Home | History | Annotate | Line # | Download | only in hp300
      1 /*	$NetBSD: pmap_bootstrap.c,v 1.60 2021/07/24 21:31:33 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * the Systems Programming Group of the University of Utah Computer
      9  * Science Department.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.60 2021/07/24 21:31:33 andvar Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <uvm/uvm_extern.h>
     43 
     44 #include <machine/cpu.h>
     45 #include <machine/hp300spu.h>
     46 #include <machine/pte.h>
     47 #include <machine/vmparam.h>
     48 
     49 #include <hp300/hp300/clockreg.h>
     50 
     51 #define RELOC(v, t)	*((t*)((uintptr_t)&(v) + firstpa))
     52 
     53 extern char *etext;
     54 extern vaddr_t CLKbase, MMUbase;
     55 
     56 extern int maxmem;
     57 extern paddr_t avail_start, avail_end;
     58 
     59 /*
     60  * Special purpose kernel virtual addresses, used for mapping
     61  * physical pages for a variety of temporary or permanent purposes:
     62  *
     63  *	CADDR1, CADDR2:	pmap zero/copy operations
     64  *	vmmap:		/dev/mem, crash dumps, parity error checking
     65  *	msgbufaddr:	kernel message buffer
     66  */
     67 void *CADDR1, *CADDR2;
     68 char *vmmap;
     69 void *msgbufaddr;
     70 
     71 void pmap_bootstrap(paddr_t, paddr_t);
     72 
     73 /*
     74  * Bootstrap the VM system.
     75  *
     76  * Called with MMU off so we must relocate all global references by `firstpa'
     77  * (don't call any functions here!)  `nextpa' is the first available physical
     78  * memory address.  Returns an updated first PA reflecting the memory we
     79  * have allocated.  MMU is still off when we return.
     80  *
     81  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
     82  * XXX a PIC compiler would make this much easier.
     83  */
     84 void
     85 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
     86 {
     87 	paddr_t lwp0upa, kstpa, kptmpa, kptpa;
     88 	paddr_t lkptpa;
     89 	u_int nptpages, kstsize;
     90 	st_entry_t protoste, *ste, *este;
     91 	pt_entry_t protopte, *pte, *epte;
     92 	u_int stfree = 0;	/* XXX: gcc -Wuninitialized */
     93 
     94 	/*
     95 	 * Calculate important physical addresses:
     96 	 *
     97 	 *	lwp0upa		lwp0 u-area		UPAGES pages
     98 	 *
     99 	 *	kstpa		kernel segment table	1 page (!040)
    100 	 *						N pages (040)
    101 	 *
    102 	 *	kptmpa		kernel PT map		1 page
    103 	 *
    104 	 *	lkptpa		last kernel PT page	1 page
    105 	 *
    106 	 *	kptpa		statically allocated
    107 	 *			kernel PT pages		Sysptsize+ pages
    108 	 *
    109 	 * [ Sysptsize is the number of pages of PT, and IIOMAPSIZE and
    110 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
    111 	 *   the total to a page boundary with IO maps at the end. ]
    112 	 *
    113 	 * The KVA corresponding to any of these PAs is:
    114 	 *	(PA - firstpa + KERNBASE).
    115 	 */
    116 	lwp0upa = nextpa;
    117 	nextpa += USPACE;
    118 	if (RELOC(mmutype, int) == MMU_68040)
    119 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
    120 	else
    121 		kstsize = 1;
    122 	kstpa = nextpa;
    123 	nextpa += kstsize * PAGE_SIZE;
    124 	kptmpa = nextpa;
    125 	nextpa += PAGE_SIZE;
    126 	lkptpa = nextpa;
    127 	nextpa += PAGE_SIZE;
    128 	kptpa = nextpa;
    129 	nptpages = RELOC(Sysptsize, int) + howmany(RELOC(physmem, int), NPTEPG) +
    130 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
    131 	nextpa += nptpages * PAGE_SIZE;
    132 
    133 	/*
    134 	 * Initialize segment table and kernel page table map.
