becc_timer.c revision 1.13 1 /* $NetBSD: becc_timer.c,v 1.13 2008/01/06 01:37:57 matt Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Timer/clock support for the ADI Engineering Big Endian Companion Chip.
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: becc_timer.c,v 1.13 2008/01/06 01:37:57 matt Exp $");
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/time.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <machine/bus.h>
53 #include <arm/cpufunc.h>
54
55 #include <arm/xscale/beccreg.h>
56 #include <arm/xscale/beccvar.h>
57
58 void (*becc_hardclock_hook)(void);
59
60 /*
61 * Note, since COUNTS_PER_USEC doesn't divide evenly, we round up.
62 */
63 #define COUNTS_PER_SEC BECC_PERIPH_CLOCK
64 #define COUNTS_PER_USEC ((COUNTS_PER_SEC / 1000000) + 1)
65
66 static void *clock_ih;
67
68 /*
69 * Since the timer interrupts when the counter underflows, we need to
70 * subtract 1 from counts_per_hz when loading the preload register.
71 */
72 static uint32_t counts_per_hz;
73
74 int clockhandler(void *);
75
76 /*
77 * becc_calibrate_delay:
78 *
79 * Calibrate the delay loop.
80 */
81 void
82 becc_calibrate_delay(void)
83 {
84
85 /*
86 * Just use hz=100 for now -- we'll adjust it, if necessary,
87 * in cpu_initclocks().
88 */
89 counts_per_hz = COUNTS_PER_SEC / 100;
90
91 /* Stop both timers, clear interrupts. */
92 BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
93 BECC_CSR_WRITE(BECC_TSCRB, TSCRx_TIF);
94
95 /* Set the timer preload value. */
96 BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
97
98 /* Start the timer. */
99 BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
100 }
101
102 /*
103 * cpu_initclocks:
104 *
105 * Initialize the clock and get them going.
106 */
107 void
108 cpu_initclocks(void)
109 {
110 u_int oldirqstate;
111
112 #if 0
113 if (hz < 50 || COUNTS_PER_SEC % hz) {
114 printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
115 hz = 100;
116 }
117 #endif
118 tick = 1000000 / hz; /* number of microseconds between interrupts */
119 tickfix = 1000000 - (hz * tick);
120 if (tickfix) {
121 int ftp;
122
123 ftp = min(ffs(tickfix), ffs(hz));
124 tickfix >>= (ftp - 1);
125 tickfixinterval = hz >> (ftp - 1);
126 }
127
128 /*
129 * We only have one timer available; stathz and profhz are
130 * always left as 0 (the upper-layer clock code deals with
131 * this situation).
132 */
133 if (stathz != 0)
134 printf("Cannot get %d Hz statclock\n", stathz);
135 stathz = 0;
136
137 if (profhz != 0)
138 printf("Cannot get %d Hz profclock\n", profhz);
139 profhz = 0;
140
141 /* Report the clock frequency. */
142 aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
143
144 oldirqstate = disable_interrupts(I32_bit);
145
146 /* Hook up the clock interrupt handler. */
147 clock_ih = becc_intr_establish(ICU_TIMERA, IPL_CLOCK,
148 clockhandler, NULL);
149 if (clock_ih == NULL)
150 panic("cpu_initclocks: unable to register timer interrupt");
151
152 /* Set up the new clock parameters. */
153
154 /* Stop timer, clear interrupt */
155 BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
156
157 counts_per_hz = COUNTS_PER_SEC / hz;
158
159 /* Set the timer preload value. */
160 BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
161
162 /* ...and start it in motion. */
163 BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
164
165 #ifdef __HAVE_FAST_SOFTINTS
166 /* register soft interrupt handler as well */
167 becc_intr_establish(ICU_SOFT, IPL_SOFTCLOCK, becc_softint, NULL);
168 #endif
169
170 restore_interrupts(oldirqstate);
171 }
172
173 /*
174 * setstatclockrate:
175 *
176 * Set the rate of the statistics clock.
177 *
178 * We assume that hz is either stathz or profhz, and that neither
179 * will change after being set by cpu_initclocks(). We could
180 * recalculate the intervals here, but that would be a pain.
181 */
182 void
183 setstatclockrate(int new_hz)
184 {
185
186 /*
187 * XXX Use TMR1?
188 */
189 }
190
191 /*
192 * microtime:
193 *
194 * Fill in the specified timeval struct with the current time
195 * accurate to the microsecond.
196 */
197 void
198 microtime(struct timeval *tvp)
199 {
200 static struct timeval lasttv;
201 u_int oldirqstate;
202 uint32_t counts;
203
204 oldirqstate = disable_interrupts(I32_bit);
205
206 /*
207 * XXX How do we compensate for the -1 behavior of the preload value?
208 */
209 counts = counts_per_hz - BECC_CSR_READ(BECC_TCVRA);
210
211 /* Fill in the timeval struct. */
212 *tvp = time;
213 tvp->tv_usec += (counts / COUNTS_PER_USEC);
214
215 /* Make sure microseconds doesn't overflow. */
216 while (tvp->tv_usec >= 1000000) {
217 tvp->tv_usec -= 1000000;
218 tvp->tv_sec++;
219 }
220
221 /* Make sure the time has advanced. */
222 if (tvp->tv_sec == lasttv.tv_sec &&
223 tvp->tv_usec <= lasttv.tv_usec) {
224 tvp->tv_usec = lasttv.tv_usec + 1;
225 if (tvp->tv_usec >= 1000000) {
226 tvp->tv_usec -= 1000000;
227 tvp->tv_sec++;
228 }
229 }
230
231 lasttv = *tvp;
232
233 restore_interrupts(oldirqstate);
234 }
235
236 /*
237 * delay:
238 *
239 * Delay for at least N microseconds.
240 */
241 void
242 delay(u_int n)
243 {
244 uint32_t cur, last, delta, usecs;
245
246 /*
247 * This works by polling the timer and counting the
248 * number of microseconds that go by.
249 */
250 last = BECC_CSR_READ(BECC_TCVRA);
251 delta = usecs = 0;
252
253 while (n > usecs) {
254 cur = BECC_CSR_READ(BECC_TCVRA);
255
256 /* Check to see if the timer has wrapped around. */
257 if (last < cur)
258 delta += (last + (counts_per_hz - cur));
259 else
260 delta += (last - cur);
261
262 last = cur;
263
264 if (delta >= COUNTS_PER_USEC) {
265 usecs += delta / COUNTS_PER_USEC;
266 delta %= COUNTS_PER_USEC;
267 }
268 }
269 }
270
271 /*
272 * clockhandler:
273 *
274 * Handle the hardclock interrupt.
275 */
276 int
277 clockhandler(void *arg)
278 {
279 struct clockframe *frame = arg;
280
281 /* ACK the interrupt. */
282 BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM | TSCRx_TIF);
283
284 hardclock(frame);
285
286 if (becc_hardclock_hook != NULL)
287 (*becc_hardclock_hook)();
288
289 return (1);
290 }
291