Home | History | Annotate | Line # | Download | only in sunxi
      1  1.11   thorpej /*	$NetBSD: sun4i_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $	*/
      2   1.1       tnn 
      3   1.1       tnn /*
      4   1.1       tnn  * Copyright (c) 2019 Tobias Nygren
      5   1.1       tnn  * Copyright (c) 2018 Jonathan A. Kollasch
      6   1.1       tnn  * All rights reserved.
      7   1.1       tnn  *
      8   1.1       tnn  * Redistribution and use in source and binary forms, with or without
      9   1.1       tnn  * modification, are permitted provided that the following conditions
     10   1.1       tnn  * are met:
     11   1.1       tnn  * 1. Redistributions of source code must retain the above copyright
     12   1.1       tnn  *    notice, this list of conditions and the following disclaimer.
     13   1.1       tnn  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1       tnn  *    notice, this list of conditions and the following disclaimer in the
     15   1.1       tnn  *    documentation and/or other materials provided with the distribution.
     16   1.1       tnn  *
     17   1.1       tnn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     18   1.1       tnn  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19   1.1       tnn  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20   1.1       tnn  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     21   1.1       tnn  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     22   1.1       tnn  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     23   1.1       tnn  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     24   1.1       tnn  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     25   1.1       tnn  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     26   1.1       tnn  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     27   1.1       tnn  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28   1.1       tnn  */
     29   1.1       tnn 
     30   1.1       tnn #include <sys/cdefs.h>
     31  1.11   thorpej __KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $");
     32   1.1       tnn 
     33   1.1       tnn #include <sys/param.h>
     34   1.1       tnn #include <sys/device.h>
     35   1.1       tnn #include <sys/systm.h>
     36   1.1       tnn #include <sys/bus.h>
     37   1.1       tnn #include <sys/intr.h>
     38   1.1       tnn #include <sys/kernel.h>
     39   1.1       tnn #include <sys/bitops.h>
     40   1.1       tnn #include <dev/spi/spivar.h>
     41   1.1       tnn #include <arm/sunxi/sun4i_spireg.h>
     42   1.1       tnn #include <dev/fdt/fdtvar.h>
     43   1.1       tnn 
     44   1.7   thorpej static const struct device_compatible_entry compat_data[] = {
     45   1.7   thorpej 	{ .compat = "allwinner,sun4i-a10-spi" },
     46   1.7   thorpej 	DEVICE_COMPAT_EOL
     47   1.1       tnn };
     48   1.1       tnn 
     49   1.1       tnn struct sun4ispi_softc {
     50   1.1       tnn 	device_t		sc_dev;
     51   1.1       tnn 	bus_space_tag_t		sc_bst;
     52   1.1       tnn 	bus_space_handle_t	sc_bsh;
     53   1.1       tnn 	void			*sc_intrh;
     54   1.1       tnn 	struct spi_controller	sc_spi;
     55   1.1       tnn 	SIMPLEQ_HEAD(,spi_transfer) sc_q;
     56   1.1       tnn 	struct spi_transfer	*sc_transfer;
     57   1.1       tnn 	struct spi_chunk	*sc_rchunk, *sc_wchunk;
     58   1.1       tnn 	uint32_t		sc_CTL;
     59   1.1       tnn 	u_int			sc_modclkrate;
     60   1.1       tnn 	volatile bool		sc_running;
     61   1.1       tnn };
     62   1.1       tnn 
     63   1.1       tnn #define SPIREG_READ(sc, reg) \
     64   1.1       tnn     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
     65   1.1       tnn #define SPIREG_WRITE(sc, reg, val) \
     66   1.1       tnn     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
     67   1.1       tnn 
     68   1.1       tnn static int sun4ispi_match(device_t, cfdata_t, void *);
     69   1.1       tnn static void sun4ispi_attach(device_t, device_t, void *);
     70   1.1       tnn 
