pmap_bootstrap.c revision 1.11 1 1.11 scottr /* $NetBSD: pmap_bootstrap.c,v 1.11 1997/04/01 03:12:29 scottr Exp $ */
2 1.4 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1991, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * This code is derived from software contributed to Berkeley by
8 1.1 mycroft * the Systems Programming Group of the University of Utah Computer
9 1.1 mycroft * Science Department.
10 1.1 mycroft *
11 1.1 mycroft * Redistribution and use in source and binary forms, with or without
12 1.1 mycroft * modification, are permitted provided that the following conditions
13 1.1 mycroft * are met:
14 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
15 1.1 mycroft * notice, this list of conditions and the following disclaimer.
16 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
18 1.1 mycroft * documentation and/or other materials provided with the distribution.
19 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
20 1.1 mycroft * must display the following acknowledgement:
21 1.1 mycroft * This product includes software developed by the University of
22 1.1 mycroft * California, Berkeley and its contributors.
23 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
24 1.1 mycroft * may be used to endorse or promote products derived from this software
25 1.1 mycroft * without specific prior written permission.
26 1.1 mycroft *
27 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 1.1 mycroft * SUCH DAMAGE.
38 1.1 mycroft *
39 1.4 cgd * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93
40 1.1 mycroft */
41 1.1 mycroft
42 1.1 mycroft #include <sys/param.h>
43 1.1 mycroft #include <sys/msgbuf.h>
44 1.11 scottr #include <sys/proc.h>
45 1.11 scottr
46 1.11 scottr #include <machine/frame.h>
47 1.11 scottr #include <machine/cpu.h>
48 1.11 scottr #include <machine/vmparam.h>
49 1.1 mycroft #include <machine/pte.h>
50 1.11 scottr
51 1.1 mycroft #include <hp300/hp300/clockreg.h>
52 1.1 mycroft
53 1.1 mycroft #include <vm/vm.h>
54 1.11 scottr #include <vm/pmap.h>
55 1.1 mycroft
56 1.1 mycroft #define RELOC(v, t) *((t*)((u_int)&(v) + firstpa))
57 1.1 mycroft
58 1.1 mycroft extern char *etext;
59 1.1 mycroft extern int Sysptsize;
60 1.1 mycroft extern char *extiobase, *proc0paddr;
61 1.3 mycroft extern st_entry_t *Sysseg;
62 1.3 mycroft extern pt_entry_t *Sysptmap, *Sysmap;
63 1.6 mycroft extern vm_offset_t CLKbase, MMUbase;
64 1.10 thorpej extern vm_offset_t pagezero;
65 1.1 mycroft
66 1.1 mycroft extern int maxmem, physmem;
67 1.1 mycroft extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
68 1.1 mycroft extern vm_size_t mem_size;
69 1.1 mycroft extern int protection_codes[];
70 1.9 thorpej #ifdef M68K_MMU_HP
71 1.1 mycroft extern int pmap_aliasmask;
72 1.1 mycroft #endif
73 1.1 mycroft
74 1.11 scottr void pmap_bootstrap __P((vm_offset_t, vm_offset_t));
75 1.11 scottr
76 1.1 mycroft /*
77 1.1 mycroft * Special purpose kernel virtual addresses, used for mapping
78 1.1 mycroft * physical pages for a variety of temporary or permanent purposes:
79 1.1 mycroft *
80 1.1 mycroft * CADDR1, CADDR2: pmap zero/copy operations
81 1.1 mycroft * vmmap: /dev/mem, crash dumps, parity error checking
82 1.1 mycroft * ledbase: SPU LEDs
83 1.1 mycroft * msgbufp: kernel message buffer
84 1.1 mycroft */
85 1.1 mycroft caddr_t CADDR1, CADDR2, vmmap, ledbase;
86 1.1 mycroft struct msgbuf *msgbufp;
87 1.1 mycroft
88 1.1 mycroft /*
89 1.1 mycroft * Bootstrap the VM system.
