Home | History | Annotate | Line # | Download | only in sunxi
      1 /*	$NetBSD: sun4i_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2019 Tobias Nygren
      5  * Copyright (c) 2018 Jonathan A. Kollasch
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     18  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     27  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $");
     32 
     33 #include <sys/param.h>
     34 #include <sys/device.h>
     35 #include <sys/systm.h>
     36 #include <sys/bus.h>
     37 #include <sys/intr.h>
     38 #include <sys/kernel.h>
     39 #include <sys/bitops.h>
     40 #include <dev/spi/spivar.h>
     41 #include <arm/sunxi/sun4i_spireg.h>
     42 #include <dev/fdt/fdtvar.h>
     43 
     44 static const struct device_compatible_entry compat_data[] = {
     45 	{ .compat = "allwinner,sun4i-a10-spi" },
     46 	DEVICE_COMPAT_EOL
     47 };
     48 
     49 struct sun4ispi_softc {
     50 	device_t		sc_dev;
     51 	bus_space_tag_t		sc_bst;
     52 	bus_space_handle_t	sc_bsh;
     53 	void			*sc_intrh;
     54 	struct spi_controller	sc_spi;
     55 	SIMPLEQ_HEAD(,spi_transfer) sc_q;
     56 	struct spi_transfer	*sc_transfer;
     57 	struct spi_chunk	*sc_rchunk, *sc_wchunk;
     58 	uint32_t		sc_CTL;
     59 	u_int			sc_modclkrate;
     60 	volatile bool		sc_running;
     61 };
     62 
     63 #define SPIREG_READ(sc, reg) \
     64     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
     65 #define SPIREG_WRITE(sc, reg, val) \
     66     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
     67 
     68 static int sun4ispi_match(device_t, cfdata_t, void *);
     69 static void sun4ispi_attach(device_t, device_t, void *);
     70 
     71 static int sun4ispi_configure(void *, int, int, int);
     72 static int sun4ispi_transfer(void *, struct spi_transfer *);
     73 
     74 static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t);
     75 static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t);
     76 static void sun4ispi_rxtx(struct sun4ispi_softc * const);
     77 static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const);
     78 static void sun4ispi_start(struct sun4ispi_softc * const);
     79 static int sun4ispi_intr(void *);
     80 
     81 CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc),
     82     sun4ispi_match, sun4ispi_attach, NULL, NULL);
     83 
     84 static int
     85 sun4ispi_match(device_t parent, cfdata_t cf, void *aux)
     86 {
     87 	struct fdt_attach_args * const faa = aux;
     88 
     89 	return of_compatible_match(faa->faa_phandle, compat_data);
     90 }
     91 
     92 static void
     93 sun4ispi_attach(device_t parent, device_t self, void *aux)
     94 {
     95 	struct sun4ispi_softc * const sc = device_private(self);
     96 	struct fdt_attach_args * const faa = aux;
     97 	const int phandle = faa->faa_phandle;
     98 	bus_addr_t addr;
     99 	bus_size_t size;
    100 	struct clk *clk, *modclk;
    101 	char intrstr[128];
    102 
    103 	sc->sc_dev = self;
    104 	sc->sc_bst = faa->faa_bst;
    105 	SIMPLEQ_INIT(&sc->sc_q);
    106 
    107 	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
    108 	    || clk_enable(clk) != 0) {
    109 		aprint_error(": couldn't enable clock\n");
    110 		return;
    111 	}
    112 
    113 	if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
    114 	    || clk_set_rate(modclk, clk_get_rate(clk)) != 0
    115 	    || clk_enable(modclk) != 0) {
    116 		aprint_error(": couldn't enable module clock\n");
    117 		return;
    118 	}
    119 	sc->sc_modclkrate = clk_get_rate(modclk);
    120 
    121 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
    122 	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
    123 		aprint_error(": couldn't map registers\n");
    124 		return;
    125 	}
    126 
    127 	SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST
    128 	    | SPI_CTL_TF_RST | SPI_CTL_MODE);
    129 	SPIREG_WRITE(sc, SPI_DMACTL, 0);
    130 	SPIREG_WRITE(sc, SPI_WAIT, 0);
    131 	SPIREG_WRITE(sc, SPI_INTCTL, 0);
    132 	SPIREG_WRITE(sc, SPI_INT_STA, ~0);
    133 
    134 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    135 		aprint_error(": failed to decode interrupt\n");
