Home | History | Annotate | Line # | Download | only in ti
      1 /*	$NetBSD: omap2_nand.c,v 1.5 2021/08/07 16:18:46 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Device driver for the NAND controller found in Texas Instruments OMAP2
     35  * and later SOCs.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: omap2_nand.c,v 1.5 2021/08/07 16:18:46 thorpej Exp $");
     40 
     41 /* TODO move to opt_* */
     42 #undef OMAP2_NAND_HARDWARE_ECC
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/cdefs.h>
     47 #include <sys/device.h>
     48 
     49 #include <sys/bus.h>
     50 
     51 #include <arm/ti/omap2_gpmcreg.h>
     52 
     53 #include <dev/nand/nand.h>
     54 #include <dev/nand/onfi.h>
     55 
     56 #include <dev/fdt/fdtvar.h>
     57 
     58 extern struct flash_interface nand_flash_if;
     59 extern int flash_print(void *, const char *);
     60 
     61 /* GPMC_STATUS */
     62 #define WAIT0		__BIT(8)	/* active low */
     63 
     64 /* GPMC_ECC_CONTROL */
     65 #define ECCCLEAR	__BIT(8)
     66 #define ECCPOINTER	__BITS(3,0)
     67 
     68 /* GPMC_ECC_CONFIG */
     69 #define ECCALGORITHM	__BIT(16)
     70 #define ECCCS		__BITS(3,1)
     71 #define ECC16B		__BIT(7)
     72 #define ECCENABLE	__BIT(0)
     73 /* GPMC_ECC_SIZE_CONFIG */
     74 #define ECCSIZE1	__BITS(29,22)
     75 
     76 /* GPMC_CONFIG1_i */
     77 #define DEVICETYPE	__BITS(11,10)
     78 #define DEVICESIZE	__BITS(13,12)
     79 
     80 #define MASKEDINT(mask, integer) ((integer) << (ffs(mask) - 1) & mask)
     81 
     82 /* NAND status register */
     83 #define NAND_WP_BIT __BIT(4)
     84 
     85 static int	omap2_nand_match(device_t, cfdata_t, void *);
     86 static void	omap2_nand_attach(device_t, device_t, void *);
     87 
     88 static void omap2_nand_command(device_t self, uint8_t command);
     89 static void omap2_nand_address(device_t self, uint8_t address);
     90 static void omap2_nand_busy(device_t self);
     91 static void omap2_nand_read_1(device_t self, uint8_t *data);
     92 static void omap2_nand_write_1(device_t self, uint8_t data);
     93 static void omap2_nand_read_2(device_t self, uint16_t *data);
     94 static void omap2_nand_write_2(device_t self, uint16_t data);
     95 bool omap2_nand_isbusy(device_t self);
     96 static void omap2_nand_read_buf_1(device_t self, void *buf, size_t len);
     97 static void omap2_nand_read_buf_2(device_t self, void *buf, size_t len);
     98 static void omap2_nand_write_buf_1(device_t self, const void *buf, size_t len);
     99 static void omap2_nand_write_buf_2(device_t self, const void *buf, size_t len);
    100 
    101 #ifdef OMAP2_NAND_HARDWARE_ECC
    102 static int omap2_nand_ecc_init(device_t self);
    103 static int omap2_nand_ecc_prepare(device_t self, int mode);
    104 static int omap2_nand_ecc_compute(device_t self, const uint8_t *data, uint8_t *ecc);
    105 static int omap2_nand_ecc_correct(device_t self, uint8_t *data, const uint8_t *oldecc,
    106     const uint8_t *calcecc);
    107 #endif
    108 
    109 struct omap2_nand_softc {
    110 	device_t sc_dev;
    111 	device_t sc_nanddev;
    112 
    113 	int sc_cs;
    114 	int sc_buswidth;	/* 0: 8bit, 1: 16bit */
    115 
    116 	struct nand_interface	sc_nand_if;
    117 
    118 	bus_space_tag_t		sc_iot;
    119 	bus_space_handle_t	sc_ioh;
    120 	bus_space_handle_t	sc_gpmc_ioh;
    121 
    122 	bus_size_t		sc_cmd_reg;
