Home | History | Annotate | Line # | Download | only in hp300
pmap_bootstrap.c revision 1.12
      1 /*	$NetBSD: pmap_bootstrap.c,v 1.12 1997/04/27 20:43:42 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * the Systems Programming Group of the University of Utah Computer
      9  * Science Department.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the University of
     22  *	California, Berkeley and its contributors.
     23  * 4. Neither the name of the University nor the names of its contributors
     24  *    may be used to endorse or promote products derived from this software
     25  *    without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37  * SUCH DAMAGE.
     38  *
     39  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
     40  */
     41 
     42 #include <sys/param.h>
     43 #include <sys/msgbuf.h>
     44 #include <sys/proc.h>
     45 
     46 #include <machine/frame.h>
     47 #include <machine/cpu.h>
     48 #include <machine/hp300spu.h>
     49 #include <machine/vmparam.h>
     50 #include <machine/pte.h>
     51 
     52 #include <hp300/hp300/clockreg.h>
     53 
     54 #include <vm/vm.h>
     55 #include <vm/pmap.h>
     56 
     57 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa))
     58 
     59 extern char *etext;
     60 extern int Sysptsize;
     61 extern char *extiobase, *proc0paddr;
     62 extern st_entry_t *Sysseg;
     63 extern pt_entry_t *Sysptmap, *Sysmap;
     64 extern vm_offset_t CLKbase, MMUbase;
     65 extern vm_offset_t pagezero;
     66 
     67 extern int maxmem, physmem;
     68 extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
     69 extern vm_size_t mem_size;
     70 extern int protection_codes[];
     71 #ifdef M68K_MMU_HP
     72 extern int pmap_aliasmask;
     73 #endif
     74 
     75 void	pmap_bootstrap __P((vm_offset_t, vm_offset_t));
     76 
     77 /*
     78  * Special purpose kernel virtual addresses, used for mapping
     79  * physical pages for a variety of temporary or permanent purposes:
     80  *
     81  *	CADDR1, CADDR2:	pmap zero/copy operations
     82  *	vmmap:		/dev/mem, crash dumps, parity error checking
     83  *	ledbase:	SPU LEDs
     84  *	msgbufp:	kernel message buffer
     85  */
     86 caddr_t		CADDR1, CADDR2, vmmap, ledbase;
     87 struct msgbuf	*msgbufp;
     88 
     89 /*
     90  * Bootstrap the VM system.
     91  *
     92  * Called with MMU off so we must relocate all global references by `firstpa'
     93  * (don't call any functions here!)  `nextpa' is the first available physical
     94  * memory address.  Returns an updated first PA reflecting the memory we
     95  * have allocated.  MMU is still off when we return.
     96  *
     97  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
     98  * XXX a PIC compiler would make this much easier.
     99  */
    100 void
    101 pmap_bootstrap(nextpa, firstpa)
    102 	vm_offset_t nextpa;
    103 	vm_offset_t firstpa;
    104 {
    105 	vm_offset_t kstpa, kptpa, iiopa, eiopa, kptmpa, lkptpa, p0upa;
    106 	u_int nptpages, kstsize;
    107 	st_entry_t protoste, *ste;
    108 	pt_entry_t protopte, *pte, *epte;
    109 
    110 	/*
    111 	 * Calculate important physical addresses:
    112 	 *
    113 	 *	kstpa		kernel segment table	1 page (!040)
    114 	 *						N pages (040)
    115 	 *
    116 	 *	kptpa		statically allocated
    117 	 *			kernel PT pages		Sysptsize+ pages
    118 	 *
    119 	 *	iiopa		internal IO space
    120 	 *			PT pages		IIOMAPSIZE pages
    121 	 *
    122 	 *	eiopa		external IO space
    123 	 *			PT pages		EIOMAPSIZE pages
    124 	 *
    125 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
    126 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
    127 	 *   the total to a page boundary with IO maps at the end. ]
    128 	 *
    129 	 *	kptmpa		kernel PT map		1 page
    130 	 *
    131 	 *	lkptpa		last kernel PT page	1 page
    132 	 *
    133 	 *	p0upa		proc 0 u-area		UPAGES pages
    134 	 *
    135 	 * The KVA corresponding to any of these PAs is:
    136 	 *	(PA - firstpa + KERNBASE).
    137 	 */
    138 	if (RELOC(mmutype, int) == MMU_68040)
    139 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
    140 	else
    141 		kstsize = 1;
    142 	kstpa = nextpa;
    143 	nextpa += kstsize * NBPG;
    144 	kptpa = nextpa;
    145 	nptpages = RELOC(Sysptsize, int) +
    146 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
    147 	nextpa += nptpages * NBPG;
    148 	eiopa = nextpa - EIOMAPSIZE * sizeof(pt_entry_t);
    149 	iiopa = eiopa - IIOMAPSIZE * sizeof(pt_entry_t);
    150 	kptmpa = nextpa;
    151 	nextpa += NBPG;
    152 	lkptpa = nextpa;
    153 	nextpa += NBPG;
    154 	p0upa = nextpa;
    155 	nextpa += USPACE;
    156 
    157 	/*
    158 	 * Initialize segment table and kernel page table map.
    159 	 *
    160 	 * On 68030s and earlier MMUs the two are identical except for
    161 	 * the valid bits so both are initialized with essentially the
    162 	 * same values.  On the 68040, which has a mandatory 3-level
    163 	 * structure, the segment table holds the level 1 table and part
    164 	 * (or all) of the level 2 table and hence is considerably
    165 	 * different.  Here the first level consists of 128 descriptors
    166 	 * (512 bytes) each mapping 32mb of address space.  Each of these
    167 	 * points to blocks of 128 second level descriptors (512 bytes)
    168 	 * each mapping 256kb.  Note that there may be additional "segment
    169 	 * table" pages depending on how large MAXKL2SIZE is.