    136 		return;
    137 	}
    138 
    139 	sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
    140 	    sun4ispi_intr, sc, device_xname(self));
    141 	if (sc->sc_intrh == NULL) {
    142 		aprint_error(": unable to establish interrupt\n");
    143 		return;
    144 	}
    145 
    146 	aprint_naive("\n");
    147 	aprint_normal(": SPI\n");
    148 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
    149 
    150 	sc->sc_spi.sct_cookie = sc;
    151 	sc->sc_spi.sct_configure = sun4ispi_configure;
    152 	sc->sc_spi.sct_transfer = sun4ispi_transfer;
    153 	(void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves);
    154 
    155 	spibus_attach(self, &sc->sc_spi);
    156 }
    157 
    158 static int
    159 sun4ispi_configure(void *cookie, int slave, int mode, int speed)
    160 {
    161 	struct sun4ispi_softc * const sc = cookie;
    162 	uint32_t ctl, cctl;
    163 	uint32_t minfreq, maxfreq;
    164 
    165 	minfreq = sc->sc_modclkrate >> 16;
    166 	maxfreq = sc->sc_modclkrate >> 1;
    167 
    168 	if (speed <= 0 || speed < minfreq || speed > maxfreq)
    169 		return EINVAL;
    170 
    171 	if (slave >= sc->sc_spi.sct_nslaves)
    172 		return EINVAL;
    173 
    174 	ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN;
    175 
    176 	switch (mode) {
    177 	case SPI_MODE_0:
    178 		ctl |= 0;
    179 		break;
    180 	case SPI_MODE_1:
    181 		ctl |= SPI_CTL_PHA;
    182 		break;
    183 	case SPI_MODE_2:
    184 		ctl |= SPI_CTL_POL;
    185 		break;
    186 	case SPI_MODE_3:
    187 		ctl |= SPI_CTL_PHA | SPI_CTL_POL;
    188 		break;
    189 	default:
    190 		return EINVAL;
    191 	}
    192 
    193 	if (speed < sc->sc_modclkrate / 512) {
    194 		for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
    195 			if ((sc->sc_modclkrate / (1 << cctl)) <= speed)
    196 				goto cdr1_found;
    197 		}
    198 		return EINVAL;
    199 cdr1_found:
    200 		cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
    201 	} else {
    202 		cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
    203 		cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
    204 	}
    205 
    206 	device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
    207 	    ctl, cctl, sc->sc_modclkrate,
    208 	    (cctl & SPI_CCTL_DRS)
    209 	    ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
    210 	    : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
    211 	);
    212 
    213 	sc->sc_CTL = ctl;
    214 	SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN);
    215 	SPIREG_WRITE(sc, SPI_CCTL, cctl);
    216 	SPIREG_WRITE(sc, SPI_CTL, ctl);
    217 
    218 	return 0;
    219 }
    220 
    221 static int
    222 sun4ispi_transfer(void *cookie, struct spi_transfer *st)
    223 {
    224 	struct sun4ispi_softc * const sc = cookie;
    225 	int s;
    226 
    227 	s = splbio();
    228 	spi_transq_enqueue(&sc->sc_q, st);
    229 	if (sc->sc_running == false) {
    230 		sun4ispi_start(sc);
    231 	}
    232 	splx(s);
    233 
    234 	return 0;
    235 }
    236 
    237 static void
    238 sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen)
    239 {
    240 	struct spi_chunk *chunk = sc->sc_wchunk;
    241 	size_t len;
    242 	uint8_t b;
    243 
    244 	if (chunk == NULL)
    245 		return;
    246 
    247 	len = MIN(maxlen, chunk->chunk_wresid);
    248 	chunk->chunk_wresid -= len;
    249 	while (len--) {
    250 		if (chunk->chunk_wptr) {
    251 			b = *chunk->chunk_wptr++;
    252 		} else {
    253 			b = 0;
    254 		}
    255 		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b);
    256 	}
    257 	if (sc->sc_wchunk->chunk_wresid == 0) {
    258 		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
    259 	}
    260 }
    261 
    262 static void
    263 sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen)
    264 {
    265 	struct spi_chunk *chunk = sc->sc_rchunk;
    266 	size_t len;
    267 	uint8_t b;
    268 
    269 	if (chunk == NULL)
    270 		return;
    271 
    272 	len = MIN(maxlen, chunk->chunk_rresid);
    273 	chunk->chunk_rresid -= len;
    274 
    275 	while (len--) {
