Home | History | Annotate | Line # | Download | only in hp300
pmap_bootstrap.c revision 1.30
      1  1.30   tsutsui /*	$NetBSD: pmap_bootstrap.c,v 1.30 2007/03/05 12:50:15 tsutsui Exp $	*/
      2   1.4       cgd 
      3  1.24   tsutsui /*
      4   1.1   mycroft  * Copyright (c) 1991, 1993
      5   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1   mycroft  *
      7   1.1   mycroft  * This code is derived from software contributed to Berkeley by
      8   1.1   mycroft  * the Systems Programming Group of the University of Utah Computer
      9   1.1   mycroft  * Science Department.
     10   1.1   mycroft  *
     11   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     12   1.1   mycroft  * modification, are permitted provided that the following conditions
     13   1.1   mycroft  * are met:
     14   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     15   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     16   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     18   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     19  1.23       agc  * 3. Neither the name of the University nor the names of its contributors
     20   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21   1.1   mycroft  *    without specific prior written permission.
     22   1.1   mycroft  *
     23   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1   mycroft  * SUCH DAMAGE.
     34   1.1   mycroft  *
     35   1.4       cgd  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
     36   1.1   mycroft  */
     37  1.20  gmcgarry 
     38  1.20  gmcgarry #include <sys/cdefs.h>
     39  1.30   tsutsui __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.30 2007/03/05 12:50:15 tsutsui Exp $");
     40   1.1   mycroft 
     41   1.1   mycroft #include <sys/param.h>
     42  1.11    scottr #include <sys/proc.h>
     43  1.11    scottr 
     44  1.11    scottr #include <machine/frame.h>
     45  1.11    scottr #include <machine/cpu.h>
     46  1.12   thorpej #include <machine/hp300spu.h>
     47  1.11    scottr #include <machine/vmparam.h>
     48   1.1   mycroft #include <machine/pte.h>
     49  1.11    scottr 
     50   1.1   mycroft #include <hp300/hp300/clockreg.h>
     51   1.1   mycroft 
     52  1.19       mrg #include <uvm/uvm_extern.h>
     53   1.1   mycroft 
     54   1.1   mycroft #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa))
     55   1.1   mycroft 
     56   1.1   mycroft extern char *etext;
     57   1.1   mycroft extern int Sysptsize;
     58   1.1   mycroft extern char *extiobase, *proc0paddr;
     59   1.3   mycroft extern st_entry_t *Sysseg;
     60   1.3   mycroft extern pt_entry_t *Sysptmap, *Sysmap;
     61  1.15    kleink extern vaddr_t CLKbase, MMUbase;
     62  1.17   thorpej extern paddr_t bootinfo_pa;
     63  1.17   thorpej extern vaddr_t bootinfo_va;
     64   1.1   mycroft 
     65   1.1   mycroft extern int maxmem, physmem;
     66  1.15    kleink extern paddr_t avail_start, avail_end;
     67  1.15    kleink extern vaddr_t virtual_avail, virtual_end;
     68  1.15    kleink extern vsize_t mem_size;
     69   1.1   mycroft extern int protection_codes[];
     70   1.9   thorpej #ifdef M68K_MMU_HP
     71   1.1   mycroft extern int pmap_aliasmask;
     72   1.1   mycroft #endif
     73   1.1   mycroft 
     74  1.15    kleink void	pmap_bootstrap __P((paddr_t, paddr_t));
     75  1.11    scottr 
     76   1.1   mycroft /*
     77   1.1   mycroft  * Special purpose kernel virtual addresses, used for mapping
     78   1.1   mycroft  * physical pages for a variety of temporary or permanent purposes:
     79   1.1   mycroft  *
     80   1.1   mycroft  *	CADDR1, CADDR2:	pmap zero/copy operations
     81   1.1   mycroft  *	vmmap:		/dev/mem, crash dumps, parity error checking
     82   1.1   mycroft  *	ledbase:	SPU LEDs
     83  1.14       leo  *	msgbufaddr:	kernel message buffer
     84   1.1   mycroft  */
     85  1.29   tsutsui void *CADDR1, *CADDR2, *ledbase;
     86  1.29   tsutsui char *vmmap;
     87  1.30   tsutsui void *msgbufaddr;
     88   1.1   mycroft 
     89   1.1   mycroft /*
     90   1.1   mycroft  * Bootstrap the VM system.