     71   1.1       tnn static int sun4ispi_configure(void *, int, int, int);
     72   1.1       tnn static int sun4ispi_transfer(void *, struct spi_transfer *);
     73   1.1       tnn 
     74   1.1       tnn static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t);
     75   1.1       tnn static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t);
     76   1.2       tnn static void sun4ispi_rxtx(struct sun4ispi_softc * const);
     77   1.1       tnn static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const);
     78   1.1       tnn static void sun4ispi_start(struct sun4ispi_softc * const);
     79   1.1       tnn static int sun4ispi_intr(void *);
     80   1.1       tnn 
     81   1.1       tnn CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc),
     82   1.1       tnn     sun4ispi_match, sun4ispi_attach, NULL, NULL);
     83   1.1       tnn 
     84   1.1       tnn static int
     85   1.1       tnn sun4ispi_match(device_t parent, cfdata_t cf, void *aux)
     86   1.1       tnn {
     87   1.1       tnn 	struct fdt_attach_args * const faa = aux;
     88   1.1       tnn 
     89   1.7   thorpej 	return of_compatible_match(faa->faa_phandle, compat_data);
     90   1.1       tnn }
     91   1.1       tnn 
     92   1.1       tnn static void
     93   1.1       tnn sun4ispi_attach(device_t parent, device_t self, void *aux)
     94   1.1       tnn {
     95   1.1       tnn 	struct sun4ispi_softc * const sc = device_private(self);
     96   1.1       tnn 	struct fdt_attach_args * const faa = aux;
     97   1.1       tnn 	const int phandle = faa->faa_phandle;
     98   1.1       tnn 	bus_addr_t addr;
     99   1.1       tnn 	bus_size_t size;
    100   1.1       tnn 	struct clk *clk, *modclk;
    101   1.1       tnn 	char intrstr[128];
    102   1.1       tnn 
    103   1.1       tnn 	sc->sc_dev = self;
    104   1.1       tnn 	sc->sc_bst = faa->faa_bst;
    105   1.1       tnn 	SIMPLEQ_INIT(&sc->sc_q);
    106   1.1       tnn 
    107   1.1       tnn 	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
    108   1.1       tnn 	    || clk_enable(clk) != 0) {
    109   1.1       tnn 		aprint_error(": couldn't enable clock\n");
    110   1.1       tnn 		return;
    111   1.1       tnn 	}
    112   1.1       tnn 
    113   1.1       tnn 	if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
    114   1.1       tnn 	    || clk_set_rate(modclk, clk_get_rate(clk)) != 0
    115   1.1       tnn 	    || clk_enable(modclk) != 0) {
    116   1.1       tnn 		aprint_error(": couldn't enable module clock\n");
    117   1.1       tnn 		return;
    118   1.1       tnn 	}
    119   1.1       tnn 	sc->sc_modclkrate = clk_get_rate(modclk);
    120   1.1       tnn 
    121   1.1       tnn 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
    122   1.1       tnn 	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
    123   1.1       tnn 		aprint_error(": couldn't map registers\n");
    124   1.1       tnn 		return;
    125   1.1       tnn 	}
    126   1.1       tnn 
    127   1.1       tnn 	SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST
    128   1.1       tnn 	    | SPI_CTL_TF_RST | SPI_CTL_MODE);
    129   1.1       tnn 	SPIREG_WRITE(sc, SPI_DMACTL, 0);
    130   1.1       tnn 	SPIREG_WRITE(sc, SPI_WAIT, 0);
    131   1.1       tnn 	SPIREG_WRITE(sc, SPI_INTCTL, 0);
    132   1.1       tnn 	SPIREG_WRITE(sc, SPI_INT_STA, ~0);
    133   1.1       tnn 
    134   1.1       tnn 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    135   1.1       tnn 		aprint_error(": failed to decode interrupt\n");
    136   1.1       tnn 		return;
    137   1.1       tnn 	}
    138   1.1       tnn 
    139   1.6  jmcneill 	sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
    140   1.6  jmcneill 	    sun4ispi_intr, sc, device_xname(self));
    141   1.1       tnn 	if (sc->sc_intrh == NULL) {
    142   1.2       tnn 		aprint_error(": unable to establish interrupt\n");
    143   1.1       tnn 		return;
    144   1.1       tnn 	}
    145   1.1       tnn 
    146   1.1       tnn 	aprint_naive("\n");
    147   1.1       tnn 	aprint_normal(": SPI\n");