90 1.1 mycroft *
91 1.1 mycroft * Called with MMU off so we must relocate all global references by `firstpa'
92 1.1 mycroft * (don't call any functions here!) `nextpa' is the first available physical
93 1.1 mycroft * memory address. Returns an updated first PA reflecting the memory we
94 1.1 mycroft * have allocated. MMU is still off when we return.
95 1.1 mycroft *
96 1.3 mycroft * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
97 1.1 mycroft * XXX a PIC compiler would make this much easier.
98 1.1 mycroft */
99 1.1 mycroft void
100 1.1 mycroft pmap_bootstrap(nextpa, firstpa)
101 1.1 mycroft vm_offset_t nextpa;
102 1.11 scottr vm_offset_t firstpa;
103 1.1 mycroft {
104 1.1 mycroft vm_offset_t kstpa, kptpa, iiopa, eiopa, kptmpa, lkptpa, p0upa;
105 1.1 mycroft u_int nptpages, kstsize;
106 1.11 scottr st_entry_t protoste, *ste;
107 1.11 scottr pt_entry_t protopte, *pte, *epte;
108 1.1 mycroft
109 1.1 mycroft /*
110 1.1 mycroft * Calculate important physical addresses:
111 1.1 mycroft *
112 1.1 mycroft * kstpa kernel segment table 1 page (!040)
113 1.1 mycroft * N pages (040)
114 1.1 mycroft *
115 1.1 mycroft * kptpa statically allocated
116 1.1 mycroft * kernel PT pages Sysptsize+ pages
117 1.1 mycroft *
118 1.1 mycroft * iiopa internal IO space
119 1.1 mycroft * PT pages IIOMAPSIZE pages
120 1.1 mycroft *
121 1.1 mycroft * eiopa external IO space
122 1.1 mycroft * PT pages EIOMAPSIZE pages
123 1.1 mycroft *
124 1.1 mycroft * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
125 1.1 mycroft * EIOMAPSIZE are the number of PTEs, hence we need to round
126 1.1 mycroft * the total to a page boundary with IO maps at the end. ]
127 1.1 mycroft *
128 1.1 mycroft * kptmpa kernel PT map 1 page
129 1.1 mycroft *
130 1.1 mycroft * lkptpa last kernel PT page 1 page
131 1.1 mycroft *
132 1.1 mycroft * p0upa proc 0 u-area UPAGES pages
133 1.1 mycroft *
134 1.1 mycroft * The KVA corresponding to any of these PAs is:
135 1.1 mycroft * (PA - firstpa + KERNBASE).
136 1.1 mycroft */
137 1.1 mycroft if (RELOC(mmutype, int) == MMU_68040)
138 1.1 mycroft kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
139 1.1 mycroft else
140 1.1 mycroft kstsize = 1;
141 1.1 mycroft kstpa = nextpa;
142 1.1 mycroft nextpa += kstsize * NBPG;
143 1.1 mycroft kptpa = nextpa;
144 1.1 mycroft nptpages = RELOC(Sysptsize, int) +
145 1.1 mycroft (IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
146 1.1 mycroft nextpa += nptpages * NBPG;
147 1.3 mycroft eiopa = nextpa - EIOMAPSIZE * sizeof(pt_entry_t);
148 1.3 mycroft iiopa = eiopa - IIOMAPSIZE * sizeof(pt_entry_t);
149 1.1 mycroft kptmpa = nextpa;
150 1.1 mycroft nextpa += NBPG;
151 1.1 mycroft lkptpa = nextpa;
152 1.1 mycroft nextpa += NBPG;
153 1.1 mycroft p0upa = nextpa;
154 1.5 mycroft nextpa += USPACE;
155 1.1 mycroft
156 1.1 mycroft /*
157 1.1 mycroft * Initialize segment table and kernel page table map.
158 1.1 mycroft *
159 1.1 mycroft * On 68030s and earlier MMUs the two are identical except for
160 1.1 mycroft * the valid bits so both are initialized with essentially the
161 1.1 mycroft * same values. On the 68040, which has a mandatory 3-level
162 1.1 mycroft * structure, the segment table holds the level 1 table and part
163 1.1 mycroft * (or all) of the level 2 table and hence is considerably
164 1.1 mycroft * different. Here the first level consists of 128 descriptors
165 1.1 mycroft * (512 bytes) each mapping 32mb of address space. Each of these
166 1.1 mycroft * points to blocks of 128 second level descriptors (512 bytes)
167 1.1 mycroft * each mapping 256kb. Note that there may be additional "segment
168 1.1 mycroft * table" pages depending on how large MAXKL2SIZE is.
