1 1.11 thorpej /* $NetBSD: sun4i_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $ */ 2 1.1 tnn 3 1.1 tnn /* 4 1.1 tnn * Copyright (c) 2019 Tobias Nygren 5 1.1 tnn * Copyright (c) 2018 Jonathan A. Kollasch 6 1.1 tnn * All rights reserved. 7 1.1 tnn * 8 1.1 tnn * Redistribution and use in source and binary forms, with or without 9 1.1 tnn * modification, are permitted provided that the following conditions 10 1.1 tnn * are met: 11 1.1 tnn * 1. Redistributions of source code must retain the above copyright 12 1.1 tnn * notice, this list of conditions and the following disclaimer. 13 1.1 tnn * 2. Redistributions in binary form must reproduce the above copyright 14 1.1 tnn * notice, this list of conditions and the following disclaimer in the 15 1.1 tnn * documentation and/or other materials provided with the distribution. 16 1.1 tnn * 17 1.1 tnn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 1.1 tnn * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 1.1 tnn * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 1.1 tnn * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 21 1.1 tnn * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 22 1.1 tnn * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 23 1.1 tnn * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 24 1.1 tnn * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 25 1.1 tnn * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 26 1.1 tnn * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 27 1.1 tnn * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 1.1 tnn */ 29 1.1 tnn 30 1.1 tnn #include <sys/cdefs.h> 31 1.11 thorpej __KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $"); 32 1.1 tnn 33 1.1 tnn #include <sys/param.h> 34 1.1 tnn #include <sys/device.h> 35 1.1 tnn #include <sys/systm.h> 36 1.1 tnn #include <sys/bus.h> 37 1.1 tnn #include <sys/intr.h> 38 1.1 tnn #include <sys/kernel.h> 39 1.1 tnn #include <sys/bitops.h> 40 1.1 tnn #include <dev/spi/spivar.h> 41 1.1 tnn #include <arm/sunxi/sun4i_spireg.h> 42 1.1 tnn #include <dev/fdt/fdtvar.h> 43 1.1 tnn 44 1.7 thorpej static const struct device_compatible_entry compat_data[] = { 45 1.7 thorpej { .compat = "allwinner,sun4i-a10-spi" }, 46 1.7 thorpej DEVICE_COMPAT_EOL 47 1.1 tnn }; 48 1.1 tnn 49 1.1 tnn struct sun4ispi_softc { 50 1.1 tnn device_t sc_dev; 51 1.1 tnn bus_space_tag_t sc_bst; 52 1.1 tnn bus_space_handle_t sc_bsh; 53 1.1 tnn void *sc_intrh; 54 1.1 tnn struct spi_controller sc_spi; 55 1.1 tnn SIMPLEQ_HEAD(,spi_transfer) sc_q; 56 1.1 tnn struct spi_transfer *sc_transfer; 57 1.1 tnn struct spi_chunk *sc_rchunk, *sc_wchunk; 58 1.1 tnn uint32_t sc_CTL; 59 1.1 tnn u_int sc_modclkrate; 60 1.1 tnn volatile bool sc_running; 61 1.1 tnn }; 62 1.1 tnn 63 1.1 tnn #define SPIREG_READ(sc, reg) \ 64 1.1 tnn bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) 65 1.1 tnn #define SPIREG_WRITE(sc, reg, val) \ 66 1.1 tnn bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 67 1.1 tnn 68 1.1 tnn static