    148   1.1       tnn 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
    149   1.1       tnn 
    150   1.1       tnn 	sc->sc_spi.sct_cookie = sc;
    151   1.1       tnn 	sc->sc_spi.sct_configure = sun4ispi_configure;
    152   1.1       tnn 	sc->sc_spi.sct_transfer = sun4ispi_transfer;
    153   1.1       tnn 	(void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves);
    154  1.11   thorpej 
    155  1.11   thorpej 	spibus_attach(self, &sc->sc_spi);
    156   1.1       tnn }
    157   1.1       tnn 
    158   1.1       tnn static int
    159   1.1       tnn sun4ispi_configure(void *cookie, int slave, int mode, int speed)
    160   1.1       tnn {
    161   1.1       tnn 	struct sun4ispi_softc * const sc = cookie;
    162   1.1       tnn 	uint32_t ctl, cctl;
    163   1.1       tnn 	uint32_t minfreq, maxfreq;
    164   1.1       tnn 
    165   1.1       tnn 	minfreq = sc->sc_modclkrate >> 16;
    166   1.1       tnn 	maxfreq = sc->sc_modclkrate >> 1;
    167   1.1       tnn 
    168   1.1       tnn 	if (speed <= 0 || speed < minfreq || speed > maxfreq)
    169   1.1       tnn 		return EINVAL;
    170   1.1       tnn 
    171   1.1       tnn 	if (slave >= sc->sc_spi.sct_nslaves)
    172   1.1       tnn 		return EINVAL;
    173   1.1       tnn 
    174   1.1       tnn 	ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN;
    175   1.1       tnn 
    176   1.1       tnn 	switch (mode) {
    177   1.1       tnn 	case SPI_MODE_0:
    178   1.1       tnn 		ctl |= 0;
    179   1.1       tnn 		break;
    180   1.1       tnn 	case SPI_MODE_1:
    181   1.1       tnn 		ctl |= SPI_CTL_PHA;
    182   1.1       tnn 		break;
    183   1.1       tnn 	case SPI_MODE_2:
    184   1.1       tnn 		ctl |= SPI_CTL_POL;
    185   1.1       tnn 		break;
    186   1.1       tnn 	case SPI_MODE_3:
    187   1.1       tnn 		ctl |= SPI_CTL_PHA | SPI_CTL_POL;
    188   1.1       tnn 		break;
    189   1.1       tnn 	default:
    190   1.1       tnn 		return EINVAL;
    191   1.1       tnn 	}
    192   1.1       tnn 
    193   1.1       tnn 	if (speed < sc->sc_modclkrate / 512) {
    194   1.1       tnn 		for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
    195   1.1       tnn 			if ((sc->sc_modclkrate / (1 << cctl)) <= speed)
    196   1.1       tnn 				goto cdr1_found;
    197   1.1       tnn 		}
    198   1.1       tnn 		return EINVAL;
    199   1.1       tnn cdr1_found:
    200   1.1       tnn 		cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
    201   1.1       tnn 	} else {
    202   1.1       tnn 		cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
    203   1.1       tnn 		cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
    204   1.1       tnn 	}
    205   1.1       tnn 
    206   1.1       tnn 	device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
    207   1.1       tnn 	    ctl, cctl, sc->sc_modclkrate,
    208   1.1       tnn 	    (cctl & SPI_CCTL_DRS)
    209   1.1       tnn 	    ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
    210   1.1       tnn 	    : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
    211   1.1       tnn 	);
    212   1.1       tnn 
    213   1.1       tnn 	sc->sc_CTL = ctl;
    214   1.1       tnn 	SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN);
    215   1.1       tnn 	SPIREG_WRITE(sc, SPI_CCTL, cctl);
    216   1.1       tnn 	SPIREG_WRITE(sc, SPI_CTL, ctl);
    217   1.1       tnn 
    218   1.1       tnn 	return 0;
    219   1.1       tnn }
    220   1.1       tnn 
    221   1.1       tnn static int
    222   1.1       tnn sun4ispi_transfer(void *cookie, struct spi_transfer *st)
    223   1.1       tnn {
    224   1.1       tnn 	struct sun4ispi_softc * const sc = cookie;
    225   1.1       tnn 	int s;
    226   1.1       tnn 
    227   1.1       tnn 	s = splbio();
    228   1.1       tnn 	spi_transq_enqueue(&sc->sc_q, st);
    229   1.1       tnn 	if (sc->sc_running == false) {
    230   1.1       tnn 		sun4ispi_start(sc);
    231   1.1       tnn 	}
    232   1.1       tnn 	splx(s);
    233   1.1       tnn 