169 1.1 mycroft *
170 1.1 mycroft * Portions of the last segment of KVA space (0xFFF00000 -
171 1.1 mycroft * 0xFFFFFFFF) are mapped for a couple of purposes. 0xFFF00000
172 1.1 mycroft * for UPAGES is used for mapping the current process u-area
173 1.1 mycroft * (u + kernel stack). The very last page (0xFFFFF000) is mapped
174 1.1 mycroft * to the last physical page of RAM to give us a region in which
175 1.1 mycroft * PA == VA. We use the first part of this page for enabling
176 1.1 mycroft * and disabling mapping. The last part of this page also contains
177 1.1 mycroft * info left by the boot ROM.
178 1.1 mycroft *
179 1.1 mycroft * XXX cramming two levels of mapping into the single "segment"
180 1.1 mycroft * table on the 68040 is intended as a temporary hack to get things
181 1.1 mycroft * working. The 224mb of address space that this allows will most
182 1.1 mycroft * likely be insufficient in the future (at least for the kernel).
183 1.1 mycroft */
184 1.1 mycroft if (RELOC(mmutype, int) == MMU_68040) {
185 1.11 scottr int num;
186 1.1 mycroft
187 1.1 mycroft /*
188 1.1 mycroft * First invalidate the entire "segment table" pages
189 1.1 mycroft * (levels 1 and 2 have the same "invalid" value).
190 1.1 mycroft */
191 1.1 mycroft pte = (u_int *)kstpa;
192 1.1 mycroft epte = &pte[kstsize * NPTEPG];
193 1.1 mycroft while (pte < epte)
194 1.1 mycroft *pte++ = SG_NV;
195 1.1 mycroft /*
196 1.1 mycroft * Initialize level 2 descriptors (which immediately
197 1.1 mycroft * follow the level 1 table). We need:
198 1.1 mycroft * NPTEPG / SG4_LEV3SIZE
199 1.1 mycroft * level 2 descriptors to map each of the nptpages+1
200 1.1 mycroft * pages of PTEs. Note that we set the "used" bit
201 1.1 mycroft * now to save the HW the expense of doing it.
202 1.1 mycroft */
203 1.1 mycroft num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
204 1.1 mycroft pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
205 1.1 mycroft epte = &pte[num];
206 1.1 mycroft protoste = kptpa | SG_U | SG_RW | SG_V;
207 1.1 mycroft while (pte < epte) {
208 1.1 mycroft *pte++ = protoste;
209 1.3 mycroft protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
210 1.1 mycroft }
211 1.1 mycroft /*
212 1.1 mycroft * Initialize level 1 descriptors. We need:
213 1.1 mycroft * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
214 1.1 mycroft * level 1 descriptors to map the `num' level 2's.
215 1.1 mycroft */
216 1.1 mycroft pte = (u_int *)kstpa;
217 1.1 mycroft epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
218 1.1 mycroft protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
219 1.1 mycroft while (pte < epte) {
220 1.1 mycroft *pte++ = protoste;
221 1.3 mycroft protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
222 1.1 mycroft }
223 1.1 mycroft /*
224 1.1 mycroft * Initialize the final level 1 descriptor to map the last
225 1.1 mycroft * block of level 2 descriptors.
226 1.1 mycroft */
227 1.1 mycroft ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
228 1.1 mycroft pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
229 1.1 mycroft *ste = (u_int)pte | SG_U | SG_RW | SG_V;
230 1.1 mycroft /*
231 1.1 mycroft * Now initialize the final portion of that block of
232 1.1 mycroft * descriptors to map the "last PT page".