     91   1.1   mycroft  *
     92   1.1   mycroft  * Called with MMU off so we must relocate all global references by `firstpa'
     93   1.1   mycroft  * (don't call any functions here!)  `nextpa' is the first available physical
     94   1.1   mycroft  * memory address.  Returns an updated first PA reflecting the memory we
     95   1.1   mycroft  * have allocated.  MMU is still off when we return.
     96   1.1   mycroft  *
     97   1.3   mycroft  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
     98   1.1   mycroft  * XXX a PIC compiler would make this much easier.
     99   1.1   mycroft  */
    100   1.1   mycroft void
    101  1.25   thorpej pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
    102   1.1   mycroft {
    103  1.26      yamt 	paddr_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
    104   1.1   mycroft 	u_int nptpages, kstsize;
    105  1.11    scottr 	st_entry_t protoste, *ste;
    106  1.11    scottr 	pt_entry_t protopte, *pte, *epte;
    107   1.1   mycroft 
    108   1.1   mycroft 	/*
    109   1.1   mycroft 	 * Calculate important physical addresses:
    110   1.1   mycroft 	 *
    111   1.1   mycroft 	 *	kstpa		kernel segment table	1 page (!040)
    112   1.1   mycroft 	 *						N pages (040)
    113   1.1   mycroft 	 *
    114   1.1   mycroft 	 *	kptpa		statically allocated
    115   1.1   mycroft 	 *			kernel PT pages		Sysptsize+ pages
    116   1.1   mycroft 	 *
    117   1.1   mycroft 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
    118   1.1   mycroft 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
    119   1.1   mycroft 	 *   the total to a page boundary with IO maps at the end. ]
    120   1.1   mycroft 	 *
    121   1.1   mycroft 	 *	kptmpa		kernel PT map		1 page
    122   1.1   mycroft 	 *
    123   1.1   mycroft 	 *	lkptpa		last kernel PT page	1 page
    124   1.1   mycroft 	 *
    125   1.1   mycroft 	 *	p0upa		proc 0 u-area		UPAGES pages
    126   1.1   mycroft 	 *
    127   1.1   mycroft 	 * The KVA corresponding to any of these PAs is:
    128   1.1   mycroft 	 *	(PA - firstpa + KERNBASE).
    129   1.1   mycroft 	 */
    130   1.1   mycroft 	if (RELOC(mmutype, int) == MMU_68040)
    131   1.1   mycroft 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
    132   1.1   mycroft 	else
    133   1.1   mycroft 		kstsize = 1;
    134   1.1   mycroft 	kstpa = nextpa;
    135  1.22   thorpej 	nextpa += kstsize * PAGE_SIZE;
    136   1.1   mycroft 	kptmpa = nextpa;
    137  1.22   thorpej 	nextpa += PAGE_SIZE;
    138   1.1   mycroft 	lkptpa = nextpa;
    139  1.22   thorpej 	nextpa += PAGE_SIZE;
    140   1.1   mycroft 	p0upa = nextpa;
    141   1.5   mycroft 	nextpa += USPACE;
    142  1.26      yamt 	kptpa = nextpa;
    143  1.26      yamt 	nptpages = RELOC(Sysptsize, int) +
    144  1.26      yamt 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
    145  1.26      yamt 	nextpa += nptpages * PAGE_SIZE;
    146   1.1   mycroft 
    147   1.1   mycroft 	/*
    148   1.1   mycroft 	 * Initialize segment table and kernel page table map.