    234   1.1       tnn 	return 0;
    235   1.1       tnn }
    236   1.1       tnn 
    237   1.1       tnn static void
    238   1.1       tnn sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen)
    239   1.1       tnn {
    240   1.1       tnn 	struct spi_chunk *chunk = sc->sc_wchunk;
    241   1.1       tnn 	size_t len;
    242   1.1       tnn 	uint8_t b;
    243   1.1       tnn 
    244   1.1       tnn 	if (chunk == NULL)
    245   1.1       tnn 		return;
    246   1.1       tnn 
    247   1.1       tnn 	len = MIN(maxlen, chunk->chunk_wresid);
    248   1.1       tnn 	chunk->chunk_wresid -= len;
    249   1.1       tnn 	while (len--) {
    250   1.1       tnn 		if (chunk->chunk_wptr) {
    251   1.1       tnn 			b = *chunk->chunk_wptr++;
    252   1.1       tnn 		} else {
    253   1.1       tnn 			b = 0;
    254   1.1       tnn 		}
    255   1.1       tnn 		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b);
    256   1.1       tnn 	}
    257   1.1       tnn 	if (sc->sc_wchunk->chunk_wresid == 0) {
    258   1.1       tnn 		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
    259   1.1       tnn 	}
    260   1.1       tnn }
    261   1.1       tnn 
    262   1.1       tnn static void
    263   1.1       tnn sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen)
    264   1.1       tnn {
    265   1.1       tnn 	struct spi_chunk *chunk = sc->sc_rchunk;
    266   1.1       tnn 	size_t len;
    267   1.1       tnn 	uint8_t b;
    268   1.1       tnn 
    269   1.1       tnn 	if (chunk == NULL)
    270   1.1       tnn 		return;
    271   1.1       tnn 
    272   1.1       tnn 	len = MIN(maxlen, chunk->chunk_rresid);
    273   1.1       tnn 	chunk->chunk_rresid -= len;
    274   1.1       tnn 
    275   1.1       tnn 	while (len--) {
    276   1.1       tnn 		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA);
    277   1.1       tnn 		if (chunk->chunk_rptr) {
    278   1.1       tnn 			*chunk->chunk_rptr++ = b;
    279   1.1       tnn 		}
    280   1.1       tnn 	}
    281   1.1       tnn 	if (sc->sc_rchunk->chunk_rresid == 0) {
    282   1.1       tnn 		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
    283   1.1       tnn 	}
    284   1.1       tnn }
    285   1.1       tnn 
    286   1.1       tnn static void
    287   1.1       tnn sun4ispi_rxtx(struct sun4ispi_softc * const sc)
    288   1.1       tnn {
    289   1.1       tnn 	bool again;
    290   1.1       tnn 	size_t rxavail, txavail;
    291   1.1       tnn 	uint32_t fsr;
    292   1.1       tnn 
    293   1.1       tnn 	/* service both FIFOs until no more progress can be made */
    294   1.1       tnn 	again = true;
    295   1.1       tnn 	while (again) {
    296   1.1       tnn 		again = false;
    297   1.1       tnn 		fsr = SPIREG_READ(sc, SPI_FIFO_STA);
    298   1.1       tnn 		rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT);
    299   1.1       tnn 		txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT);
    300   1.1       tnn 		if (rxavail > 0) {
    301   1.1       tnn 			KASSERT(sc->sc_rchunk != NULL);
    302   1.1       tnn 			sun4ispi_rxfifo_drain(sc, rxavail);
    303   1.1       tnn 			again = true;
    304   1.1       tnn 		}
    305   1.1       tnn 		if (txavail > 0 && sc->sc_wchunk != NULL) {
    306   1.1       tnn 			sun4ispi_txfifo_fill(sc, txavail);
    307   1.1       tnn 			again = true;
    308   1.1       tnn 		}
    309   1.1       tnn 	}
    310   1.1       tnn }
    311   1.1       tnn 
    312   1.1       tnn static void
    313   1.1       tnn sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc)
    314   1.1       tnn {
    315   1.1       tnn 	uint32_t intctl;
    316   1.1       tnn 
    317   1.1       tnn 	intctl = SPI_INTCTL_TX_INT_EN;
    318   1.1       tnn 	intctl |= SPI_INTCTL_RF_OF_INT_EN;
    319   1.1       tnn 	intctl |= SPI_INTCTL_TF_UR_INT_EN;
    320   1.1       tnn 
    321   1.1       tnn 	if (sc->sc_rchunk) {
    322   1.1       tnn 		if (sc->sc_rchunk->chunk_rresid >= 32) {
    323   1.1       tnn 			intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN;