233 1.1 mycroft */
234 1.1 mycroft pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
235 1.1 mycroft epte = &pte[NPTEPG/SG4_LEV3SIZE];
236 1.1 mycroft protoste = lkptpa | SG_U | SG_RW | SG_V;
237 1.1 mycroft while (pte < epte) {
238 1.1 mycroft *pte++ = protoste;
239 1.3 mycroft protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
240 1.1 mycroft }
241 1.1 mycroft /*
242 1.1 mycroft * Initialize Sysptmap
243 1.1 mycroft */
244 1.1 mycroft pte = (u_int *)kptmpa;
245 1.1 mycroft epte = &pte[nptpages+1];
246 1.1 mycroft protopte = kptpa | PG_RW | PG_CI | PG_V;
247 1.1 mycroft while (pte < epte) {
248 1.1 mycroft *pte++ = protopte;
249 1.1 mycroft protopte += NBPG;
250 1.1 mycroft }
251 1.7 thorpej /*
252 1.7 thorpej * Invalidate all but the last remaining entry.
253 1.7 thorpej */
254 1.7 thorpej epte = &((u_int *)kptmpa)[NPTEPG-1];
255 1.7 thorpej while (pte < epte) {
256 1.7 thorpej *pte++ = PG_NV;
257 1.7 thorpej }
258 1.10 thorpej /*
259 1.10 thorpej * Initialize the last to point to the page
260 1.7 thorpej * table page allocated earlier.
261 1.7 thorpej */
262 1.1 mycroft *pte = lkptpa | PG_RW | PG_CI | PG_V;
263 1.1 mycroft } else {
264 1.1 mycroft /*
265 1.1 mycroft * Map the page table pages in both the HW segment table
266 1.1 mycroft * and the software Sysptmap. Note that Sysptmap is also
267 1.1 mycroft * considered a PT page hence the +1.
268 1.1 mycroft */
269 1.1 mycroft ste = (u_int *)kstpa;
270 1.1 mycroft pte = (u_int *)kptmpa;
271 1.1 mycroft epte = &pte[nptpages+1];
272 1.1 mycroft protoste = kptpa | SG_RW | SG_V;
273 1.1 mycroft protopte = kptpa | PG_RW | PG_CI | PG_V;
274 1.1 mycroft while (pte < epte) {
275 1.1 mycroft *ste++ = protoste;
276 1.1 mycroft *pte++ = protopte;
277 1.1 mycroft protoste += NBPG;
278 1.1 mycroft protopte += NBPG;
279 1.1 mycroft }
280 1.1 mycroft /*
281 1.1 mycroft * Invalidate all but the last remaining entries in both.
282 1.1 mycroft */
283 1.1 mycroft epte = &((u_int *)kptmpa)[NPTEPG-1];
284 1.1 mycroft while (pte < epte) {
285 1.1 mycroft *ste++ = SG_NV;
286 1.1 mycroft *pte++ = PG_NV;
287 1.1 mycroft }
288 1.1 mycroft /*
289 1.1 mycroft * Initialize the last to point to point to the page
290 1.1 mycroft * table page allocated earlier.
291 1.1 mycroft */
292 1.1 mycroft *ste = lkptpa | SG_RW | SG_V;
293 1.1 mycroft *pte = lkptpa | PG_RW | PG_CI | PG_V;
294 1.1 mycroft }
295 1.1 mycroft /*
296 1.1 mycroft * Invalidate all but the final entry in the last kernel PT page
297 1.1 mycroft * (u-area PTEs will be validated later). The final entry maps
298 1.1 mycroft * the last page of physical memory.
299 1.1 mycroft */
300 1.1 mycroft pte = (u_int *)lkptpa;
301 1.1 mycroft epte = &pte[NPTEPG-1];
302 1.1 mycroft while (pte < epte)
303 1.1 mycroft *pte++ = PG_NV;
304 1.1 mycroft *pte = MAXADDR | PG_RW | PG_CI | PG_V;
305 1.1 mycroft /*
306 1.1 mycroft * Initialize kernel page table.
307 1.1 mycroft * Start by invalidating the `nptpages' that we have allocated.
