s3c2800_clk.c revision 1.4 1 1.4 bsh /* $NetBSD: s3c2800_clk.c,v 1.4 2003/05/13 08:07:39 bsh Exp $ */
2 1.1 bsh
3 1.1 bsh /*
4 1.1 bsh * Copyright (c) 2002 Fujitsu Component Limited
5 1.1 bsh * Copyright (c) 2002 Genetec Corporation
6 1.1 bsh * All rights reserved.
7 1.1 bsh *
8 1.1 bsh * Redistribution and use in source and binary forms, with or without
9 1.1 bsh * modification, are permitted provided that the following conditions
10 1.1 bsh * are met:
11 1.1 bsh * 1. Redistributions of source code must retain the above copyright
12 1.1 bsh * notice, this list of conditions and the following disclaimer.
13 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 bsh * notice, this list of conditions and the following disclaimer in the
15 1.1 bsh * documentation and/or other materials provided with the distribution.
16 1.1 bsh * 3. Neither the name of The Fujitsu Component Limited nor the name of
17 1.1 bsh * Genetec corporation may not be used to endorse or promote products
18 1.1 bsh * derived from this software without specific prior written permission.
19 1.1 bsh *
20 1.1 bsh * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
21 1.1 bsh * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22 1.1 bsh * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 1.1 bsh * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
25 1.1 bsh * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 bsh * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 1.1 bsh * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 1.1 bsh * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 1.1 bsh * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 1.1 bsh * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 1.1 bsh * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 bsh * SUCH DAMAGE.
33 1.1 bsh */
34 1.1 bsh
35 1.1 bsh
36 1.1 bsh /*
37 1.1 bsh * Clock & Power Management
38 1.1 bsh */
39 1.1 bsh #include <sys/param.h>
40 1.1 bsh #include <sys/systm.h>
41 1.1 bsh #include <sys/kernel.h>
42 1.1 bsh #include <sys/time.h>
43 1.1 bsh
44 1.1 bsh #include <machine/bus.h>
45 1.1 bsh #include <machine/intr.h>
46 1.1 bsh #include <arm/cpufunc.h>
47 1.1 bsh
48 1.1 bsh #include <arm/s3c2xx0/s3c2800reg.h>
49 1.1 bsh #include <arm/s3c2xx0/s3c2800var.h>
50 1.1 bsh
51 1.1 bsh
52 1.1 bsh #ifndef STATHZ
53 1.1 bsh #define STATHZ 64
54 1.1 bsh #endif
55 1.1 bsh
56 1.4 bsh #define TIMER_FREQUENCY(pclk) ((pclk)/32) /* divider=1/32 */
57 1.1 bsh
58 1.1 bsh #define TIMER_RELOAD_VAL 1000
59 1.1 bsh #define COUNTS_PER_USEC 100
60 1.1 bsh
61 1.1 bsh static unsigned int timer0_reload_value;
62 1.1 bsh static unsigned int timer0_prescaler;
63 1.4 bsh static unsigned int timer0_mseccount;
64 1.4 bsh
65 1.4 bsh #define usec_to_counter(t) \
66 1.4 bsh ((timer0_mseccount*(t))/1000)
67 1.1 bsh
68 1.4 bsh #define counter_to_usec(c,pclk) \
69 1.4 bsh (((c)*timer0_prescaler*1000)/(TIMER_FREQUENCY(pclk)/1000))
70 1.1 bsh
71 1.1 bsh /*
72 1.1 bsh * microtime:
73 1.1 bsh *
74 1.1 bsh * Fill in the specified timeval struct with the current time
75 1.1 bsh * accurate to the microsecond.