    324   1.1       tnn 		} else {
    325   1.1       tnn 			intctl |= SPI_INTCTL_RF_RDY_INT_EN;
    326   1.1       tnn 		}
    327   1.1       tnn 	}
    328   1.1       tnn 	if (sc->sc_wchunk) {
    329   1.1       tnn 		intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN;
    330   1.1       tnn 	}
    331   1.1       tnn 	SPIREG_WRITE(sc, SPI_INTCTL, intctl);
    332   1.1       tnn }
    333   1.1       tnn 
    334   1.1       tnn static void
    335   1.1       tnn sun4ispi_start(struct sun4ispi_softc * const sc)
    336   1.1       tnn {
    337   1.1       tnn 	struct spi_transfer *st;
    338   1.1       tnn 	uint32_t ctl;
    339   1.1       tnn 	struct spi_chunk *chunk;
    340   1.1       tnn 	size_t burstcount;
    341   1.1       tnn 
    342   1.1       tnn 	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
    343   1.1       tnn 
    344   1.1       tnn 		spi_transq_dequeue(&sc->sc_q);
    345   1.1       tnn 
    346   1.1       tnn 		KASSERT(sc->sc_transfer == NULL);
    347   1.1       tnn 		sc->sc_transfer = st;
    348   1.1       tnn 		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
    349   1.1       tnn 		sc->sc_running = true;
    350   1.1       tnn 
    351   1.1       tnn 		burstcount = 0;
    352   1.1       tnn 		for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
    353   1.1       tnn 			burstcount += chunk->chunk_count;
    354   1.1       tnn 		}
    355   1.1       tnn 		KASSERT(burstcount <= SPI_BC_BC);
    356   1.1       tnn 		SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC));
    357   1.1       tnn 		SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC));
    358   1.1       tnn 
    359   1.1       tnn 		sun4ispi_rxtx(sc);
    360   1.1       tnn 		sun4ispi_set_interrupt_mask(sc);
    361   1.1       tnn 
    362   1.1       tnn 		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
    363   1.1       tnn 		ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH;
    364   1.1       tnn 		SPIREG_WRITE(sc, SPI_CTL, ctl);
    365   1.1       tnn 
    366   1.1       tnn 		if (!cold)
    367   1.1       tnn 			return;
    368   1.1       tnn 
    369   1.1       tnn 		for (;;) {
    370   1.1       tnn 			(void) sun4ispi_intr(sc);
    371   1.1       tnn 			if (ISSET(st->st_flags, SPI_F_DONE))
    372   1.1       tnn 				break;
    373   1.1       tnn 		}
    374   1.1       tnn 	}
    375   1.1       tnn 	sc->sc_running = false;
    376   1.1       tnn }
    377   1.1       tnn 
    378   1.1       tnn static int
    379   1.1       tnn sun4ispi_intr(void *cookie)
    380   1.1       tnn {
    381   1.1       tnn 	struct sun4ispi_softc * const sc = cookie;
    382   1.1       tnn 	struct spi_transfer *st;
    383   1.1       tnn 	uint32_t isr;
    384   1.1       tnn 
    385   1.1       tnn 	isr = SPIREG_READ(sc, SPI_INT_STA);
    386   1.1       tnn 	if (!isr)
    387   1.1       tnn 		return 0;
    388   1.1       tnn 
    389   1.1       tnn 	if (ISSET(isr, SPI_INT_STA_RO)) {
    390   1.1       tnn 		device_printf(sc->sc_dev, "RXFIFO overflow\n");
    391   1.1       tnn 	}
    392   1.1       tnn 	if (ISSET(isr, SPI_INT_STA_TU)) {
    393   1.1       tnn 		device_printf(sc->sc_dev, "TXFIFO underrun\n");
    394   1.1       tnn 	}
    395   1.1       tnn 
    396   1.1       tnn 	sun4ispi_rxtx(sc);
    397   1.1       tnn 
    398   1.1       tnn 	if (ISSET(isr, SPI_INT_STA_TC)) {
    399   1.1       tnn 		SPIREG_WRITE(sc, SPI_INTCTL, 0);
    400   1.1       tnn 		KASSERT(sc->sc_rchunk == NULL);
    401   1.1       tnn 		KASSERT(sc->sc_wchunk == NULL);
    402   1.1       tnn 		st = sc->sc_transfer;
    403   1.1       tnn 		sc->sc_transfer = NULL;
    404   1.1       tnn 		KASSERT(st != NULL);
    405   1.1       tnn 		spi_done(st, 0);
    406   1.1       tnn 		sc->sc_running = false;
    407   1.1       tnn 	} else {
    408   1.1       tnn 		sun4ispi_set_interrupt_mask(sc);
    409   1.1       tnn 	}
    410   1.1       tnn 	SPIREG_WRITE(sc, SPI_INT_STA, isr);
    411   1.1       tnn 
    412   1.1       tnn 	return 1;
    413   1.1       tnn }
    414