Home | History | Annotate | Line # | Download | only in xscale
becc_timer.c revision 1.2
      1 /*	$NetBSD: becc_timer.c,v 1.2 2003/05/23 05:21:26 briggs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Timer/clock support for the ADI Engineering Big Endian Companion Chip.
     40  */
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/time.h>
     46 
     47 #include <machine/bus.h>
     48 #include <arm/cpufunc.h>
     49 
     50 #include <arm/xscale/beccreg.h>
     51 #include <arm/xscale/beccvar.h>
     52 
     53 void	(*becc_hardclock_hook)(void);
     54 
     55 /*
     56  * Note, since COUNTS_PER_USEC doesn't divide evenly, we round up.
     57  */
     58 #define	COUNTS_PER_SEC		BECC_PERIPH_CLOCK
     59 #define	COUNTS_PER_USEC		((COUNTS_PER_SEC / 1000000) + 1)
     60 
     61 static void *clock_ih;
     62 
     63 /*
     64  * Since the timer interrupts when the counter underflows, we need to
     65  * subtract 1 from counts_per_hz when loading the preload register.
     66  */
     67 static uint32_t counts_per_hz;
     68 
     69 int	clockhandler(void *);
     70 
     71 /*
     72  * becc_calibrate_delay:
     73  *
     74  *	Calibrate the delay loop.
     75  */
     76 void
     77 becc_calibrate_delay(void)
     78 {
     79 
     80 	/*
     81 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
     82 	 * in cpu_initclocks().
     83 	 */
     84 	counts_per_hz = COUNTS_PER_SEC / 100;
     85 
     86 	/* Stop both timers, clear interrupts. */
     87 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
     88 	BECC_CSR_WRITE(BECC_TSCRB, TSCRx_TIF);
     89 
     90 	/* Set the timer preload value. */
     91 	BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
     92 
     93 	/* Start the timer. */
     94 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
     95 }
     96 
     97 /*
     98  * cpu_initclocks:
     99  *
    100  *	Initialize the clock and get them going.
    101  */
    102 void
    103 cpu_initclocks(void)
    104 {
    105 	u_int oldirqstate;
    106 
    107 #if 0
    108 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    109 		printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
    110 		hz = 100;
    111 	}
    112 #endif
    113 	tick = 1000000 / hz;	/* number of microseconds between interrupts */
    114 	tickfix = 1000000 - (hz * tick);
    115 	if (tickfix) {
    116 		int ftp;
    117 
    118 		ftp = min(ffs(tickfix), ffs(hz));
    119 		tickfix >>= (ftp - 1);
    120 		tickfixinterval = hz >> (ftp - 1);
    121 	}
    122 
    123 	/*
    124 	 * We only have one timer available; stathz and profhz are
    125 	 * always left as 0 (the upper-layer clock code deals with
    126 	 * this situation).
    127 	 */
    128 	if (stathz != 0)
    129 		printf("Cannot get %d Hz statclock\n", stathz);
    130 	stathz = 0;
    131 
    132 	if (profhz != 0)
    133 		printf("Cannot get %d Hz profclock\n", profhz);
    134 	profhz = 0;
    135 
    136 	/* Report the clock frequency. */
    137 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    138 
    139 	oldirqstate = disable_interrupts(I32_bit);
    140 
    141 	/* Hook up the clock interrupt handler. */
    142 	clock_ih = becc_intr_establish(ICU_TIMERA, IPL_CLOCK,
    143 	    clockhandler, NULL);
    144 	if (clock_ih == NULL)
    145 		panic("cpu_initclocks: unable to register timer interrupt");
    146 
    147 	/* Set up the new clock parameters. */
    148 
    149 	/* Stop timer, clear interrupt */
    150 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF);
    151 
    152 	counts_per_hz = COUNTS_PER_SEC / hz;
    153 
    154 	/* Set the timer preload value. */
    155 	BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1);
    156 
    157 	/* ...and start it in motion. */
    158 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM);
    159 
    160 	/* register soft interrupt handler as well */
    161 	becc_intr_establish(ICU_SOFT, IPL_SOFT, becc_softint, NULL);
    162 
    163 	restore_interrupts(oldirqstate);
    164 }
    165 
    166 /*
    167  * setstatclockrate:
    168  *
    169  *	Set the rate of the statistics clock.