    135 	 *
    136 	 * On 68030s and earlier MMUs the two are identical except for
    137 	 * the valid bits so both are initialized with essentially the
    138 	 * same values.  On the 68040, which has a mandatory 3-level
    139 	 * structure, the segment table holds the level 1 table and part
    140 	 * (or all) of the level 2 table and hence is considerably
    141 	 * different.  Here the first level consists of 128 descriptors
    142 	 * (512 bytes) each mapping 32mb of address space.  Each of these
    143 	 * points to blocks of 128 second level descriptors (512 bytes)
    144 	 * each mapping 256kb.  Note that there may be additional "segment
    145 	 * table" pages depending on how large MAXKL2SIZE is.
    146 	 *
    147 	 * Portions of the last two segment of KVA space (0xFF800000 -
    148 	 * 0xFFFFFFFF) are mapped for a couple of purposes.
    149 	 * The first segment (0xFF800000 - 0xFFBFFFFF) is mapped
    150 	 * for the kernel page tables.
    151 	 * The very last page (0xFFFFF000) in the second segment is mapped
    152 	 * to the last physical page of RAM to give us a region in which
    153 	 * PA == VA.  We use the first part of this page for enabling
    154 	 * and disabling mapping.  The last part of this page also contains
    155 	 * info left by the boot ROM.
    156 	 *
    157 	 * XXX cramming two levels of mapping into the single "segment"
    158 	 * table on the 68040 is intended as a temporary hack to get things
    159 	 * working.  The 224mb of address space that this allows will most
    160 	 * likely be insufficient in the future (at least for the kernel).
    161 	 */
    162 	if (RELOC(mmutype, int) == MMU_68040) {
    163 		int nl1desc, nl2desc, i;
    164 
    165 		/*
    166 		 * First invalidate the entire "segment table" pages
    167 		 * (levels 1 and 2 have the same "invalid" value).
    168 		 */
    169 		ste = (st_entry_t *)kstpa;
    170 		este = &ste[kstsize * NPTEPG];
    171 		while (ste < este)
    172 			*ste++ = SG_NV;
    173 		/*
    174 		 * Initialize level 2 descriptors (which immediately
    175 		 * follow the level 1 table).  We need:
    176 		 *	NPTEPG / SG4_LEV3SIZE
    177 		 * level 2 descriptors to map each of the nptpages
    178 		 * pages of PTEs.  Note that we set the "used" bit
    179 		 * now to save the HW the expense of doing it.
    180 		 */
    181 		nl2desc = nptpages * (NPTEPG / SG4_LEV3SIZE);
    182 		ste = (st_entry_t *)kstpa;
    183 		ste = &ste[SG4_LEV1SIZE];
    184 		este = &ste[nl2desc];
    185 		protoste = kptpa | SG_U | SG_RW | SG_V;
    186 		while (ste < este) {
    187 			*ste++ = protoste;
    188 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    189 		}
    190 		/*
    191 		 * Initialize level 1 descriptors.  We need:
    192 		 *	howmany(nl2desc, SG4_LEV2SIZE)
    193 		 * level 1 descriptors to map the `nl2desc' level 2's.
    194 		 */
    195 		nl1desc = howmany(nl2desc, SG4_LEV2SIZE);
    196 		ste = (st_entry_t *)kstpa;
    197 		este = &ste[nl1desc];
    198 		protoste = (paddr_t)&ste[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
    199 		while (ste < este) {
    200 			*ste++ = protoste;
    201 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
    202 		}
    203 		/*
    204 		 * Initialize the final level 1 descriptor to map the next
    205 		 * block of level 2 descriptors for Sysptmap.
    206 		 */
    207 		ste = (st_entry_t *)kstpa;
    208 		ste = &ste[SG4_LEV1SIZE - 1];
    209 		*ste = protoste;
    210 		/*
    211 		 * Now initialize the final portion of that block of
    212 		 * descriptors to map Sysmap and the "last PT page".