    149   1.1   mycroft 	 *
    150   1.1   mycroft 	 * On 68030s and earlier MMUs the two are identical except for
    151   1.1   mycroft 	 * the valid bits so both are initialized with essentially the
    152   1.1   mycroft 	 * same values.  On the 68040, which has a mandatory 3-level
    153   1.1   mycroft 	 * structure, the segment table holds the level 1 table and part
    154   1.1   mycroft 	 * (or all) of the level 2 table and hence is considerably
    155   1.1   mycroft 	 * different.  Here the first level consists of 128 descriptors
    156   1.1   mycroft 	 * (512 bytes) each mapping 32mb of address space.  Each of these
    157   1.1   mycroft 	 * points to blocks of 128 second level descriptors (512 bytes)
    158   1.1   mycroft 	 * each mapping 256kb.  Note that there may be additional "segment
    159   1.1   mycroft 	 * table" pages depending on how large MAXKL2SIZE is.
    160   1.1   mycroft 	 *
    161   1.1   mycroft 	 * Portions of the last segment of KVA space (0xFFF00000 -
    162   1.1   mycroft 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
    163   1.1   mycroft 	 * for UPAGES is used for mapping the current process u-area
    164   1.1   mycroft 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
    165   1.1   mycroft 	 * to the last physical page of RAM to give us a region in which
    166   1.1   mycroft 	 * PA == VA.  We use the first part of this page for enabling
    167   1.1   mycroft 	 * and disabling mapping.  The last part of this page also contains
    168   1.1   mycroft 	 * info left by the boot ROM.
    169   1.1   mycroft 	 *
    170   1.1   mycroft 	 * XXX cramming two levels of mapping into the single "segment"
    171   1.1   mycroft 	 * table on the 68040 is intended as a temporary hack to get things
    172   1.1   mycroft 	 * working.  The 224mb of address space that this allows will most
    173   1.1   mycroft 	 * likely be insufficient in the future (at least for the kernel).
    174   1.1   mycroft 	 */
    175   1.1   mycroft 	if (RELOC(mmutype, int) == MMU_68040) {
    176  1.11    scottr 		int num;
    177   1.1   mycroft 
    178   1.1   mycroft 		/*
    179   1.1   mycroft 		 * First invalidate the entire "segment table" pages
    180   1.1   mycroft 		 * (levels 1 and 2 have the same "invalid" value).
    181   1.1   mycroft 		 */
    182   1.1   mycroft 		pte = (u_int *)kstpa;
    183   1.1   mycroft 		epte = &pte[kstsize * NPTEPG];
    184   1.1   mycroft 		while (pte < epte)
    185   1.1   mycroft 			*pte++ = SG_NV;
    186   1.1   mycroft 		/*
    187   1.1   mycroft 		 * Initialize level 2 descriptors (which immediately
    188   1.1   mycroft 		 * follow the level 1 table).  We need:
    189   1.1   mycroft 		 *	NPTEPG / SG4_LEV3SIZE
    190  1.26      yamt 		 * level 2 descriptors to map each of the nptpages
    191   1.1   mycroft 		 * pages of PTEs.  Note that we set the "used" bit
    192   1.1   mycroft 		 * now to save the HW the expense of doing it.
    193   1.1   mycroft 		 */
    194  1.26      yamt 		num = nptpages * (NPTEPG / SG4_LEV3SIZE);
    195   1.1   mycroft 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
    196   1.1   mycroft 		epte = &pte[num];
    197   1.1   mycroft 		protoste = kptpa | SG_U | SG_RW | SG_V;
    198   1.1   mycroft 		while (pte < epte) {
    199   1.1   mycroft 			*pte++ = protoste;
    200   1.3   mycroft 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    201   1.1   mycroft 		}
    202   1.1   mycroft 		/*
    203   1.1   mycroft 		 * Initialize level 1 descriptors.  We need:
    204   1.1   mycroft 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
    205   1.1   mycroft 		 * level 1 descriptors to map the `num' level 2's.