    123 	bus_size_t		sc_addr_reg;
    124 	bus_size_t		sc_data_reg;
    125 };
    126 
    127 static const struct device_compatible_entry compat_data[] = {
    128 	{ .compat = "ti,omap2-nand" },
    129 	{ .compat = "ti,omap2-onenand" },
    130 	DEVICE_COMPAT_EOL
    131 };
    132 
    133 CFATTACH_DECL_NEW(omapnand, sizeof(struct omap2_nand_softc), omap2_nand_match,
    134     omap2_nand_attach, NULL, NULL);
    135 
    136 static inline uint32_t
    137 gpmc_register_read(struct omap2_nand_softc *sc, bus_size_t reg)
    138 {
    139 	return bus_space_read_4(sc->sc_iot, sc->sc_gpmc_ioh, reg);
    140 }
    141 
    142 static inline void
    143 gpmc_register_write(struct omap2_nand_softc *sc, bus_size_t reg, const uint32_t data)
    144 {
    145 	bus_space_write_4(sc->sc_iot, sc->sc_gpmc_ioh, reg, data);
    146 }
    147 
    148 static void
    149 omap2_nand_command(device_t self, uint8_t command)
    150 {
    151 	struct omap2_nand_softc *sc = device_private(self);
    152 
    153 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->sc_cmd_reg, command);
    154 };
    155 
    156 static void
    157 omap2_nand_address(device_t self, uint8_t address)
    158 {
    159 	struct omap2_nand_softc *sc = device_private(self);
    160 
    161 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->sc_addr_reg, address);
    162 };
    163 
    164 bool
    165 omap2_nand_isbusy(device_t self)
    166 {
    167 	struct omap2_nand_softc *sc = device_private(self);
    168 	uint8_t status;
    169 
    170 	DELAY(1);		/* just to be sure we are not early */
    171 
    172 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    173 	    sc->sc_cmd_reg, ONFI_READ_STATUS);
    174 
    175 	DELAY(1);
    176 
    177 	status = bus_space_read_1(sc->sc_iot,
    178 	    sc->sc_ioh, sc->sc_data_reg);
    179 
    180 	return !(status & ONFI_STATUS_RDY);
    181 };
    182 
    183 static int
    184 omap2_nand_match(device_t parent, cfdata_t match, void *aux)
    185 {
    186 	struct fdt_attach_args * const faa = aux;
    187 
    188 	return of_compatible_match(faa->faa_phandle, compat_data);
    189 }
    190 
    191 static void
    192 omap2_nand_attach(device_t parent, device_t self, void *aux)
    193 {
    194 	struct omap2_nand_softc *sc = device_private(self);
    195 	struct fdt_attach_args * const faa = aux;
    196 	const int phandle = faa->faa_phandle;
    197 	struct flash_attach_args flash;
    198 	bus_addr_t addr, part_addr;
    199 	bus_size_t size, part_size;
    200 	const u_int *prop;
    201 	uint32_t val;
    202 	int len, child;
    203 
    204 	if (fdtbus_get_reg(OF_parent(phandle), 0, &addr, &size) != 0) {
    205 		aprint_error(": couldn't get registers\n");
    206 		return;
    207 	}
    208 
    209 	sc->sc_iot = faa->faa_bst;
    210 	sc->sc_dev = self;
    211 
    212 	prop = fdtbus_get_prop(phandle, "reg", &len);
    213 	if (prop == NULL || len < 4) {
    214 		aprint_error(": couldn't read reg property\n");
    215 		return;
    216 	}
    217 
    218 	sc->sc_cs = be32toh(prop[0]);
    219 
    220 	/* map i/o space */
    221 	if (bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_gpmc_ioh) != 0) {
    222 		aprint_error(": couldn't map registers\n");
    223 		return;
    224 	}
    225 	if (bus_space_subregion(sc->sc_iot, sc->sc_gpmc_ioh, GPMC_CS_CONFIG(sc->sc_cs), 0x30, &sc->sc_ioh) != 0) {
    226 		aprint_error(": couldn't map cs registers\n");