308 1.1 mycroft */
309 1.1 mycroft pte = (u_int *)kptpa;
310 1.1 mycroft epte = &pte[nptpages * NPTEPG];
311 1.1 mycroft while (pte < epte)
312 1.1 mycroft *pte++ = PG_NV;
313 1.10 thorpej
314 1.1 mycroft /*
315 1.10 thorpej * Save the physical address of `page zero'. This is
316 1.10 thorpej * a page of memory at the beginning of kernel text
317 1.10 thorpej * not mapped at VA 0. But, we might want to use it
318 1.10 thorpej * for something later.
319 1.1 mycroft */
320 1.10 thorpej RELOC(pagezero, vm_offset_t) = firstpa;
321 1.10 thorpej
322 1.10 thorpej /*
323 1.10 thorpej * Validate PTEs for kernel text (RO). The first page
324 1.10 thorpej * of kernel text remains invalid; see locore.s
325 1.10 thorpej */
326 1.10 thorpej pte = &((u_int *)kptpa)[hp300_btop(KERNBASE + NBPG)];
327 1.1 mycroft epte = &pte[hp300_btop(hp300_trunc_page(&etext))];
328 1.10 thorpej protopte = (firstpa + NBPG) | PG_RO | PG_V;
329 1.1 mycroft while (pte < epte) {
330 1.1 mycroft *pte++ = protopte;
331 1.1 mycroft protopte += NBPG;
332 1.1 mycroft }
333 1.1 mycroft /*
334 1.1 mycroft * Validate PTEs for kernel data/bss, dynamic data allocated
335 1.1 mycroft * by us so far (nextpa - firstpa bytes), and pages for proc0
336 1.1 mycroft * u-area and page table allocated below (RW).
337 1.1 mycroft */
338 1.1 mycroft epte = &((u_int *)kptpa)[hp300_btop(nextpa - firstpa)];
339 1.1 mycroft protopte = (protopte & ~PG_PROT) | PG_RW;
340 1.1 mycroft /*
341 1.1 mycroft * Enable copy-back caching of data pages
342 1.1 mycroft */
343 1.1 mycroft if (RELOC(mmutype, int) == MMU_68040)
344 1.1 mycroft protopte |= PG_CCB;
345 1.1 mycroft while (pte < epte) {
346 1.1 mycroft *pte++ = protopte;
347 1.1 mycroft protopte += NBPG;
348 1.1 mycroft }
349 1.1 mycroft /*
350 1.1 mycroft * Finally, validate the internal IO space PTEs (RW+CI).
351 1.1 mycroft * We do this here since the 320/350 MMU registers (also
352 1.1 mycroft * used, but to a lesser extent, on other models) are mapped
353 1.1 mycroft * in this range and it would be nice to be able to access
354 1.1 mycroft * them after the MMU is turned on.
355 1.1 mycroft */
356 1.1 mycroft pte = (u_int *)iiopa;
357 1.1 mycroft epte = (u_int *)eiopa;
358 1.1 mycroft protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
359 1.1 mycroft while (pte < epte) {
360 1.1 mycroft *pte++ = protopte;
361 1.1 mycroft protopte += NBPG;
362 1.1 mycroft }
363 1.1 mycroft
364 1.1 mycroft /*
365 1.1 mycroft * Calculate important exported kernel virtual addresses
366 1.1 mycroft */
367 1.1 mycroft /*
368 1.1 mycroft * Sysseg: base of kernel segment table
369 1.1 mycroft */
370 1.3 mycroft RELOC(Sysseg, st_entry_t *) =
371 1.3 mycroft (st_entry_t *)(kstpa - firstpa);
372 1.1 mycroft /*
373 1.1 mycroft * Sysptmap: base of kernel page table map
374 1.1 mycroft */
375 1.3 mycroft RELOC(Sysptmap, pt_entry_t *) =
376 1.3 mycroft (pt_entry_t *)(kptmpa - firstpa);
377 1.1 mycroft /*
378 1.1 mycroft * Sysmap: kernel page table (as mapped through Sysptmap)
379 1.1 mycroft * Immediately follows `nptpages' of static kernel page table.
380 1.1 mycroft */
381 1.3 mycroft RELOC(Sysmap, pt_entry_t *) =
382 1.3 mycroft (pt_entry_t *)hp300_ptob(nptpages * NPTEPG);
383 1.1 mycroft /*
384 1.1 mycroft * intiobase, intiolimit: base and end of internal (DIO) IO space.
