sun4i_spi.c revision 1.4 1 /* $NetBSD: sun4i_spi.c,v 1.4 2019/08/13 17:03:10 tnn Exp $ */
2
3 /*
4 * Copyright (c) 2019 Tobias Nygren
5 * Copyright (c) 2018 Jonathan A. Kollasch
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.4 2019/08/13 17:03:10 tnn Exp $");
32
33 #include <sys/param.h>
34 #include <sys/device.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/intr.h>
38 #include <sys/kernel.h>
39 #include <sys/bitops.h>
40 #include <dev/spi/spivar.h>
41 #include <arm/sunxi/sun4i_spireg.h>
42 #include <dev/fdt/fdtvar.h>
43
44 static const char * const compatible[] = {
45 "allwinner,sun4i-a10-spi",
46 NULL
47 };
48
49 struct sun4ispi_softc {
50 device_t sc_dev;
51 bus_space_tag_t sc_bst;
52 bus_space_handle_t sc_bsh;
53 void *sc_intrh;
54 struct spi_controller sc_spi;
55 SIMPLEQ_HEAD(,spi_transfer) sc_q;
56 struct spi_transfer *sc_transfer;
57 struct spi_chunk *sc_rchunk, *sc_wchunk;
58 uint32_t sc_CTL;
59 u_int sc_modclkrate;
60 volatile bool sc_running;
61 };
62
63 #define SPIREG_READ(sc, reg) \
64 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
65 #define SPIREG_WRITE(sc, reg, val) \
66 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
67
68 static int sun4ispi_match(device_t, cfdata_t, void *);
69 static void sun4ispi_attach(device_t, device_t, void *);
70
71 static int sun4ispi_configure(void *, int, int, int);
72 static int sun4ispi_transfer(void *, struct spi_transfer *);
73
74 static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t);
75 static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t);
76 static void sun4ispi_rxtx(struct sun4ispi_softc * const);
77 static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const);
78 static void sun4ispi_start(struct sun4ispi_softc * const);
79 static int sun4ispi_intr(void *);
80
81 CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc),
82 sun4ispi_match, sun4ispi_attach, NULL, NULL);
83
84 static int
85 sun4ispi_match(device_t parent, cfdata_t cf, void *aux)
86 {
87 struct fdt_attach_args * const faa = aux;
88
89 return of_match_compatible(faa->faa_phandle, compatible);
90 }
91
92 static void
93 sun4ispi_attach(device_t parent, device_t self, void *aux)
94 {
95 struct sun4ispi_softc * const sc = device_private(self);
96 struct fdt_attach_args * const faa = aux;
97 const int phandle = faa->faa_phandle;
98 bus_addr_t addr;
99 bus_size_t size;
100 struct clk *clk, *modclk;
101 char intrstr[128];
102 struct spibus_attach_args sba;
103
104 sc->sc_dev = self;
105 sc->sc_bst = faa->faa_bst;
106 SIMPLEQ_INIT(&sc->sc_q);
107
108 if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
109 || clk_enable(clk) != 0) {
110 aprint_error(": couldn't enable clock\n");
111 return;
112 }
113
114 if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
115 || clk_set_rate(modclk, clk_get_rate(clk)) != 0
116 || clk_enable(modclk) != 0) {
117 aprint_error(": couldn't enable module clock\n");
118 return;
119 }
120 sc->sc_modclkrate = clk_get_rate(modclk);
121
122 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
123 || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
124 aprint_error(": couldn't map registers\n");
125 return;
126 }
127
128 SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST
129 | SPI_CTL_TF_RST | SPI_CTL_MODE);
130 SPIREG_WRITE(sc, SPI_DMACTL, 0);
131 SPIREG_WRITE(sc, SPI_WAIT, 0);
132 SPIREG_WRITE(sc, SPI_INTCTL, 0);
133 SPIREG_WRITE(sc, SPI_INT_STA, ~0);
134
135 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