    206   1.1   mycroft 		 */
    207   1.1   mycroft 		pte = (u_int *)kstpa;
    208   1.1   mycroft 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
    209   1.1   mycroft 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
    210   1.1   mycroft 		while (pte < epte) {
    211   1.1   mycroft 			*pte++ = protoste;
    212   1.3   mycroft 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
    213   1.1   mycroft 		}
    214   1.1   mycroft 		/*
    215   1.1   mycroft 		 * Initialize the final level 1 descriptor to map the last
    216   1.1   mycroft 		 * block of level 2 descriptors.
    217   1.1   mycroft 		 */
    218   1.1   mycroft 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
    219   1.1   mycroft 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
    220   1.1   mycroft 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
    221   1.1   mycroft 		/*
    222   1.1   mycroft 		 * Now initialize the final portion of that block of
    223  1.26      yamt 		 * descriptors to map kptmpa and the "last PT page".
    224   1.1   mycroft 		 */
    225  1.26      yamt 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE*2];
    226  1.26      yamt 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
    227  1.26      yamt 		protoste = kptmpa | SG_U | SG_RW | SG_V;
    228  1.26      yamt 		while (pte < epte) {
    229  1.26      yamt 			*pte++ = protoste;
    230  1.26      yamt 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    231  1.26      yamt 		}
    232   1.1   mycroft 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
    233   1.1   mycroft 		protoste = lkptpa | SG_U | SG_RW | SG_V;
    234   1.1   mycroft 		while (pte < epte) {
    235   1.1   mycroft 			*pte++ = protoste;
    236   1.3   mycroft 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    237   1.1   mycroft 		}
    238   1.1   mycroft 		/*
    239   1.1   mycroft 		 * Initialize Sysptmap
    240   1.1   mycroft 		 */
    241   1.1   mycroft 		pte = (u_int *)kptmpa;
    242  1.26      yamt 		epte = &pte[nptpages];
    243   1.1   mycroft 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    244   1.1   mycroft 		while (pte < epte) {
    245   1.1   mycroft 			*pte++ = protopte;
    246  1.22   thorpej 			protopte += PAGE_SIZE;
    247   1.1   mycroft 		}
    248   1.7   thorpej 		/*
    249   1.7   thorpej 		 * Invalidate all but the last remaining entry.
    250   1.7   thorpej 		 */
    251  1.26      yamt 		epte = &((u_int *)kptmpa)[NPTEPG-2];
    252   1.7   thorpej 		while (pte < epte) {
    253   1.7   thorpej 			*pte++ = PG_NV;
    254   1.7   thorpej 		}
    255  1.10   thorpej 		/*
    256  1.26      yamt 		 * Initialize the last ones to point to kptmpa and the page
    257   1.7   thorpej 		 * table page allocated earlier.
    258   1.7   thorpej 		 */
    259  1.26      yamt 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
    260  1.26      yamt 		pte++;
    261   1.1   mycroft 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    262   1.1   mycroft 	} else {
    263   1.1   mycroft 		/*
    264   1.1   mycroft 		 * Map the page table pages in both the HW segment table
    265  1.26      yamt 		 * and the software Sysptmap.
    266   1.1   mycroft 		 */
    267   1.1   mycroft 		ste = (u_int *)kstpa;
    268   1.1   mycroft 		pte = (u_int *)kptmpa;
    269  1.26      yamt 		epte = &pte[nptpages];
    270   1.1   mycroft 		protoste = kptpa | SG_RW | SG_V;
    271   1.1   mycroft 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    272   1.1   mycroft 		while (pte < epte) {
    273   1.1   mycroft 			*ste++ = protoste;
    274   1.1   mycroft 			*pte++ = protopte;
    275  1.22   thorpej 			protoste += PAGE_SIZE;
    276  1.22   thorpej 			protopte += PAGE_SIZE;
    277   1.1   mycroft 		}
    278   1.1   mycroft 		/*
    279   1.1   mycroft 		 * Invalidate all but the last remaining entries in both.