76 1.1 bsh */
77 1.1 bsh void
78 1.1 bsh microtime(struct timeval *tvp)
79 1.1 bsh {
80 1.1 bsh struct s3c2800_softc *sc = (struct s3c2800_softc *) s3c2xx0_softc;
81 1.1 bsh int save, int_pend0, int_pend1, count, delta;
82 1.1 bsh static struct timeval last;
83 1.4 bsh int pclk = s3c2xx0_softc->sc_pclk;
84 1.1 bsh
85 1.1 bsh if( timer0_reload_value == 0 ){
86 1.1 bsh /* not initialized yet */
87 1.1 bsh tvp->tv_sec = 0;
88 1.1 bsh tvp->tv_usec = 0;
89 1.1 bsh return;
90 1.1 bsh }
91 1.1 bsh
92 1.1 bsh save = disable_interrupts(I32_bit);
93 1.1 bsh
94 1.1 bsh again:
95 1.1 bsh int_pend0 = S3C2800_INT_TIMER0 &
96 1.1 bsh bus_space_read_4(sc->sc_sx.sc_iot, sc->sc_sx.sc_intctl_ioh,
97 1.1 bsh INTCTL_SRCPND);
98 1.1 bsh count = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_tmr0_ioh,
99 1.1 bsh TIMER_TMCNT);
100 1.1 bsh
101 1.1 bsh for (;;){
102 1.1 bsh
103 1.1 bsh int_pend1 = S3C2800_INT_TIMER0 &
104 1.1 bsh bus_space_read_4(sc->sc_sx.sc_iot, sc->sc_sx.sc_intctl_ioh,
105 1.1 bsh INTCTL_SRCPND);
106 1.1 bsh if( int_pend0 == int_pend1 )
107 1.1 bsh break;
108 1.1 bsh
109 1.1 bsh /*
110 1.1 bsh * Down counter reached to zero while we were reading
111 1.1 bsh * timer values. do it again to get consistent values.
112 1.1 bsh */
113 1.1 bsh int_pend0 = int_pend1;
114 1.1 bsh count = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_tmr0_ioh,
115 1.1 bsh TIMER_TMCNT);
116 1.1 bsh }
117 1.1 bsh
118 1.1 bsh if( __predict_false(count > timer0_reload_value) ){
119 1.1 bsh /*
120 1.1 bsh * Buggy Hardware Warning --- sometimes timer counter
121 1.1 bsh * reads bogus value like 0xffff. I guess it happens when
122 1.1 bsh * the timer is reloaded.
123 1.1 bsh */
124 1.1 bsh #if 0
125 1.1 bsh printf( "Bogus value from timer counter: %d\n", count );
126 1.1 bsh #endif
127 1.1 bsh goto again;
128 1.1 bsh }
129 1.1 bsh
130 1.1 bsh /* copy system time */
131 1.1 bsh *tvp = time;
132 1.1 bsh
133 1.1 bsh restore_interrupts(save);
134 1.1 bsh
135 1.1 bsh delta = timer0_reload_value - count;
136 1.1 bsh
137 1.1 bsh if( int_pend1 ){
138 1.1 bsh /*
139 1.1 bsh * down counter underflow, but
140 1.1 bsh * clock interrupt have not serviced yet
141 1.1 bsh */
142 1.1 bsh #if 1
143 1.1 bsh tvp->tv_usec += tick;
144 1.1 bsh #else
145 1.1 bsh delta = 0;
146 1.1 bsh #endif
147 1.1 bsh }
148 1.1 bsh
149 1.4 bsh tvp->tv_usec += counter_to_usec(delta, pclk);
150 1.1 bsh
151 1.1 bsh /* Make sure microseconds doesn't overflow. */
152 1.1 bsh tvp->tv_sec += tvp->tv_usec / 1000000;
153 1.1 bsh tvp->tv_usec = tvp->tv_usec % 1000000;
154 1.1 bsh
155 1.1 bsh if (last.tv_sec &&
156 1.1 bsh (tvp->tv_sec < last.tv_sec ||
157 1.1 bsh (tvp->tv_sec == last.tv_sec &&
158 1.1 bsh tvp->tv_usec < last.tv_usec) ) ){
159 1.1 bsh
160 1.1 bsh /* XXX: This happens very often when the kernel runs
161 1.1 bsh under Multi-ICE */
162 1.1 bsh #if 0
163 1.1 bsh printf("time reversal: %ld.%06ld(%d,%d) -> %ld.%06ld(%d,%d)\n",
164 1.1 bsh last.tv_sec, last.tv_usec,
165 1.1 bsh last_count, last_pend,
166 1.1 bsh tvp->tv_sec, tvp->tv_usec,
167 1.1 bsh count, int_pend1 );
168 1.1 bsh #endif
169 1.1 bsh
170 1.1 bsh /* make sure the time has advanced. */
171 1.1 bsh *tvp = last;
172 1.1 bsh tvp->tv_usec++;
173 1.1 bsh if( tvp->tv_usec >= 1000000 ){
174 1.1 bsh tvp->tv_usec -= 1000000;
175 1.1 bsh tvp->tv_sec++;
176 1.1 bsh }
177 1.1 bsh }
178 1.1 bsh
179 1.1 bsh last = *tvp;
180 1.1 bsh }
181 1.1 bsh
182 1.1 bsh static __inline int
183 1.1 bsh read_timer(struct s3c2800_softc *sc)
184 1.1 bsh {
185 1.1 bsh int count;
186 1.1 bsh
187 1.1 bsh do {
188 1.1 bsh count = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_tmr0_ioh,
189 1.1 bsh TIMER_TMCNT);
190 1.1 bsh } while ( __predict_false(count > timer0_reload_value) );
191 1.1 bsh
192 1.1 bsh return count;
193 1.1 bsh }
194 1.1 bsh
195 1.1 bsh /*
196 1.1 bsh * delay:
197 1.1 bsh *
198 1.1 bsh * Delay for at least N microseconds.