int sun4ispi_match(device_t, cfdata_t, void *); 69 1.1 tnn static void sun4ispi_attach(device_t, device_t, void *); 70 1.1 tnn 71 1.1 tnn static int sun4ispi_configure(void *, int, int, int); 72 1.1 tnn static int sun4ispi_transfer(void *, struct spi_transfer *); 73 1.1 tnn 74 1.1 tnn static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t); 75 1.1 tnn static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t); 76 1.2 tnn static void sun4ispi_rxtx(struct sun4ispi_softc * const); 77 1.1 tnn static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const); 78 1.1 tnn static void sun4ispi_start(struct sun4ispi_softc * const); 79 1.1 tnn static int sun4ispi_intr(void *); 80 1.1 tnn 81 1.1 tnn CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc), 82 1.1 tnn sun4ispi_match, sun4ispi_attach, NULL, NULL); 83 1.1 tnn 84 1.1 tnn static int 85 1.1 tnn sun4ispi_match(device_t parent, cfdata_t cf, void *aux) 86 1.1 tnn { 87 1.1 tnn struct fdt_attach_args * const faa = aux; 88 1.1 tnn 89 1.7 thorpej return of_compatible_match(faa->faa_phandle, compat_data); 90 1.1 tnn } 91 1.1 tnn 92 1.1 tnn static void 93 1.1 tnn sun4ispi_attach(device_t parent, device_t self, void *aux) 94 1.1 tnn { 95 1.1 tnn struct sun4ispi_softc * const sc = device_private(self); 96 1.1 tnn struct fdt_attach_args * const faa = aux; 97 1.1 tnn const int phandle = faa->faa_phandle; 98 1.1 tnn bus_addr_t addr; 99 1.1 tnn bus_size_t size; 100 1.1 tnn struct clk *clk, *modclk; 101 1.1 tnn char intrstr[128]; 102 1.1 tnn 103 1.1 tnn sc->sc_dev = self; 104 1.1 tnn sc->sc_bst = faa->faa_bst; 105 1.1 tnn SIMPLEQ_INIT(&sc->sc_q); 106 1.1 tnn 107 1.1 tnn if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL 108 1.1 tnn || clk_enable(clk) != 0) { 109 1.1 tnn aprint_error(": couldn't enable clock\n"); 110 1.1 tnn return; 111 1.1 tnn } 112 1.1 tnn 113 1.1 tnn if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL 114 1.1 tnn || clk_set_rate(modclk, clk_get_rate(clk)) != 0 115 1.1 tnn || clk_enable(modclk) != 0) { 116 1.1 tnn aprint_error(": couldn't enable module clock\n"); 117 1.1 tnn return; 118 1.1 tnn } 119 1.1 tnn sc->sc_modclkrate = clk_get_rate(modclk); 120 1.1 tnn 121 1.1 tnn if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0 122 1.1 tnn || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { 123 1.1 tnn aprint_error(": couldn't map registers\n"); 124 1.1 tnn return; 125 1.1 tnn } 126 1.1 tnn 127 1.1 tnn SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST 128 1.1 tnn | SPI_CTL_TF_RST | SPI_CTL_MODE); 129 1.1 tnn SPIREG_WRITE(sc, SPI_DMACTL, 0); 130 1.1 tnn SPIREG_WRITE(sc, SPI_WAIT, 0); 131 1.1 tnn SPIREG_WRITE(sc, SPI_INTCTL, 0); 132 1.1 tnn SPIREG_WRITE(sc, SPI_INT_STA, ~0); 133 1.1 tnn 134 1.1 tnn if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { 135 1.1 tnn aprint_error(": failed to decode interrupt\n"); 136 1.1 tnn return; 137 1.1 tnn } 138 1.1 tnn 139 1.6 jmcneill sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0, 140 1.6 jmcneill