    280   1.1   mycroft 		 */
    281  1.26      yamt 		epte = &((u_int *)kptmpa)[NPTEPG-2];
    282   1.1   mycroft 		while (pte < epte) {
    283   1.1   mycroft 			*ste++ = SG_NV;
    284   1.1   mycroft 			*pte++ = PG_NV;
    285   1.1   mycroft 		}
    286   1.1   mycroft 		/*
    287  1.26      yamt 		 * Initialize the last ones to point to kptmpa and the page
    288   1.1   mycroft 		 * table page allocated earlier.
    289   1.1   mycroft 		 */
    290  1.26      yamt 		*ste = kptmpa | SG_RW | SG_V;
    291  1.26      yamt 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
    292  1.26      yamt 		ste++;
    293  1.26      yamt 		pte++;
    294   1.1   mycroft 		*ste = lkptpa | SG_RW | SG_V;
    295   1.1   mycroft 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    296   1.1   mycroft 	}
    297   1.1   mycroft 	/*
    298   1.1   mycroft 	 * Invalidate all but the final entry in the last kernel PT page
    299   1.1   mycroft 	 * (u-area PTEs will be validated later).  The final entry maps
    300   1.1   mycroft 	 * the last page of physical memory.
    301   1.1   mycroft 	 */
    302   1.1   mycroft 	pte = (u_int *)lkptpa;
    303   1.1   mycroft 	epte = &pte[NPTEPG-1];
    304   1.1   mycroft 	while (pte < epte)
    305   1.1   mycroft 		*pte++ = PG_NV;
    306   1.1   mycroft 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
    307   1.1   mycroft 	/*
    308   1.1   mycroft 	 * Initialize kernel page table.
    309   1.1   mycroft 	 * Start by invalidating the `nptpages' that we have allocated.
    310   1.1   mycroft 	 */
    311   1.1   mycroft 	pte = (u_int *)kptpa;
    312   1.1   mycroft 	epte = &pte[nptpages * NPTEPG];
    313   1.1   mycroft 	while (pte < epte)
    314   1.1   mycroft 		*pte++ = PG_NV;
    315  1.10   thorpej 
    316   1.1   mycroft 	/*
    317  1.17   thorpej 	 * The page of kernel text is zero-filled in locore.s,
    318  1.17   thorpej 	 * and not mapped (at VA 0).  The boot loader places the
    319  1.17   thorpej 	 * bootinfo here after the kernel is loaded.  Remember
    320  1.17   thorpej 	 * the physical address; we'll map it to a virtual address
    321  1.17   thorpej 	 * later.
    322   1.1   mycroft 	 */
    323  1.17   thorpej 	RELOC(bootinfo_pa, paddr_t) = firstpa;
    324  1.10   thorpej 
    325  1.10   thorpej 	/*
    326  1.10   thorpej 	 * Validate PTEs for kernel text (RO).  The first page
    327  1.10   thorpej 	 * of kernel text remains invalid; see locore.s
    328  1.10   thorpej 	 */
    329  1.22   thorpej 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE + PAGE_SIZE)];
    330  1.13     veego 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
    331  1.22   thorpej 	protopte = (firstpa + PAGE_SIZE) | PG_RO | PG_V;
    332   1.1   mycroft 	while (pte < epte) {
    333   1.1   mycroft 		*pte++ = protopte;
    334  1.22   thorpej 		protopte += PAGE_SIZE;
    335   1.1   mycroft 	}
    336   1.1   mycroft 	/*
    337   1.1   mycroft 	 * Validate PTEs for kernel data/bss, dynamic data allocated
    338   1.1   mycroft 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
    339   1.1   mycroft 	 * u-area and page table allocated below (RW).
