * 64 + calib_cp;
245 const int actual_ft = sc->sc_base_ft * 32 + calib_ft;
246
247 const int64_t d_sensor = actual_ft - actual_cp;
248 const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp;
249 const int mult = config->pdiv * config->tsample_ate;
250 const int div = config->tsample * config->pdiv_ate;
251
252 temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult,
253 d_sensor * div);
254 tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp -
255 (int64_t)actual_cp * sc->sc_actual_temp_ft;
256 temp_b = tegra_soctherm_divide(tmp, d_sensor);
257 temp_a = tegra_soctherm_divide(
258 temp_a * s->s_fuse_corr_alpha, 1000000);
259 temp_b = (uint16_t)tegra_soctherm_divide(
260 temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000);
261
262 s->s_therm_a = (int16_t)temp_a;
263 s->s_therm_b = (int16_t)temp_b;
264
265 SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
266 SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR |
267 SOC_THERM_TSENSOR_CONFIG0_STOP, 0);
268 SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
269 __SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) |
270 SOC_THERM_TSENSOR_CONFIG0_STOP);
271
272 SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET,
273 __SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) |
274 __SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) |
275 __SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) |
276 SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE);
277
278 SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET,
279 __SHIFTIN((uint16_t)s->s_therm_a,
280 SOC_THERM_TSENSOR_CONFIG2_THERM_A) |
281 __SHIFTIN((uint16_t)s->s_therm_b,
282 SOC_THERM_TSENSOR_CONFIG2_THERM_B));
283
284 SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
285 0, SOC_THERM_TSENSOR_CONFIG0_STOP);
286
287 s->s_data.units = ENVSYS_STEMP;
288 s->s_data.state = ENVSYS_SINVALID;
289 sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data);
290 }
291
292 static void
293 tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
294 {
295 struct tegra_soctherm_softc * const sc = sme->sme_cookie;
296 struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata;
297 uint32_t status;
298
299 status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET);
300 if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) {
301 const u_int temp = __SHIFTOUT(status,
302 SOC_THERM_TSENSOR_STATUS1_TEMP);
303 int64_t val = ((temp >> 8) & 0xff) * 1000000;
304 if (temp & 0x80)
305 val += 500000;
306 if (temp & 0x02)
307 val = -val;
308 edata->value_cur = val + 273150000;
309 edata->state = ENVSYS_SVALID;
310 } else {
311 edata->state = ENVSYS_SINVALID;
312 }
313 }
314
315 static int
316 tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask)
317 {
318 const uint32_t v = __SHIFTOUT(val, bitmask);
319 const int bits = popcount32(bitmask);
320 int ret = v << (32 - bits);
321 return ret >> (32 - bits);
322 }
323
324 static int64_t
325 tegra_soctherm_divide(int64_t num, int64_t denom)
326 {
327 int64_t ret = ((num << 16) * 2 + 1) / (2 * denom);
328 return ret >> 16;
329 }
330