136 aprint_error(": failed to decode interrupt\n");
137 return;
138 }
139
140 sc->sc_intrh = fdtbus_intr_establish(phandle, 0, IPL_VM, 0, sun4ispi_intr, sc);
141 if (sc->sc_intrh == NULL) {
142 aprint_error(": unable to establish interrupt\n");
143 return;
144 }
145
146 aprint_naive("\n");
147 aprint_normal(": SPI\n");
148 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
149
150 sc->sc_spi.sct_cookie = sc;
151 sc->sc_spi.sct_configure = sun4ispi_configure;
152 sc->sc_spi.sct_transfer = sun4ispi_transfer;
153 (void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves);
154 memset(&sba, 0, sizeof(sba));
155 sba.sba_controller = &sc->sc_spi;
156
157 (void) config_found_ia(self, "spibus", &sba, spibus_print);
158 }
159
160 static int
161 sun4ispi_configure(void *cookie, int slave, int mode, int speed)
162 {
163 struct sun4ispi_softc * const sc = cookie;
164 uint32_t ctl, cctl;
165 uint32_t minfreq, maxfreq;
166
167 minfreq = sc->sc_modclkrate >> 16;
168 maxfreq = sc->sc_modclkrate >> 1;
169
170 if (speed <= 0 || speed < minfreq || speed > maxfreq)
171 return EINVAL;
172
173 if (slave >= sc->sc_spi.sct_nslaves)
174 return EINVAL;
175
176 ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN;
177
178 switch (mode) {
179 case SPI_MODE_0:
180 ctl |= 0;
181 break;
182 case SPI_MODE_1:
183 ctl |= SPI_CTL_PHA;
184 break;
185 case SPI_MODE_2:
186 ctl |= SPI_CTL_POL;
187 break;
188 case SPI_MODE_3:
189 ctl |= SPI_CTL_PHA | SPI_CTL_POL;
190 break;
191 default:
192 return EINVAL;
193 }
194
195 if (speed < sc->sc_modclkrate / 512) {
196 for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
197 if ((sc->sc_modclkrate / (1 << cctl)) <= speed)
198 goto cdr1_found;
199 }
200 return EINVAL;
201 cdr1_found:
202 cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
203 } else {
204 cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
205 cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
206 }
207
208 device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
209 ctl, cctl, sc->sc_modclkrate,
210 (cctl & SPI_CCTL_DRS)
211 ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
212 : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
213 );
214
215 sc->sc_CTL = ctl;
216 SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN);
217 SPIREG_WRITE(sc, SPI_CCTL, cctl);
218 SPIREG_WRITE(sc, SPI_CTL, ctl);
219
220 return 0;
221 }
222
223 static int
224 sun4ispi_transfer(void *cookie, struct spi_transfer *st)
225 {
226 struct sun4ispi_softc * const sc = cookie;
227 int s;
228
229 s = splbio();
230 spi_transq_enqueue(&sc->sc_q, st);
231 if (sc->sc_running == false) {
232 sun4ispi_start(sc);
233 }
234 splx(s);
235
236 return 0;
237 }
238
239 static void
240 sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen)
241 {
242 struct spi_chunk *chunk = sc->sc_wchunk;
243 size_t len;
244 uint8_t b;
245
246 if (chunk == NULL)
247 return;
248
249 len = MIN(maxlen, chunk->chunk_wresid);
250 chunk->chunk_wresid -= len;
251 while (len--) {
252 if (chunk->chunk_wptr) {
253 b = *chunk->chunk_wptr++;
254 } else {
255 b = 0;
256 }
257 bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b);
258 }
259 if (sc->sc_wchunk->chunk_wresid == 0) {
260 sc->sc_wchunk = sc->sc_wchunk->chunk_next;
261 }
262 }
263
264 static void
265 sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen)
266 {
267 struct spi_chunk *chunk = sc->sc_rchunk;
268 size_t len;
269 uint8_t b;
270
271 if (chunk == NULL)
272 return;
273
274 len = MIN(maxlen, chunk->chunk_rresid);
275 chunk->chunk_rresid -= len;