    340   1.1   mycroft 	 */
    341  1.13     veego 	epte = &((u_int *)kptpa)[m68k_btop(nextpa - firstpa)];
    342   1.1   mycroft 	protopte = (protopte & ~PG_PROT) | PG_RW;
    343   1.1   mycroft 	/*
    344   1.1   mycroft 	 * Enable copy-back caching of data pages
    345   1.1   mycroft 	 */
    346   1.1   mycroft 	if (RELOC(mmutype, int) == MMU_68040)
    347   1.1   mycroft 		protopte |= PG_CCB;
    348   1.1   mycroft 	while (pte < epte) {
    349   1.1   mycroft 		*pte++ = protopte;
    350  1.22   thorpej 		protopte += PAGE_SIZE;
    351   1.1   mycroft 	}
    352   1.1   mycroft 	/*
    353   1.1   mycroft 	 * Finally, validate the internal IO space PTEs (RW+CI).
    354   1.1   mycroft 	 * We do this here since the 320/350 MMU registers (also
    355   1.1   mycroft 	 * used, but to a lesser extent, on other models) are mapped
    356   1.1   mycroft 	 * in this range and it would be nice to be able to access
    357   1.1   mycroft 	 * them after the MMU is turned on.
    358   1.1   mycroft 	 */
    359  1.26      yamt 
    360  1.26      yamt #define	PTE2VA(pte)	m68k_ptob(pte - ((pt_entry_t *)kptpa))
    361  1.26      yamt 
    362   1.1   mycroft 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
    363  1.26      yamt 	epte = &pte[IIOMAPSIZE];
    364  1.26      yamt 	RELOC(intiobase, char *) = (char *)PTE2VA(pte);
    365  1.26      yamt 	RELOC(intiolimit, char *) = (char *)PTE2VA(epte);
    366   1.1   mycroft 	while (pte < epte) {
    367   1.1   mycroft 		*pte++ = protopte;
    368  1.22   thorpej 		protopte += PAGE_SIZE;
    369   1.1   mycroft 	}
    370  1.26      yamt 	RELOC(extiobase, char *) = (char *)PTE2VA(pte);
    371  1.26      yamt 	pte += EIOMAPSIZE;
    372  1.26      yamt 	RELOC(virtual_avail, vaddr_t) = PTE2VA(pte);
    373   1.1   mycroft 
    374   1.1   mycroft 	/*
    375   1.1   mycroft 	 * Calculate important exported kernel virtual addresses
    376   1.1   mycroft 	 */
    377   1.1   mycroft 	/*
    378   1.1   mycroft 	 * Sysseg: base of kernel segment table
    379   1.1   mycroft 	 */
    380   1.3   mycroft 	RELOC(Sysseg, st_entry_t *) =
    381   1.3   mycroft 		(st_entry_t *)(kstpa - firstpa);
    382   1.1   mycroft 	/*
    383   1.1   mycroft 	 * Sysptmap: base of kernel page table map
    384   1.1   mycroft 	 */
    385   1.3   mycroft 	RELOC(Sysptmap, pt_entry_t *) =
    386   1.3   mycroft 		(pt_entry_t *)(kptmpa - firstpa);
    387   1.1   mycroft 	/*
    388   1.1   mycroft 	 * Sysmap: kernel page table (as mapped through Sysptmap)
    389   1.1   mycroft 	 * Immediately follows `nptpages' of static kernel page table.
    390   1.1   mycroft 	 */
    391   1.3   mycroft 	RELOC(Sysmap, pt_entry_t *) =
    392  1.26      yamt 	    (pt_entry_t *)m68k_ptob((NPTEPG - 2) * NPTEPG);
    393   1.1   mycroft 	/*
    394   1.1   mycroft 	 * CLKbase, MMUbase: important registers in internal IO space
    395   1.1   mycroft 	 * accessed from assembly language.