    227 		return;
    228 	}
    229 
    230 	aprint_naive("\n");
    231 	aprint_normal(": CS%d\n", sc->sc_cs);
    232 
    233         sc->sc_cmd_reg = GPMC_NAND_COMMAND_0 - GPMC_CONFIG1_0;
    234 	sc->sc_addr_reg = GPMC_NAND_ADDRESS_0 - GPMC_CONFIG1_0;
    235 	sc->sc_data_reg = GPMC_NAND_DATA_0 - GPMC_CONFIG1_0;
    236 
    237 	/* turn off write protection if enabled */
    238 	val = gpmc_register_read(sc, GPMC_CONFIG);
    239 	val |= NAND_WP_BIT;
    240 	gpmc_register_write(sc, GPMC_CONFIG, val);
    241 
    242 	/*
    243 	 * do the reset dance for NAND
    244 	 */
    245 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    246 	    sc->sc_cmd_reg, ONFI_RESET);
    247 
    248 	omap2_nand_busy(self);
    249 
    250 	/* read GPMC_CONFIG1_i to get buswidth */
    251 	val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GPMC_CONFIG1_i);
    252 
    253 	if ((val & DEVICESIZE) == MASKEDINT(DEVICESIZE, 0x01)) {
    254 		/* 16bit */
    255 		sc->sc_buswidth = 1;
    256 	} else if ((val & DEVICESIZE) == MASKEDINT(DEVICESIZE, 0x00)) {
    257 		/* 8bit */
    258 		sc->sc_buswidth = 0;
    259 	} else {
    260 		panic("invalid buswidth reported by config1");
    261 	}
    262 
    263 	nand_init_interface(&sc->sc_nand_if);
    264 
    265 	sc->sc_nand_if.command = &omap2_nand_command;
    266 	sc->sc_nand_if.address = &omap2_nand_address;
    267 	sc->sc_nand_if.read_buf_1 = &omap2_nand_read_buf_1;
    268 	sc->sc_nand_if.read_buf_2 = &omap2_nand_read_buf_2;
    269 	sc->sc_nand_if.read_1 = &omap2_nand_read_1;
    270 	sc->sc_nand_if.read_2 = &omap2_nand_read_2;
    271 	sc->sc_nand_if.write_buf_1 = &omap2_nand_write_buf_1;
    272 	sc->sc_nand_if.write_buf_2 = &omap2_nand_write_buf_2;
    273 	sc->sc_nand_if.write_1 = &omap2_nand_write_1;
    274 	sc->sc_nand_if.write_2 = &omap2_nand_write_2;
    275 	sc->sc_nand_if.busy = &omap2_nand_busy;
    276 
    277 #ifdef OMAP2_NAND_HARDWARE_ECC
    278 	omap2_nand_ecc_init(self);
    279 	sc->sc_nand_if.ecc_compute = &omap2_nand_ecc_compute;
    280 	sc->sc_nand_if.ecc_correct = &omap2_nand_ecc_correct;
    281 	sc->sc_nand_if.ecc_prepare = &omap2_nand_ecc_prepare;
    282 	sc->sc_nand_if.ecc.necc_code_size = 3;
    283 	sc->sc_nand_if.ecc.necc_block_size = 512;
    284 	sc->sc_nand_if.ecc.necc_type = NAND_ECC_TYPE_HW;
    285 #else
    286 	sc->sc_nand_if.ecc.necc_code_size = 3;
    287 	sc->sc_nand_if.ecc.necc_block_size = 256;
    288 #endif	/* OMAP2_NAND_HARDWARE_ECC */
    289 
    290 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, NULL))
    291 		aprint_error_dev(sc->sc_dev,
    292 		    "couldn't establish power handler\n");
    293 
    294 	sc->sc_nanddev = nand_attach_mi(&sc->sc_nand_if, sc->sc_dev);
    295 	if (sc->sc_nanddev == NULL)
    296 		return;
    297 
    298 	for (child = OF_child(phandle); child; child = OF_peer(child)) {
    299 		if (!fdtbus_status_okay(child))
    300 			continue;
    301 
    302 		if (fdtbus_get_reg(child, 0, &part_addr, &part_size) != 0) {
    303 			aprint_error_dev(self, "couldn't parse partition %s\n",
    304 			    fdtbus_get_string(child, "name"));
    305 			continue;
    306 		}
    307 
    308 		memset(&flash, 0, sizeof(flash));
    309 		flash.flash_if = &nand_flash_if;
    310 		flash.partinfo.part_offset = part_addr;
    311 		flash.partinfo.part_size = part_size;
    312 		flash.partinfo.part_flags = 0;