sun4ispi_intr, sc, device_xname(self)); 141 1.1 tnn if (sc->sc_intrh == NULL) { 142 1.2 tnn aprint_error(": unable to establish interrupt\n"); 143 1.1 tnn return; 144 1.1 tnn } 145 1.1 tnn 146 1.1 tnn aprint_naive("\n"); 147 1.1 tnn aprint_normal(": SPI\n"); 148 1.1 tnn aprint_normal_dev(self, "interrupting on %s\n", intrstr); 149 1.1 tnn 150 1.1 tnn sc->sc_spi.sct_cookie = sc; 151 1.1 tnn sc->sc_spi.sct_configure = sun4ispi_configure; 152 1.1 tnn sc->sc_spi.sct_transfer = sun4ispi_transfer; 153 1.1 tnn (void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves); 154 1.11 thorpej 155 1.11 thorpej spibus_attach(self, &sc->sc_spi); 156 1.1 tnn } 157 1.1 tnn 158 1.1 tnn static int 159 1.1 tnn sun4ispi_configure(void *cookie, int slave, int mode, int speed) 160 1.1 tnn { 161 1.1 tnn struct sun4ispi_softc * const sc = cookie; 162 1.1 tnn uint32_t ctl, cctl; 163 1.1 tnn uint32_t minfreq, maxfreq; 164 1.1 tnn 165 1.1 tnn minfreq = sc->sc_modclkrate >> 16; 166 1.1 tnn maxfreq = sc->sc_modclkrate >> 1; 167 1.1 tnn 168 1.1 tnn if (speed <= 0 || speed < minfreq || speed > maxfreq) 169 1.1 tnn return EINVAL; 170 1.1 tnn 171 1.1 tnn if (slave >= sc->sc_spi.sct_nslaves) 172 1.1 tnn return EINVAL; 173 1.1 tnn 174 1.1 tnn ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN; 175 1.1 tnn 176 1.1 tnn switch (mode) { 177 1.1 tnn case SPI_MODE_0: 178 1.1 tnn ctl |= 0; 179 1.1 tnn break; 180 1.1 tnn case SPI_MODE_1: 181 1.1 tnn ctl |= SPI_CTL_PHA; 182 1.1 tnn break; 183 1.1 tnn case SPI_MODE_2: 184 1.1 tnn ctl |= SPI_CTL_POL; 185 1.1 tnn break; 186 1.1 tnn case SPI_MODE_3: 187 1.1 tnn ctl |= SPI_CTL_PHA | SPI_CTL_POL; 188 1.1 tnn break; 189 1.1 tnn default: 190 1.1 tnn return EINVAL; 191 1.1 tnn } 192 1.1 tnn 193 1.1 tnn if (speed < sc->sc_modclkrate / 512) { 194 1.1 tnn for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) { 195 1.1 tnn if ((sc->sc_modclkrate / (1 << cctl)) <= speed) 196 1.1 tnn goto cdr1_found; 197 1.1 tnn } 198 1.1 tnn return EINVAL; 199 1.1 tnn cdr1_found: 200 1.1 tnn cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1); 201 1.1 tnn } else { 202 1.1 tnn cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1; 203 1.1 tnn cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2); 204 1.1 tnn } 205 1.1 tnn 206 1.1 tnn device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n", 207 1.1 tnn ctl, cctl, sc->sc_modclkrate, 208 1.1 tnn (cctl & SPI_CCTL_DRS) 209 1.1 tnn ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1))) 210 1.1 tnn : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1)) 211 1.1 tnn ); 212 1.1 tnn 213 1.1 tnn sc->sc_CTL = ctl; 214 1.1 tnn SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN); 215 1.1 tnn SPIREG_WRITE(sc, SPI_CCTL, cctl); 216 1.1 tnn SPIREG_WRITE(sc, SPI_CTL, ctl); 217 1.1 tnn 218 1.1 tnn return 0; 219 1.1 tnn } 220 1.1 tnn 221 1.1 tnn static int 222 1.1 tnn sun4ispi_transfer(void *cookie, struct spi_transfer *st) 223 1.1 tnn { 224 1.1 tnn struct sun4ispi_softc * const sc = cookie; 225 1.1 tnn int