    396   1.1   mycroft 	 */
    397  1.15    kleink 	RELOC(CLKbase, vaddr_t) =
    398  1.15    kleink 		(vaddr_t)RELOC(intiobase, char *) + CLKBASE;
    399  1.15    kleink 	RELOC(MMUbase, vaddr_t) =
    400  1.15    kleink 		(vaddr_t)RELOC(intiobase, char *) + MMUBASE;
    401   1.1   mycroft 
    402   1.1   mycroft 	/*
    403   1.1   mycroft 	 * Setup u-area for process 0.
    404   1.1   mycroft 	 */
    405   1.1   mycroft 	/*
    406   1.1   mycroft 	 * Zero the u-area.
    407   1.1   mycroft 	 * NOTE: `pte' and `epte' aren't PTEs here.
    408   1.1   mycroft 	 */
    409   1.1   mycroft 	pte = (u_int *)p0upa;
    410   1.5   mycroft 	epte = (u_int *)(p0upa + USPACE);
    411   1.1   mycroft 	while (pte < epte)
    412   1.1   mycroft 		*pte++ = 0;
    413   1.1   mycroft 	/*
    414   1.1   mycroft 	 * Remember the u-area address so it can be loaded in the
    415   1.1   mycroft 	 * proc struct p_addr field later.
    416   1.1   mycroft 	 */
    417   1.1   mycroft 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
    418   1.1   mycroft 
    419   1.1   mycroft 	/*
    420   1.1   mycroft 	 * VM data structures are now initialized, set up data for
    421   1.1   mycroft 	 * the pmap module.
    422   1.8   thorpej 	 *
    423   1.8   thorpej 	 * Note about avail_end: msgbuf is initialized just after
    424   1.8   thorpej 	 * avail_end in machdep.c.  Since the last page is used
    425   1.8   thorpej 	 * for rebooting the system (code is copied there and
    426   1.8   thorpej 	 * excution continues from copied code before the MMU
    427   1.8   thorpej 	 * is disabled), the msgbuf will get trounced between
    428   1.8   thorpej 	 * reboots if it's placed in the last physical page.
    429   1.8   thorpej 	 * To work around this, we move avail_end back one more
    430   1.8   thorpej 	 * page so the msgbuf can be preserved.
    431   1.1   mycroft 	 */
    432  1.15    kleink 	RELOC(avail_start, paddr_t) = nextpa;
    433  1.15    kleink 	RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)) -
    434  1.14       leo 	    (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
    435  1.15    kleink 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
    436  1.15    kleink 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
    437   1.1   mycroft 
    438   1.9   thorpej #ifdef M68K_MMU_HP
    439   1.1   mycroft 	/*
    440   1.1   mycroft 	 * Determine VA aliasing distance if any
    441   1.1   mycroft 	 */
    442  1.16   thorpej 	if (RELOC(ectype, int) == EC_VIRT) {
    443   1.1   mycroft 		if (RELOC(machineid, int) == HP_320)
    444   1.1   mycroft 			RELOC(pmap_aliasmask, int) = 0x3fff;	/* 16k */
    445   1.1   mycroft 		else if (RELOC(machineid, int) == HP_350)
    446   1.1   mycroft 			RELOC(pmap_aliasmask, int) = 0x7fff;	/* 32k */
    447  1.16   thorpej 	}
    448   1.1   mycroft #endif
    449   1.1   mycroft 
    450   1.1   mycroft 	/*
    451   1.1   mycroft 	 * Initialize protection array.
    452   1.1   mycroft 	 * XXX don't use a switch statement, it might produce an
    453   1.1   mycroft 	 * absolute "jmp" table.