    313 		flash.partinfo.part_name = fdtbus_get_string(child, "label");
    314 		if (flash.partinfo.part_name == NULL)
    315 			flash.partinfo.part_name = fdtbus_get_string(child, "name");
    316 
    317 		config_found(sc->sc_nanddev, &flash, flash_print, CFARGS_NONE);
    318 	}
    319 }
    320 
    321 static void
    322 omap2_nand_busy(device_t self)
    323 {
    324 	struct omap2_nand_softc *sc = device_private(self);
    325 
    326 	while (!(gpmc_register_read(sc, GPMC_STATUS) & WAIT0)) {
    327 		DELAY(1);
    328 	}
    329 }
    330 
    331 static void
    332 omap2_nand_read_1(device_t self, uint8_t *data)
    333 {
    334 	struct omap2_nand_softc *sc = device_private(self);
    335 
    336 	*data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg);
    337 }
    338 
    339 static void
    340 omap2_nand_write_1(device_t self, uint8_t data)
    341 {
    342 	struct omap2_nand_softc *sc = device_private(self);
    343 
    344 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg, data);
    345 }
    346 
    347 static void
    348 omap2_nand_read_2(device_t self, uint16_t *data)
    349 {
    350 	struct omap2_nand_softc *sc = device_private(self);
    351 
    352 	*data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg);
    353 }
    354 
    355 static void
    356 omap2_nand_write_2(device_t self, uint16_t data)
    357 {
    358 	struct omap2_nand_softc *sc = device_private(self);
    359 
    360 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg, data);
    361 }
    362 
    363 static void
    364 omap2_nand_read_buf_1(device_t self, void *buf, size_t len)
    365 {
    366 	struct omap2_nand_softc *sc = device_private(self);
    367 
    368 	KASSERT(buf != NULL);
    369 	KASSERT(len >= 1);
    370 
    371 	bus_space_read_multi_1(sc->sc_iot, sc->sc_ioh,
    372 	    sc->sc_data_reg, buf, len);
    373 }
    374 
    375 static void
    376 omap2_nand_read_buf_2(device_t self, void *buf, size_t len)
    377 {
    378 	struct omap2_nand_softc *sc = device_private(self);
    379 
    380 	KASSERT(buf != NULL);
    381 	KASSERT(len >= 2);
    382 	KASSERT(!(len & 0x01));
    383 
    384 	bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh,
    385 	    sc->sc_data_reg, buf, len / 2);
    386 }
    387 
    388 static void
    389 omap2_nand_write_buf_1(device_t self, const void *buf, size_t len)
    390 {
    391 	struct omap2_nand_softc *sc = device_private(self);
    392 
    393 	KASSERT(buf != NULL);
    394 	KASSERT(len >= 1);
    395 
    396 	bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh,
    397 	    sc->sc_data_reg, buf, len);
    398 }
    399 
    400 static void
    401 omap2_nand_write_buf_2(device_t self, const void *buf, size_t len)
    402 {
    403 	struct omap2_nand_softc *sc = device_private(self);
    404 
    405 	KASSERT(buf != NULL);
    406 	KASSERT(len >= 2);
    407 	KASSERT(!(len & 0x01));
    408 
    409 	bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
    410 	    sc->sc_data_reg, buf, len / 2);
    411 }
    412 
    413 #ifdef OMAP2_NAND_HARDWARE_ECC
    414 static uint32_t
    415 convert_ecc(const uint8_t *ecc)
    416 {
    417 	return ecc[0] | (ecc[1] << 16) | ((ecc[2] & 0xf0) << 20) |
    418 	    ((ecc[2] & 0x0f) << 8);
    419 }
    420 
    421 static int
    422 omap2_nand_ecc_init(device_t self)
    423 {
    424 	struct omap2_nand_softc *sc = device_private(self);
    425 	uint32_t val;
    426 