    170  *
    171  *	We assume that hz is either stathz or profhz, and that neither
    172  *	will change after being set by cpu_initclocks().  We could
    173  *	recalculate the intervals here, but that would be a pain.
    174  */
    175 void
    176 setstatclockrate(int hz)
    177 {
    178 
    179 	/*
    180 	 * XXX Use TMR1?
    181 	 */
    182 }
    183 
    184 /*
    185  * microtime:
    186  *
    187  *	Fill in the specified timeval struct with the current time
    188  *	accurate to the microsecond.
    189  */
    190 void
    191 microtime(struct timeval *tvp)
    192 {
    193 	static struct timeval lasttv;
    194 	u_int oldirqstate;
    195 	uint32_t counts;
    196 
    197 	oldirqstate = disable_interrupts(I32_bit);
    198 
    199 	/*
    200 	 * XXX How do we compensate for the -1 behavior of the preload value?
    201 	 */
    202 	counts = counts_per_hz - BECC_CSR_READ(BECC_TCVRA);
    203 
    204 	/* Fill in the timeval struct. */
    205 	*tvp = time;
    206 	tvp->tv_usec += (counts / COUNTS_PER_USEC);
    207 
    208 	/* Make sure microseconds doesn't overflow. */
    209 	while (tvp->tv_usec >= 1000000) {
    210 		tvp->tv_usec -= 1000000;
    211 		tvp->tv_sec++;
    212 	}
    213 
    214 	/* Make sure the time has advanced. */
    215 	if (tvp->tv_sec == lasttv.tv_sec &&
    216 	    tvp->tv_usec <= lasttv.tv_usec) {
    217 		tvp->tv_usec = lasttv.tv_usec + 1;
    218 		if (tvp->tv_usec >= 1000000) {
    219 			tvp->tv_usec -= 1000000;
    220 			tvp->tv_sec++;
    221 		}
    222 	}
    223 
    224 	lasttv = *tvp;
    225 
    226 	restore_interrupts(oldirqstate);
    227 }
    228 
    229 /*
    230  * delay:
    231  *
    232  *	Delay for at least N microseconds.
    233  */
    234 void
    235 delay(u_int n)
    236 {
    237 	uint32_t cur, last, delta, usecs;
    238 
    239 	/*
    240 	 * This works by polling the timer and counting the
    241 	 * number of microseconds that go by.
    242 	 */
    243 	last = BECC_CSR_READ(BECC_TCVRA);
    244 	delta = usecs = 0;
    245 
    246 	while (n > usecs) {
    247 		cur = BECC_CSR_READ(BECC_TCVRA);
    248 
    249 		/* Check to see if the timer has wrapped around. */
    250 		if (last < cur)
    251 			delta += (last + (counts_per_hz - cur));
    252 		else
    253 			delta += (last - cur);
    254 
    255 		last = cur;
    256 
    257 		if (delta >= COUNTS_PER_USEC) {
    258 			usecs += delta / COUNTS_PER_USEC;
    259 			delta %= COUNTS_PER_USEC;
    260 		}
    261 	}
    262 }
    263 
    264 /*
    265  * inittodr:
    266  *
    267  *	Initialize time from the time-of-day register.
    268  */
    269 void
    270 inittodr(time_t base)
    271 {
    272 
    273 	time.tv_sec = base;
    274 	time.tv_usec = 0;
    275 }
    276 
    277 /*
    278  * resettodr:
    279  *
    280  *	Reset the time-of-day register with the current time.
    281  */
    282 void
    283 resettodr(void)
    284 {
    285 }
    286 
    287 /*
    288  * clockhandler:
    289  *
    290  *	Handle the hardclock interrupt.
    291  */
    292 int
    293 clockhandler(void *arg)
    294 {
    295 	struct clockframe *frame = arg;
    296 
    297 	/* ACK the interrupt. */
    298 	BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM | TSCRx_TIF);
    299 
    300 	hardclock(frame);
    301 
    302 	if (becc_hardclock_hook != NULL)
    303 		(*becc_hardclock_hook)();
    304 
    305 	return (1);
    306 }
    307