276
277 while (len--) {
278 b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA);
279 if (chunk->chunk_rptr) {
280 *chunk->chunk_rptr++ = b;
281 }
282 }
283 if (sc->sc_rchunk->chunk_rresid == 0) {
284 sc->sc_rchunk = sc->sc_rchunk->chunk_next;
285 }
286 }
287
288 static void
289 sun4ispi_rxtx(struct sun4ispi_softc * const sc)
290 {
291 bool again;
292 size_t rxavail, txavail;
293 uint32_t fsr;
294
295 /* service both FIFOs until no more progress can be made */
296 again = true;
297 while (again) {
298 again = false;
299 fsr = SPIREG_READ(sc, SPI_FIFO_STA);
300 rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT);
301 txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT);
302 if (rxavail > 0) {
303 KASSERT(sc->sc_rchunk != NULL);
304 sun4ispi_rxfifo_drain(sc, rxavail);
305 again = true;
306 }
307 if (txavail > 0 && sc->sc_wchunk != NULL) {
308 sun4ispi_txfifo_fill(sc, txavail);
309 again = true;
310 }
311 }
312 }
313
314 static void
315 sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc)
316 {
317 uint32_t intctl;
318
319 intctl = SPI_INTCTL_TX_INT_EN;
320 intctl |= SPI_INTCTL_RF_OF_INT_EN;
321 intctl |= SPI_INTCTL_TF_UR_INT_EN;
322
323 if (sc->sc_rchunk) {
324 if (sc->sc_rchunk->chunk_rresid >= 32) {
325 intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN;
326 } else {
327 intctl |= SPI_INTCTL_RF_RDY_INT_EN;
328 }
329 }
330 if (sc->sc_wchunk) {
331 intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN;
332 }
333 SPIREG_WRITE(sc, SPI_INTCTL, intctl);
334 }
335
336 static void
337 sun4ispi_start(struct sun4ispi_softc * const sc)
338 {
339 struct spi_transfer *st;
340 uint32_t ctl;
341 struct spi_chunk *chunk;
342 size_t burstcount;
343
344 while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
345
346 spi_transq_dequeue(&sc->sc_q);
347
348 KASSERT(sc->sc_transfer == NULL);
349 sc->sc_transfer = st;
350 sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
351 sc->sc_running = true;
352
353 burstcount = 0;
354 for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
355 burstcount += chunk->chunk_count;
356 }
357 KASSERT(burstcount <= SPI_BC_BC);
358 SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC));
359 SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC));
360
361 sun4ispi_rxtx(sc);
362 sun4ispi_set_interrupt_mask(sc);
363
364 KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
365 ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH;
366 SPIREG_WRITE(sc, SPI_CTL, ctl);
367
368 if (!cold)
369 return;
370
371 for (;;) {
372 (void) sun4ispi_intr(sc);
373 if (ISSET(st->st_flags, SPI_F_DONE))
374 break;
375 }
376 }
377 sc->sc_running = false;
378 }
379
380 static int
381 sun4ispi_intr(void *cookie)
382 {
383 struct sun4ispi_softc * const sc = cookie;
384 struct spi_transfer *st;
385 uint32_t isr;
386
387 isr = SPIREG_READ(sc, SPI_INT_STA);
388 if (!isr)
389 return 0;
390
391 if (ISSET(isr, SPI_INT_STA_RO)) {
392 device_printf(sc->sc_dev, "RXFIFO overflow\n");
393 }
394 if (ISSET(isr, SPI_INT_STA_TU)) {
395 device_printf(sc->sc_dev, "TXFIFO underrun\n");
396 }
397
398 sun4ispi_rxtx(sc);
399
400 if (ISSET(isr, SPI_INT_STA_TC)) {
401 SPIREG_WRITE(sc, SPI_INTCTL, 0);
402 KASSERT(sc->sc_rchunk == NULL);
403 KASSERT(sc->sc_wchunk == NULL);
404 st = sc->sc_transfer;
405 sc->sc_transfer = NULL;
406 KASSERT(st != NULL);
407 spi_done(st, 0);
408 sc->sc_running = false;
409 } else {
410 sun4ispi_set_interrupt_mask(sc);
411 }
412 SPIREG_WRITE(sc, SPI_INT_STA, isr);
413
414 return 1;
415 }
416