    276 		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA);
    277 		if (chunk->chunk_rptr) {
    278 			*chunk->chunk_rptr++ = b;
    279 		}
    280 	}
    281 	if (sc->sc_rchunk->chunk_rresid == 0) {
    282 		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
    283 	}
    284 }
    285 
    286 static void
    287 sun4ispi_rxtx(struct sun4ispi_softc * const sc)
    288 {
    289 	bool again;
    290 	size_t rxavail, txavail;
    291 	uint32_t fsr;
    292 
    293 	/* service both FIFOs until no more progress can be made */
    294 	again = true;
    295 	while (again) {
    296 		again = false;
    297 		fsr = SPIREG_READ(sc, SPI_FIFO_STA);
    298 		rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT);
    299 		txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT);
    300 		if (rxavail > 0) {
    301 			KASSERT(sc->sc_rchunk != NULL);
    302 			sun4ispi_rxfifo_drain(sc, rxavail);
    303 			again = true;
    304 		}
    305 		if (txavail > 0 && sc->sc_wchunk != NULL) {
    306 			sun4ispi_txfifo_fill(sc, txavail);
    307 			again = true;
    308 		}
    309 	}
    310 }
    311 
    312 static void
    313 sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc)
    314 {
    315 	uint32_t intctl;
    316 
    317 	intctl = SPI_INTCTL_TX_INT_EN;
    318 	intctl |= SPI_INTCTL_RF_OF_INT_EN;
    319 	intctl |= SPI_INTCTL_TF_UR_INT_EN;
    320 
    321 	if (sc->sc_rchunk) {
    322 		if (sc->sc_rchunk->chunk_rresid >= 32) {
    323 			intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN;
    324 		} else {
    325 			intctl |= SPI_INTCTL_RF_RDY_INT_EN;
    326 		}
    327 	}
    328 	if (sc->sc_wchunk) {
    329 		intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN;
    330 	}
    331 	SPIREG_WRITE(sc, SPI_INTCTL, intctl);
    332 }
    333 
    334 static void
    335 sun4ispi_start(struct sun4ispi_softc * const sc)
    336 {
    337 	struct spi_transfer *st;
    338 	uint32_t ctl;
    339 	struct spi_chunk *chunk;
    340 	size_t burstcount;
    341 
    342 	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
    343 
    344 		spi_transq_dequeue(&sc->sc_q);
    345 
    346 		KASSERT(sc->sc_transfer == NULL);
    347 		sc->sc_transfer = st;
    348 		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
    349 		sc->sc_running = true;
    350 
    351 		burstcount = 0;
    352 		for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
    353 			burstcount += chunk->chunk_count;
    354 		}
    355 		KASSERT(burstcount <= SPI_BC_BC);
    356 		SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC));
    357 		SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC));
    358 
    359 		sun4ispi_rxtx(sc);
    360 		sun4ispi_set_interrupt_mask(sc);
    361 
    362 		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
    363 		ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH;
    364 		SPIREG_WRITE(sc, SPI_CTL, ctl);
    365 
    366 		if (!cold)
    367 			return;
    368 
    369 		for (;;) {
    370 			(void) sun4ispi_intr(sc);
    371 			if (ISSET(st->st_flags, SPI_F_DONE))
    372 				break;
    373 		}
    374 	}
    375 	sc->sc_running = false;
    376 }
    377 
    378 static int
    379 sun4ispi_intr(void *cookie)
    380 {
    381 	struct sun4ispi_softc * const sc = cookie;
    382 	struct spi_transfer *st;
    383 	uint32_t isr;
    384 
    385 	isr = SPIREG_READ(sc, SPI_INT_STA);
    386 	if (!isr)
    387 		return 0;
    388 
    389 	if (ISSET(isr, SPI_INT_STA_RO)) {
    390 		device_printf(sc->sc_dev, "RXFIFO overflow\n");
    391 	}
    392 	if (ISSET(isr, SPI_INT_STA_TU)) {
    393 		device_printf(sc->sc_dev, "TXFIFO underrun\n");
    394 	}
    395 
    396 	sun4ispi_rxtx(sc);
    397 
    398 	if (ISSET(isr, SPI_INT_STA_TC)) {
    399 		SPIREG_WRITE(sc, SPI_INTCTL, 0);
    400 		KASSERT(sc->sc_rchunk == NULL);
    401 		KASSERT(sc->sc_wchunk == NULL);
    402 		st = sc->sc_transfer;
    403 		sc->sc_transfer = NULL;
    404 		KASSERT(st != NULL);
    405 		spi_done(st, 0);
    406 		sc->sc_running = false;
    407 	} else {
    408 		sun4ispi_set_interrupt_mask(sc);
    409 	}
    410 	SPIREG_WRITE(sc, SPI_INT_STA, isr);
    411 
    412 	return 1;
    413 }
    414