    213 		 */
    214 		i = SG4_LEV1SIZE + (nl1desc * SG4_LEV2SIZE);
    215 		ste = (st_entry_t *)kstpa;
    216 		ste = &ste[i + SG4_LEV2SIZE - (NPTEPG / SG4_LEV3SIZE) * 2];
    217 		este = &ste[NPTEPG / SG4_LEV3SIZE];
    218 		protoste = kptmpa | SG_U | SG_RW | SG_V;
    219 		while (ste < este) {
    220 			*ste++ = protoste;
    221 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    222 		}
    223 		este = &ste[NPTEPG / SG4_LEV3SIZE];
    224 		protoste = lkptpa | SG_U | SG_RW | SG_V;
    225 		while (ste < este) {
    226 			*ste++ = protoste;
    227 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    228 		}
    229 		/*
    230 		 * Calculate the free level 2 descriptor mask
    231 		 * noting that we have used:
    232 		 *	0:		level 1 table
    233 		 *	1 to nl1desc:	map page tables
    234 		 *	nl1desc + 1:	maps kptmpa and last-page page table
    235 		 */
    236 		/* mark an entry for level 1 table */
    237 		stfree = ~l2tobm(0);
    238 		/* mark entries for map page tables */
    239 		for (i = 1; i <= nl1desc; i++)
    240 			stfree &= ~l2tobm(i);
    241 		/* mark an entry for kptmpa and lkptpa */
    242 		stfree &= ~l2tobm(i);
    243 		/* mark entries not available */
    244 		for (i = MAXKL2SIZE; i < sizeof(stfree) * NBBY; i++)
    245 			stfree &= ~l2tobm(i);
    246 
    247 		/*
    248 		 * Initialize Sysptmap
    249 		 */
    250 		pte = (pt_entry_t *)kptmpa;
    251 		epte = &pte[nptpages];
    252 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    253 		while (pte < epte) {
    254 			*pte++ = protopte;
    255 			protopte += PAGE_SIZE;
    256 		}
    257 		/*
    258 		 * Invalidate all remaining entries.
    259 		 */
    260 		epte = (pt_entry_t *)kptmpa;
    261 		epte = &epte[TIB_SIZE];
    262 		while (pte < epte) {
    263 			*pte++ = PG_NV;
    264 		}
    265 		/*
    266 		 * Initialize the last ones to point to Sysptmap and the page
    267 		 * table page allocated earlier.
    268 		 */
    269 		pte = (pt_entry_t *)kptmpa;
    270 		pte = &pte[SYSMAP_VA >> SEGSHIFT];
    271 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
    272 		pte = (pt_entry_t *)kptmpa;
    273 		pte = &pte[MAXADDR >> SEGSHIFT];
    274 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    275 	} else {
    276 		/*
    277 		 * Map the page table pages in both the HW segment table
    278 		 * and the software Sysptmap.
    279 		 */
    280 		ste = (st_entry_t *)kstpa;
    281 		pte = (pt_entry_t *)kptmpa;
    282 		epte = &pte[nptpages];
    283 		protoste = kptpa | SG_RW | SG_V;
    284 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    285 		while (pte < epte) {
    286 			*ste++ = protoste;
    287 			*pte++ = protopte;
    288 			protoste += PAGE_SIZE;
    289 			protopte += PAGE_SIZE;
    290 		}
    291 		/*
    292 		 * Invalidate all remaining entries in both.
    293 		 */
    294 		este = (st_entry_t *)kstpa;
    295 		este = &este[TIA_SIZE];
    296 		while (ste < este)
    297 			*ste++ = SG_NV;
    298 		epte = (pt_entry_t *)kptmpa;
    299 		epte = &epte[TIB_SIZE];
    300 		while (pte < epte)
    301 			*pte++ = PG_NV;
    302 		/*
    303 		 * Initialize the last ones to point to Sysptmap and the page
    304 		 * table page allocated earlier.