199 1.1 bsh */
200 1.1 bsh void
201 1.1 bsh delay(u_int n)
202 1.1 bsh {
203 1.1 bsh struct s3c2800_softc *sc = (struct s3c2800_softc *) s3c2xx0_softc;
204 1.1 bsh int v0, v1, delta;
205 1.4 bsh u_int ucnt;
206 1.1 bsh
207 1.1 bsh if ( timer0_reload_value == 0 ){
208 1.1 bsh /* not initialized yet */
209 1.1 bsh while ( n-- > 0 ){
210 1.1 bsh int m;
211 1.1 bsh
212 1.1 bsh for (m=0; m<100; ++m )
213 1.1 bsh ;
214 1.1 bsh }
215 1.1 bsh return;
216 1.1 bsh }
217 1.1 bsh
218 1.1 bsh /* read down counter */
219 1.1 bsh v0 = read_timer(sc);
220 1.1 bsh
221 1.4 bsh ucnt = usec_to_counter(n);
222 1.4 bsh
223 1.4 bsh while( ucnt > 0 ) {
224 1.1 bsh v1 = read_timer(sc);
225 1.1 bsh delta = v0 - v1;
226 1.4 bsh if ( delta < 0 )
227 1.1 bsh delta += timer0_reload_value;
228 1.1 bsh #ifdef DEBUG
229 1.1 bsh if (delta < 0 || delta > timer0_reload_value)
230 1.1 bsh panic("wrong value from timer counter");
231 1.1 bsh #endif
232 1.1 bsh
233 1.4 bsh if((u_int)delta < ucnt){
234 1.4 bsh ucnt -= (u_int)delta;
235 1.4 bsh v0 = v1;
236 1.4 bsh }
237 1.4 bsh else {
238 1.4 bsh ucnt = 0;
239 1.4 bsh }
240 1.1 bsh }
241 1.1 bsh /*NOTREACHED*/
242 1.1 bsh }
243 1.4 bsh
244 1.1 bsh /*
245 1.1 bsh * inittodr:
246 1.1 bsh *
247 1.1 bsh * Initialize time from the time-of-day register.
248 1.1 bsh */
249 1.1 bsh void
250 1.1 bsh inittodr(time_t base)
251 1.1 bsh {
252 1.1 bsh
253 1.1 bsh time.tv_sec = base;
254 1.1 bsh time.tv_usec = 0;
255 1.1 bsh }
256 1.4 bsh
257 1.1 bsh /*
258 1.1 bsh * resettodr:
259 1.1 bsh *
260 1.1 bsh * Reset the time-of-day register with the current time.