385 1.1 mycroft * IIOMAPSIZE pages prior to external IO space at end of static
386 1.1 mycroft * kernel page table.
387 1.1 mycroft */
388 1.1 mycroft RELOC(intiobase, char *) =
389 1.1 mycroft (char *)hp300_ptob(nptpages*NPTEPG - (IIOMAPSIZE+EIOMAPSIZE));
390 1.1 mycroft RELOC(intiolimit, char *) =
391 1.1 mycroft (char *)hp300_ptob(nptpages*NPTEPG - EIOMAPSIZE);
392 1.1 mycroft /*
393 1.1 mycroft * extiobase: base of external (DIO-II) IO space.
394 1.1 mycroft * EIOMAPSIZE pages at the end of the static kernel page table.
395 1.1 mycroft */
396 1.1 mycroft RELOC(extiobase, char *) =
397 1.1 mycroft (char *)hp300_ptob(nptpages*NPTEPG - EIOMAPSIZE);
398 1.1 mycroft /*
399 1.1 mycroft * CLKbase, MMUbase: important registers in internal IO space
400 1.1 mycroft * accessed from assembly language.
401 1.1 mycroft */
402 1.1 mycroft RELOC(CLKbase, vm_offset_t) =
403 1.1 mycroft (vm_offset_t)RELOC(intiobase, char *) + CLKBASE;
404 1.1 mycroft RELOC(MMUbase, vm_offset_t) =
405 1.1 mycroft (vm_offset_t)RELOC(intiobase, char *) + MMUBASE;
406 1.1 mycroft
407 1.1 mycroft /*
408 1.1 mycroft * Setup u-area for process 0.
409 1.1 mycroft */
410 1.1 mycroft /*
411 1.1 mycroft * Zero the u-area.
412 1.1 mycroft * NOTE: `pte' and `epte' aren't PTEs here.
413 1.1 mycroft */
414 1.1 mycroft pte = (u_int *)p0upa;
415 1.5 mycroft epte = (u_int *)(p0upa + USPACE);
416 1.1 mycroft while (pte < epte)
417 1.1 mycroft *pte++ = 0;
418 1.1 mycroft /*
419 1.1 mycroft * Remember the u-area address so it can be loaded in the
420 1.1 mycroft * proc struct p_addr field later.
421 1.1 mycroft */
422 1.1 mycroft RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
423 1.1 mycroft
424 1.1 mycroft /*
425 1.1 mycroft * VM data structures are now initialized, set up data for
426 1.1 mycroft * the pmap module.
427 1.8 thorpej *
428 1.8 thorpej * Note about avail_end: msgbuf is initialized just after
429 1.8 thorpej * avail_end in machdep.c. Since the last page is used
430 1.8 thorpej * for rebooting the system (code is copied there and
431 1.8 thorpej * excution continues from copied code before the MMU
432 1.8 thorpej * is disabled), the msgbuf will get trounced between
433 1.8 thorpej * reboots if it's placed in the last physical page.
434 1.8 thorpej * To work around this, we move avail_end back one more
435 1.8 thorpej * page so the msgbuf can be preserved.
436 1.1 mycroft */
437 1.1 mycroft RELOC(avail_start, vm_offset_t) = nextpa;
438 1.8 thorpej RELOC(avail_end, vm_offset_t) = hp300_ptob(RELOC(maxmem, int)) -
439 1.8 thorpej (hp300_round_page(sizeof(struct msgbuf)) + hp300_ptob(1));
440 1.1 mycroft RELOC(mem_size, vm_size_t) = hp300_ptob(RELOC(physmem, int));
441 1.1 mycroft RELOC(virtual_avail, vm_offset_t) =
442 1.1 mycroft VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
443 1.1 mycroft RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
444 1.1 mycroft
445 1.9 thorpej #ifdef M68K_MMU_HP
446 1.1 mycroft /*
447 1.1 mycroft * Determine VA aliasing distance if any
448 1.1 mycroft */
449 1.1 mycroft if (RELOC(ectype, int) == EC_VIRT)
450 1.1 mycroft if (RELOC(machineid, int) == HP_320)
451 1.1 mycroft RELOC(pmap_aliasmask, int) = 0x3fff; /* 16k */
452 1.1 mycroft else if (RELOC(machineid, int) == HP_350)
453 1.1 mycroft RELOC(pmap_aliasmask, int) = 0x7fff; /* 32k */
454 1.1 mycroft #endif
455 1.1 mycroft
456 1.1 mycroft /*
457 1.1 mycroft * Initialize protection array.