    454   1.1   mycroft 	 */
    455   1.1   mycroft 	{
    456  1.11    scottr 		int *kp;
    457   1.1   mycroft 
    458   1.1   mycroft 		kp = &RELOC(protection_codes, int);
    459   1.1   mycroft 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
    460   1.1   mycroft 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
    461   1.1   mycroft 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    462   1.1   mycroft 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    463   1.1   mycroft 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    464   1.1   mycroft 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    465   1.1   mycroft 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    466   1.1   mycroft 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    467   1.1   mycroft 	}
    468   1.1   mycroft 
    469   1.1   mycroft 	/*
    470  1.26      yamt 	 * Kernel page/segment table allocated above,
    471   1.1   mycroft 	 * just initialize pointers.
    472   1.1   mycroft 	 */
    473   1.1   mycroft 	{
    474   1.1   mycroft 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
    475   1.1   mycroft 
    476   1.3   mycroft 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
    477   1.3   mycroft 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
    478   1.1   mycroft 		simple_lock_init(&kpm->pm_lock);
    479   1.1   mycroft 		kpm->pm_count = 1;
    480   1.3   mycroft 		kpm->pm_stpa = (st_entry_t *)kstpa;
    481   1.1   mycroft 		/*
    482   1.1   mycroft 		 * For the 040 we also initialize the free level 2
    483   1.1   mycroft 		 * descriptor mask noting that we have used:
    484   1.1   mycroft 		 *	0:		level 1 table
    485   1.1   mycroft 		 *	1 to `num':	map page tables
    486  1.26      yamt 		 *	MAXKL2SIZE-1:	maps kptmpa and last-page page table
    487   1.1   mycroft 		 */
    488   1.1   mycroft 		if (RELOC(mmutype, int) == MMU_68040) {
    489  1.11    scottr 			int num;
    490  1.24   tsutsui 
    491   1.1   mycroft 			kpm->pm_stfree = ~l2tobm(0);
    492  1.26      yamt 			num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE),
    493   1.1   mycroft 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
    494   1.1   mycroft 			while (num)
    495   1.1   mycroft 				kpm->pm_stfree &= ~l2tobm(num--);
    496   1.1   mycroft 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
    497   1.1   mycroft 			for (num = MAXKL2SIZE;
    498   1.1   mycroft 			     num < sizeof(kpm->pm_stfree)*NBBY;
    499   1.1   mycroft 			     num++)
    500   1.1   mycroft 				kpm->pm_stfree &= ~l2tobm(num);
    501   1.1   mycroft 		}
    502   1.1   mycroft 	}
    503   1.1   mycroft 
    504   1.1   mycroft 	/*
    505   1.1   mycroft 	 * Allocate some fixed, special purpose kernel virtual addresses
    506   1.1   mycroft 	 */
    507   1.1   mycroft 	{
    508  1.15    kleink 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
    509   1.1   mycroft 
    510  1.17   thorpej 		RELOC(bootinfo_va, vaddr_t) = (vaddr_t)va;
    511  1.22   thorpej 		va += PAGE_SIZE;
    512  1.28  christos 		RELOC(CADDR1, void *) = (void *)va;
    513  1.22   thorpej 		va += PAGE_SIZE;
    514  1.28  christos 		RELOC(CADDR2, void *) = (void *)va;
    515  1.22   thorpej 		va += PAGE_SIZE;
    516  1.28  christos 		RELOC(vmmap, void *) = (void *)va;
    517  1.22   thorpej 		va += PAGE_SIZE;
    518  1.28  christos 		RELOC(ledbase, void *) = (void *)va;
    519  1.22   thorpej 		va += PAGE_SIZE;
    520  1.28  christos 		RELOC(msgbufaddr, void *) = (void *)va;
    521  1.14       leo 		va += m68k_round_page(MSGBUFSIZE);
    522  1.15    kleink 		RELOC(virtual_avail, vaddr_t) = va;
    523   1.1   mycroft 	}
    524  1.21       chs }
    525