261 1.1 bsh */
262 1.1 bsh void
263 1.1 bsh resettodr(void)
264 1.1 bsh {
265 1.1 bsh }
266 1.1 bsh
267 1.1 bsh void
268 1.1 bsh setstatclockrate(hz)
269 1.1 bsh int hz;
270 1.1 bsh {
271 1.1 bsh }
272 1.1 bsh
273 1.1 bsh
274 1.1 bsh #define hardintr (int (*)(void *))hardclock
275 1.1 bsh #define statintr (int (*)(void *))statclock
276 1.1 bsh
277 1.1 bsh void
278 1.1 bsh cpu_initclocks()
279 1.1 bsh {
280 1.4 bsh struct s3c2800_softc *sc = (struct s3c2800_softc *)s3c2xx0_softc;
281 1.1 bsh long tc;
282 1.1 bsh int prescaler;
283 1.4 bsh int pclk = s3c2xx0_softc->sc_pclk;
284 1.1 bsh
285 1.1 bsh stathz = STATHZ;
286 1.1 bsh profhz = stathz;
287 1.1 bsh
288 1.1 bsh #define calc_time_constant(hz) \
289 1.1 bsh do { \
290 1.1 bsh prescaler = 1; \
291 1.1 bsh do { \
292 1.1 bsh ++prescaler; \
293 1.4 bsh tc = TIMER_FREQUENCY(pclk) /(hz)/ prescaler; \
294 1.1 bsh } while( tc > 65536 ); \
295 1.1 bsh } while(0)
296 1.1 bsh
297 1.1 bsh
298 1.1 bsh
299 1.1 bsh /* Use the channels 0 and 1 for hardclock and statclock, respectively */
300 1.4 bsh bus_space_write_4(sc->sc_sx.sc_iot, sc->sc_tmr0_ioh, TIMER_TMCON, 0);
301 1.4 bsh bus_space_write_4(sc->sc_sx.sc_iot, sc->sc_tmr1_ioh, TIMER_TMCON, 0);
302 1.4 bsh
303 1.1 bsh calc_time_constant(hz);
304 1.1 bsh bus_space_write_4(sc->sc_sx.sc_iot, sc->sc_tmr0_ioh, TIMER_TMDAT,
305 1.1 bsh ((prescaler - 1) << 16) | (tc - 1));
306 1.1 bsh timer0_prescaler = prescaler;
307 1.1 bsh timer0_reload_value = tc;
308 1.4 bsh timer0_mseccount = TIMER_FREQUENCY(pclk)/timer0_prescaler/1000 ;
309 1.1 bsh
310 1.1 bsh printf("clock: hz=%d stathz = %d PCLK=%d prescaler=%d tc=%ld\n",
311 1.4 bsh hz, stathz, pclk, prescaler, tc);
312 1.1 bsh
313 1.1 bsh calc_time_constant(stathz);
314 1.1 bsh bus_space_write_4(sc->sc_sx.sc_iot, sc->sc_tmr1_ioh, TIMER_TMDAT,
315 1.1 bsh ((prescaler - 1) << 16) | (tc - 1));
316 1.1 bsh
317 1.1 bsh
318 1.4 bsh s3c2800_intr_establish(S3C2800_INT_TIMER0, IPL_CLOCK,
319 1.4 bsh IST_NONE, hardintr, 0);
320 1.4 bsh s3c2800_intr_establish(S3C2800_INT_TIMER1, IPL_STATCLOCK,
321 1.4 bsh IST_NONE, statintr, 0);
322 1.1 bsh
323 1.1 bsh /* start timers */
324 1.4 bsh bus_space_write_4(sc->sc_sx.sc_iot, sc->sc_tmr0_ioh, TIMER_TMCON,
325 1.4 bsh TMCON_MUX_DIV32|TMCON_INTENA|TMCON_ENABLE);
326 1.4 bsh bus_space_write_4(sc->sc_sx.sc_iot, sc->sc_tmr1_ioh, TIMER_TMCON,
327 1.4 bsh TMCON_MUX_DIV4|TMCON_INTENA|TMCON_ENABLE);
328 1.1 bsh
329 1.1 bsh /* stop timer2 */
330 1.1 bsh {
331 1.1 bsh bus_space_handle_t tmp_ioh;
332 1.1 bsh
333 1.1 bsh bus_space_map(sc->sc_sx.sc_iot, S3C2800_TIMER2_BASE,
334 1.1 bsh S3C2800_TIMER_SIZE, 0, &tmp_ioh);
335 1.1 bsh
336 1.1 bsh bus_space_write_4(sc->sc_sx.sc_iot, tmp_ioh,
337 1.1 bsh TIMER_TMCON, 0);
338 1.1 bsh
339 1.1 bsh bus_space_unmap(sc->sc_sx.sc_iot, tmp_ioh,
340 1.1 bsh S3C2800_TIMER_SIZE);
341 1.1 bsh
342 1.1 bsh }
343 1.1 bsh }
344