    427 	val = gpmc_register_read(sc, GPMC_ECC_CONTROL);
    428 	/* clear ecc, select ecc register 1 */
    429 	val &= ~ECCPOINTER;
    430 	val |= ECCCLEAR | MASKEDINT(ECCPOINTER, 1);
    431 	gpmc_register_write(sc, GPMC_ECC_CONTROL, val);
    432 
    433 	/* XXX too many MAGIC */
    434 	/* set ecc size to 512, set all regs to eccsize1*/
    435 	val = gpmc_register_read(sc, GPMC_ECC_SIZE_CONFIG);
    436 	val &= ~ECCSIZE1;
    437 	val |= MASKEDINT(ECCSIZE1, 512) | 0x0f;
    438 	gpmc_register_write(sc, GPMC_ECC_CONTROL, val);
    439 
    440 	return 0;
    441 }
    442 
    443 static int
    444 omap2_nand_ecc_compute(device_t self, const uint8_t *data, uint8_t *ecc)
    445 {
    446 	struct omap2_nand_softc *sc = device_private(self);
    447 	uint32_t val;
    448 
    449 	/* read ecc result register */
    450 	val = gpmc_register_read(sc, GPMC_ECC1_RESULT);
    451 
    452 	ecc[0] = val & 0xff;
    453 	ecc[1] = (val >> 16) & 0xff;
    454 	ecc[2] = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
    455 
    456 	/* disable ecc engine */
    457 	val = gpmc_register_read(sc, GPMC_ECC_CONFIG);
    458 	val &= ~ECCENABLE;
    459 	gpmc_register_write(sc, GPMC_ECC_CONFIG, val);
    460 
    461 	return 0;
    462 }
    463 
    464 static int
    465 omap2_nand_ecc_prepare(device_t self, int mode)
    466 {
    467 	struct omap2_nand_softc *sc = device_private(self);
    468 	uint32_t val;
    469 
    470 	/* same for read/write */
    471 	switch (mode) {
    472 	case NAND_ECC_READ:
    473 	case NAND_ECC_WRITE:
    474 		val = gpmc_register_read(sc, GPMC_ECC_CONTROL);
    475 		/* clear ecc, select ecc register 1 */
    476 		val &= ~ECCPOINTER;
    477 		val |= ECCCLEAR | MASKEDINT(ECCPOINTER, 1);
    478 		gpmc_register_write(sc, GPMC_ECC_CONTROL, val);
    479 
    480 		val = gpmc_register_read(sc, GPMC_ECC_CONFIG);
    481 		val &= ~ECCCS;
    482 		val |= ECCENABLE | MASKEDINT(ECCCS, sc->sc_cs);
    483 		if (sc->sc_buswidth == 1)
    484 			val |= ECC16B;
    485 		else
    486 			val &= ~ECC16B;
    487 		gpmc_register_write(sc, GPMC_ECC_CONFIG, val);
    488 
    489 		break;
    490 	default:
    491 		aprint_error_dev(self, "invalid i/o mode for ecc prepare\n");
    492 		return -1;
    493 	}
    494 
    495 	return 0;
    496 }
    497 
    498 static int
    499 omap2_nand_ecc_correct(device_t self, uint8_t *data, const uint8_t *oldecc,
    500     const uint8_t *calcecc)
    501 {
    502 	uint32_t oecc, cecc, xor;
    503 	uint16_t parity, offset;
    504 	uint8_t bit;
    505 
    506 	oecc = convert_ecc(oldecc);
    507 	cecc = convert_ecc(calcecc);
    508 
    509 	/* get the difference */
    510 	xor = oecc ^ cecc;
    511 
    512 	/* the data was correct if all bits are zero */
    513 	if (xor == 0x00)
    514 		return NAND_ECC_OK;
    515 
    516 	switch (popcount32(xor)) {
    517 	case 12:
    518 		/* single byte error */
    519 		parity = xor >> 16;
    520 		bit = (parity & 0x07);
    521 		offset = (parity >> 3) & 0x01ff;
    522 		/* correct bit */
    523 		data[offset] ^= (0x01 << bit);
    524 		return NAND_ECC_CORRECTED;
    525 	case 1:
    526 		return NAND_ECC_INVALID;
    527 	default:
    528 		/* erased page! */
    529 		if ((oecc == 0x0fff0fff) && (cecc == 0x00000000))
    530 			return NAND_ECC_OK;
    531 
    532 		return NAND_ECC_TWOBIT;
    533 	}
    534 }
    535 #endif /* !OMAP2_NAND_HARDWARE_ECC */
    536