    305 		 */
    306 		ste = (st_entry_t *)kstpa;
    307 		ste = &ste[SYSMAP_VA >> SEGSHIFT];
    308 		pte = (pt_entry_t *)kptmpa;
    309 		pte = &pte[SYSMAP_VA >> SEGSHIFT];
    310 		*ste = kptmpa | SG_RW | SG_V;
    311 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
    312 		ste = (st_entry_t *)kstpa;
    313 		ste = &ste[MAXADDR >> SEGSHIFT];
    314 		pte = (pt_entry_t *)kptmpa;
    315 		pte = &pte[MAXADDR >> SEGSHIFT];
    316 		*ste = lkptpa | SG_RW | SG_V;
    317 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    318 	}
    319 
    320 	/*
    321 	 * Invalidate all but the final entry in the last kernel PT page.
    322 	 * The final entry maps the last page of physical memory to
    323 	 * prepare a page that is PA == VA to turn on the MMU.
    324 	 */
    325 	pte = (pt_entry_t *)lkptpa;
    326 	epte = &pte[NPTEPG - 1];
    327 	while (pte < epte)
    328 		*pte++ = PG_NV;
    329 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
    330 	/*
    331 	 * Initialize kernel page table.
    332 	 * Start by invalidating the `nptpages' that we have allocated.
    333 	 */
    334 	pte = (pt_entry_t *)kptpa;
    335 	epte = &pte[nptpages * NPTEPG];
    336 	while (pte < epte)
    337 		*pte++ = PG_NV;
    338 	/*
    339 	 * Validate PTEs for kernel text (RO).
    340 	 * The first page of kernel text remains invalid; see locore.s
    341 	 */
    342 	pte = (pt_entry_t *)kptpa;
    343 	pte = &pte[m68k_btop(KERNBASE + PAGE_SIZE)];
    344 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
    345 	protopte = (firstpa + PAGE_SIZE) | PG_RO | PG_V;
    346 	while (pte < epte) {
    347 		*pte++ = protopte;
    348 		protopte += PAGE_SIZE;
    349 	}
    350 	/*
    351 	 * Validate PTEs for kernel data/bss, dynamic data allocated
    352 	 * by us so far (kstpa - firstpa bytes), and pages for lwp0
    353 	 * u-area and page table allocated below (RW).
    354 	 */
    355 	epte = (pt_entry_t *)kptpa;
    356 	epte = &epte[m68k_btop(kstpa - firstpa)];
    357 	protopte = (protopte & ~PG_PROT) | PG_RW;
    358 	/*
    359 	 * Enable copy-back caching of data pages
    360 	 */
    361 	if (RELOC(mmutype, int) == MMU_68040)
    362 		protopte |= PG_CCB;
    363 	while (pte < epte) {
    364 		*pte++ = protopte;
    365 		protopte += PAGE_SIZE;
    366 	}
    367 	/*
    368 	 * Map the kernel segment table cache invalidated for 68040/68060.
    369 	 * (for the 68040 not strictly necessary, but recommended by Motorola;
    370 	 *  for the 68060 mandatory)
    371 	 */
    372 	epte = (pt_entry_t *)kptpa;
    373 	epte = &epte[m68k_btop(nextpa - firstpa)];
    374 	protopte = (protopte & ~PG_PROT) | PG_RW;
    375 	if (RELOC(mmutype, int) == MMU_68040) {
    376 		protopte &= ~PG_CCB;
    377 		protopte |= PG_CIN;
    378 	}
    379 	while (pte < epte) {
    380 		*pte++ = protopte;
    381 		protopte += PAGE_SIZE;
    382 	}
    383 
    384 	/*
    385 	 * Finally, validate the internal IO space PTEs (RW+CI).
    386 	 * We do this here since the 320/350 MMU registers (also
    387 	 * used, but to a lesser extent, on other models) are mapped
    388 	 * in this range and it would be nice to be able to access
    389 	 * them after the MMU is turned on.