s; 226 1.1 tnn 227 1.1 tnn s = splbio(); 228 1.1 tnn spi_transq_enqueue(&sc->sc_q, st); 229 1.1 tnn if (sc->sc_running == false) { 230 1.1 tnn sun4ispi_start(sc); 231 1.1 tnn } 232 1.1 tnn splx(s); 233 1.1 tnn 234 1.1 tnn return 0; 235 1.1 tnn } 236 1.1 tnn 237 1.1 tnn static void 238 1.1 tnn sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen) 239 1.1 tnn { 240 1.1 tnn struct spi_chunk *chunk = sc->sc_wchunk; 241 1.1 tnn size_t len; 242 1.1 tnn uint8_t b; 243 1.1 tnn 244 1.1 tnn if (chunk == NULL) 245 1.1 tnn return; 246 1.1 tnn 247 1.1 tnn len = MIN(maxlen, chunk->chunk_wresid); 248 1.1 tnn chunk->chunk_wresid -= len; 249 1.1 tnn while (len--) { 250 1.1 tnn if (chunk->chunk_wptr) { 251 1.1 tnn b = *chunk->chunk_wptr++; 252 1.1 tnn } else { 253 1.1 tnn b = 0; 254 1.1 tnn } 255 1.1 tnn bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b); 256 1.1 tnn } 257 1.1 tnn if (sc->sc_wchunk->chunk_wresid == 0) { 258 1.1 tnn sc->sc_wchunk = sc->sc_wchunk->chunk_next; 259 1.1 tnn } 260 1.1 tnn } 261 1.1 tnn 262 1.1 tnn static void 263 1.1 tnn sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen) 264 1.1 tnn { 265 1.1 tnn struct spi_chunk *chunk = sc->sc_rchunk; 266 1.1 tnn size_t len; 267 1.1 tnn uint8_t b; 268 1.1 tnn 269 1.1 tnn if (chunk == NULL) 270 1.1 tnn return; 271 1.1 tnn 272 1.1 tnn len = MIN(maxlen, chunk->chunk_rresid); 273 1.1 tnn chunk->chunk_rresid -= len; 274 1.1 tnn 275 1.1 tnn while (len--) { 276 1.1 tnn b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA); 277 1.1 tnn if (chunk->chunk_rptr) { 278 1.1 tnn *chunk->chunk_rptr++ = b; 279 1.1 tnn } 280 1.1 tnn } 281 1.1 tnn if (sc->sc_rchunk->chunk_rresid == 0) { 282 1.1 tnn sc->sc_rchunk = sc->sc_rchunk->chunk_next; 283 1.1 tnn } 284 1.1 tnn } 285 1.1 tnn 286 1.1 tnn static void 287 1.1 tnn sun4ispi_rxtx(struct sun4ispi_softc * const sc) 288 1.1 tnn { 289 1.1 tnn bool again; 290 1.1 tnn size_t rxavail, txavail; 291 1.1 tnn uint32_t fsr; 292 1.1 tnn 293 1.1 tnn /* service both FIFOs until no more progress can be made */ 294 1.1 tnn again = true; 295 1.1 tnn while (again) { 296 1.1 tnn again = false; 297 1.1 tnn fsr = SPIREG_READ(sc, SPI_FIFO_STA); 298 1.1 tnn rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT); 299 1.1 tnn txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT); 300 1.1 tnn if (rxavail > 0) { 301 1.1 tnn KASSERT(sc->sc_rchunk != NULL); 302 1.1 tnn sun4ispi_rxfifo_drain(sc, rxavail); 303 1.1 tnn again = true; 304 1.1 tnn } 305 1.1 tnn if (txavail > 0 && sc->sc_wchunk != NULL) { 306 1.1 tnn sun4ispi_txfifo_fill(sc, txavail); 307 1.1 tnn again = true; 308 1.1 tnn } 309 1.1 tnn } 310 1.1 tnn } 311 1.1 tnn 312 1.1 tnn static void 313 1.1 tnn sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc) 314 1.1 tnn { 315 1.1 tnn uint32_t intctl; 316 1.1 tnn 317 1.1 tnn intctl = SPI_INTCTL_TX_INT_EN; 318 1.1 tnn intctl |= SPI_INTCTL_RF_OF_INT_EN; 319 1.1 tnn intctl |= SPI_INTCTL_TF_UR_INT_EN; 320 1.1 tnn 321 1.1 tnn if (sc->sc_rchunk) { 322 1.1 tnn if (sc->sc_rchunk->chunk_rresid >= 32) { 323 1.1 tnn intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN; 324 1.1 tnn } else { 325 1.1 tnn intctl |= SPI_INTCTL_RF_RDY_INT_EN; 326 1.1 tnn } 327 1.1 tnn } 328 1.1 tnn if (sc->sc_wchunk) { 329 1.1 tnn intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN; 330 1.1 tnn } 331 1.1 tnn SPIREG_WRITE(sc, SPI_INTCTL, intctl); 332 1.1 tnn } 333 1.1 tnn 334 1.1 tnn static void 335 1.1 tnn sun4ispi_start(struct sun4ispi_softc * const sc) 336 1.1 tnn { 337 1.1 tnn struct spi_transfer *st; 338 1.1 tnn uint32_t ctl; 339 1.1 tnn struct spi_chunk *chunk; 340 1.1 tnn size_t burstcount; 341 1.1 tnn 342 1.1 tnn while ((st = spi_transq_first(&sc->sc_q)) != NULL) { 343 1.1 tnn 344 1.1 tnn spi_transq_dequeue(&sc->sc_q); 345 1.1 tnn 346 1.1 tnn KASSERT(sc->sc_transfer == NULL); 347 1.1 tnn sc->sc_transfer = st; 348 1.1 tnn sc->sc_rchunk = sc->sc_wchunk = st->st_chunks; 349 1.1 tnn sc->sc_running = true; 350 1.1 tnn 351 1.1 tnn burstcount = 0; 352 1.1 tnn for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) { 353 1.1 tnn burstcount += chunk->chunk_count; 354 1.1 tnn } 355 1.1 tnn KASSERT(burstcount <= SPI_BC_BC); 356 1.1 tnn SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC)); 357 1.1 tnn SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC)); 358 1.1 tnn 359 1.1 tnn sun4ispi_rxtx(sc); 360 1.1 tnn sun4ispi_set_interrupt_mask(sc); 361 1.1 tnn 362 1.1 tnn KASSERT(st->st_slave < sc->sc_spi.sct_nslaves); 363 1.1 tnn ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH; 364 1.1 tnn SPIREG_WRITE(sc, SPI_CTL, ctl); 365 1.1 tnn 366 1.1 tnn if (!cold) 367 1.1 tnn return; 368 1.1 tnn 369 1.1 tnn for (;;) { 370 1.1 tnn (void) sun4ispi_intr(sc); 371 1.1 tnn if (ISSET(st->st_flags, SPI_F_DONE)) 372 1.1 tnn break; 373 1.1 tnn } 374 1.1 tnn } 375 1.1 tnn sc->sc_running = false; 376 1.1 tnn } 377 1.1 tnn 378 1.1 tnn static int 379 1.1 tnn sun4ispi_intr(void *cookie) 380 1.1 tnn { 381 1.1 tnn struct sun4ispi_softc * const sc = cookie; 382 1.1 tnn struct spi_transfer *st; 383 1.1 tnn uint32_t isr; 384 1.1 tnn 385 1.1 tnn isr = SPIREG_READ(sc, SPI_INT_STA); 386 1.1 tnn if (!isr) 387 1.1 tnn return 0; 388 1.1 tnn 389 1.1 tnn if (ISSET(isr, SPI_INT_STA_RO)) { 390 1.1 tnn device_printf(sc->sc_dev, "RXFIFO overflow\n"); 391 1.1 tnn } 392 1.1 tnn if (ISSET(isr, SPI_INT_STA_TU)) { 393 1.1 tnn device_printf(sc->sc_dev, "TXFIFO underrun\n"); 394 1.1 tnn } 395 1.1 tnn 396 1.1 tnn sun4ispi_rxtx(sc); 397 1.1 tnn 398 1.1 tnn if (ISSET(isr, SPI_INT_STA_TC)) { 399 1.1 tnn SPIREG_WRITE(sc, SPI_INTCTL, 0); 400 1.1 tnn KASSERT(sc->sc_rchunk == NULL); 401 1.1 tnn KASSERT(sc->sc_wchunk == NULL); 402 1.1 tnn st = sc->sc_transfer; 403 1.1 tnn sc->sc_transfer = NULL; 404 1.1 tnn KASSERT(st != NULL); 405 1.1 tnn spi_done(st, 0); 406 1.1 tnn sc->sc_running = false; 407 1.1 tnn } else { 408 1.1 tnn sun4ispi_set_interrupt_mask(sc); 409 1.1 tnn } 410 1.1 tnn SPIREG_WRITE(sc, SPI_INT_STA, isr); 411 1.1 tnn 412 1.1 tnn return 1; 413 1.1 tnn } 414