458 1.1 mycroft * XXX don't use a switch statement, it might produce an
459 1.1 mycroft * absolute "jmp" table.
460 1.1 mycroft */
461 1.1 mycroft {
462 1.11 scottr int *kp;
463 1.1 mycroft
464 1.1 mycroft kp = &RELOC(protection_codes, int);
465 1.1 mycroft kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
466 1.1 mycroft kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
467 1.1 mycroft kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
468 1.1 mycroft kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
469 1.1 mycroft kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
470 1.1 mycroft kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
471 1.1 mycroft kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
472 1.1 mycroft kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
473 1.1 mycroft }
474 1.1 mycroft
475 1.1 mycroft /*
476 1.1 mycroft * Kernel page/segment table allocated in locore,
477 1.1 mycroft * just initialize pointers.
478 1.1 mycroft */
479 1.1 mycroft {
480 1.1 mycroft struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
481 1.1 mycroft
482 1.3 mycroft kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
483 1.3 mycroft kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
484 1.1 mycroft simple_lock_init(&kpm->pm_lock);
485 1.1 mycroft kpm->pm_count = 1;
486 1.3 mycroft kpm->pm_stpa = (st_entry_t *)kstpa;
487 1.1 mycroft /*
488 1.1 mycroft * For the 040 we also initialize the free level 2
489 1.1 mycroft * descriptor mask noting that we have used:
490 1.1 mycroft * 0: level 1 table
491 1.1 mycroft * 1 to `num': map page tables
492 1.1 mycroft * MAXKL2SIZE-1: maps last-page page table
493 1.1 mycroft */
494 1.1 mycroft if (RELOC(mmutype, int) == MMU_68040) {
495 1.11 scottr int num;
496 1.1 mycroft
497 1.1 mycroft kpm->pm_stfree = ~l2tobm(0);
498 1.1 mycroft num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
499 1.1 mycroft SG4_LEV2SIZE) / SG4_LEV2SIZE;
500 1.1 mycroft while (num)
501 1.1 mycroft kpm->pm_stfree &= ~l2tobm(num--);
502 1.1 mycroft kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
503 1.1 mycroft for (num = MAXKL2SIZE;
504 1.1 mycroft num < sizeof(kpm->pm_stfree)*NBBY;
505 1.1 mycroft num++)
506 1.1 mycroft kpm->pm_stfree &= ~l2tobm(num);
507 1.1 mycroft }
508 1.1 mycroft }
509 1.1 mycroft
510 1.1 mycroft /*
511 1.1 mycroft * Allocate some fixed, special purpose kernel virtual addresses
512 1.1 mycroft */
513 1.1 mycroft {
514 1.1 mycroft vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
515 1.1 mycroft
516 1.1 mycroft RELOC(CADDR1, caddr_t) = (caddr_t)va;
517 1.3 mycroft va += NBPG;
518 1.1 mycroft RELOC(CADDR2, caddr_t) = (caddr_t)va;
519 1.3 mycroft va += NBPG;
520 1.1 mycroft RELOC(vmmap, caddr_t) = (caddr_t)va;
521 1.3 mycroft va += NBPG;
522 1.1 mycroft RELOC(ledbase, caddr_t) = (caddr_t)va;
523 1.3 mycroft va += NBPG;
524 1.1 mycroft RELOC(msgbufp, struct msgbuf *) = (struct msgbuf *)va;
525 1.3 mycroft va += NBPG;
526 1.1 mycroft RELOC(virtual_avail, vm_offset_t) = va;
527 1.1 mycroft }
528 1.1 mycroft }
529