    390 	 */
    391 
    392 #define	PTE2VA(pte)	m68k_ptob(pte - ((pt_entry_t *)kptpa))
    393 
    394 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
    395 	epte = &pte[IIOMAPSIZE];
    396 	RELOC(intiobase, uint8_t *) = (uint8_t *)PTE2VA(pte);
    397 	RELOC(intiolimit, uint8_t *) = (uint8_t *)PTE2VA(epte);
    398 	while (pte < epte) {
    399 		*pte++ = protopte;
    400 		protopte += PAGE_SIZE;
    401 	}
    402 	RELOC(extiobase, uint8_t *) = (uint8_t *)PTE2VA(pte);
    403 	pte += EIOMAPSIZE;
    404 	RELOC(virtual_avail, vaddr_t) = PTE2VA(pte);
    405 
    406 	/*
    407 	 * Calculate important exported kernel addresses and related values.
    408 	 */
    409 	/*
    410 	 * Sysseg: base of kernel segment table
    411 	 */
    412 	RELOC(Sysseg, st_entry_t *) = (st_entry_t *)(kstpa - firstpa);
    413 	RELOC(Sysseg_pa, paddr_t) = kstpa;
    414 #if defined(M68040)
    415 	if (RELOC(mmutype, int) == MMU_68040)
    416 		RELOC(protostfree, u_int) = stfree;
    417 #endif
    418 	/*
    419 	 * Sysptmap: base of kernel page table map
    420 	 */
    421 	RELOC(Sysptmap, pt_entry_t *) = (pt_entry_t *)(kptmpa - firstpa);
    422 	/*
    423 	 * Sysmap: kernel page table (as mapped through Sysptmap)
    424 	 * Allocated at the end of KVA space.
    425 	 */
    426 	RELOC(Sysmap, pt_entry_t *) = (pt_entry_t *)SYSMAP_VA;
    427 	/*
    428 	 * CLKbase, MMUbase: important registers in internal IO space
    429 	 * accessed from assembly language.
    430 	 */
    431 	RELOC(CLKbase, vaddr_t) =
    432 		(vaddr_t)RELOC(intiobase, char *) + CLKBASE;
    433 	RELOC(MMUbase, vaddr_t) =
    434 		(vaddr_t)RELOC(intiobase, char *) + MMUBASE;
    435 
    436 	/*
    437 	 * Remember the u-area address so it can be loaded in the lwp0
    438 	 * via uvm_lwp_setuarea() later in pmap_bootstrap_finalize().
    439 	 */
    440 	RELOC(lwp0uarea, vaddr_t) = lwp0upa - firstpa;
    441 
    442 	/*
    443 	 * VM data structures are now initialized, set up data for
    444 	 * the pmap module.
    445 	 *
    446 	 * Note about avail_end: msgbuf is initialized just after
    447 	 * avail_end in machdep.c.
    448 	 * Since the last page is used for rebooting the system
    449 	 * (code is copied there and execution continues from copied code
    450 	 * before the MMU is disabled), the msgbuf will get trounced
    451 	 * between reboots if it's placed in the last physical page.
    452 	 * To work around this, we move avail_end back one more
    453 	 * page so the msgbuf can be preserved.
    454 	 */
    455 	RELOC(avail_start, paddr_t) = nextpa;
    456 	RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)) -
    457 	    (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
    458 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
    459 
    460 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
    461 
    462 	/*
    463 	 * Allocate some fixed, special purpose kernel virtual addresses
    464 	 */
    465 	{
    466 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
    467 
    468 		RELOC(CADDR1, void *) = (void *)va;
    469 		va += PAGE_SIZE;
    470 		RELOC(CADDR2, void *) = (void *)va;
    471 		va += PAGE_SIZE;
    472 		RELOC(vmmap, void *) = (void *)va;
    473 		va += PAGE_SIZE;
    474 		RELOC(msgbufaddr, void *) = (void *)va;
    475 		va += m68k_round_page(MSGBUFSIZE);
    476 		RELOC(virtual_avail, vaddr_t) = va;
    477 	}
    478 }
    479