    170 	 *
    171 	 * Portions of the last segment of KVA space (0xFFF00000 -
    172 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
    173 	 * for UPAGES is used for mapping the current process u-area
    174 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
    175 	 * to the last physical page of RAM to give us a region in which
    176 	 * PA == VA.  We use the first part of this page for enabling
    177 	 * and disabling mapping.  The last part of this page also contains
    178 	 * info left by the boot ROM.
    179 	 *
    180 	 * XXX cramming two levels of mapping into the single "segment"
    181 	 * table on the 68040 is intended as a temporary hack to get things
    182 	 * working.  The 224mb of address space that this allows will most
    183 	 * likely be insufficient in the future (at least for the kernel).
    184 	 */
    185 	if (RELOC(mmutype, int) == MMU_68040) {
    186 		int num;
    187 
    188 		/*
    189 		 * First invalidate the entire "segment table" pages
    190 		 * (levels 1 and 2 have the same "invalid" value).
    191 		 */
    192 		pte = (u_int *)kstpa;
    193 		epte = &pte[kstsize * NPTEPG];
    194 		while (pte < epte)
    195 			*pte++ = SG_NV;
    196 		/*
    197 		 * Initialize level 2 descriptors (which immediately
    198 		 * follow the level 1 table).  We need:
    199 		 *	NPTEPG / SG4_LEV3SIZE
    200 		 * level 2 descriptors to map each of the nptpages+1
    201 		 * pages of PTEs.  Note that we set the "used" bit
    202 		 * now to save the HW the expense of doing it.
    203 		 */
    204 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
    205 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
    206 		epte = &pte[num];
    207 		protoste = kptpa | SG_U | SG_RW | SG_V;
    208 		while (pte < epte) {
    209 			*pte++ = protoste;
    210 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    211 		}
    212 		/*
    213 		 * Initialize level 1 descriptors.  We need:
    214 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
    215 		 * level 1 descriptors to map the `num' level 2's.
    216 		 */
    217 		pte = (u_int *)kstpa;
    218 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
    219 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
    220 		while (pte < epte) {
    221 			*pte++ = protoste;
    222 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
    223 		}
    224 		/*
    225 		 * Initialize the final level 1 descriptor to map the last
    226 		 * block of level 2 descriptors.
    227 		 */
    228 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
    229 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
    230 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
    231 		/*
    232 		 * Now initialize the final portion of that block of
    233 		 * descriptors to map the "last PT page".
    234 		 */
    235 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
    236 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
    237 		protoste = lkptpa | SG_U | SG_RW | SG_V;
    238 		while (pte < epte) {
    239 			*pte++ = protoste;
    240 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    241 		}
    242 		/*
    243 		 * Initialize Sysptmap
    244 		 */
    245 		pte = (u_int *)kptmpa;
    246 		epte = &pte[nptpages+1];
    247 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    248 		while (pte < epte) {
    249 			*pte++ = protopte;
    250 			protopte += NBPG;
    251 		}
    252 		/*
    253 		 * Invalidate all but the last remaining entry.
    254 		 */
    255 		epte = &((u_int *)kptmpa)[NPTEPG-1];
    256 		while (pte < epte) {
    257 			*pte++ = PG_NV;
    258 		}
    259 		/*
    260 		 * Initialize the last to point to the page
    261 		 * table page allocated earlier.
    262 		 */
    263 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    264 	} else {
    265 		/*
    266 		 * Map the page table pages in both the HW segment table
    267 		 * and the software Sysptmap.  Note that Sysptmap is also
    268 		 * considered a PT page hence the +1.
    269 		 */
    270 		ste = (u_int *)kstpa;
    271 		pte = (u_int *)kptmpa;
    272 		epte = &pte[nptpages+1];
    273 		protoste = kptpa | SG_RW | SG_V;
    274 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    275 		while (pte < epte) {
    276 			*ste++ = protoste;
    277 			*pte++ = protopte;
    278 			protoste += NBPG;
    279 			protopte += NBPG;
    280 		}
    281 		/*
    282 		 * Invalidate all but the last remaining entries in both.
    283 		 */
    284 		epte = &((u_int *)kptmpa)[NPTEPG-1];
    285 		while (pte < epte) {
    286 			*ste++ = SG_NV;
    287 			*pte++ = PG_NV;
    288 		}
    289 		/*
    290 		 * Initialize the last to point to point to the page
    291 		 * table page allocated earlier.
    292 		 */
    293 		*ste = lkptpa | SG_RW | SG_V;
    294 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    295 	}
    296 	/*
    297 	 * Invalidate all but the final entry in the last kernel PT page
    298 	 * (u-area PTEs will be validated later).  The final entry maps
    299 	 * the last page of physical memory.
    300 	 */
    301 	pte = (u_int *)lkptpa;
    302 	epte = &pte[NPTEPG-1];
    303 	while (pte < epte)
    304 		*pte++ = PG_NV;
    305 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
    306 	/*
    307 	 * Initialize kernel page table.
    308 	 * Start by invalidating the `nptpages' that we have allocated.
    309 	 */
    310 	pte = (u_int *)kptpa;
    311 	epte = &pte[nptpages * NPTEPG];
    312 	while (pte < epte)
    313 		*pte++ = PG_NV;
    314 
    315 	/*
    316 	 * Save the physical address of `page zero'.  This is
    317 	 * a page of memory at the beginning of kernel text
    318 	 * not mapped at VA 0.  But, we might want to use it
    319 	 * for something later.
    320 	 */
    321 	RELOC(pagezero, vm_offset_t) = firstpa;
    322 
    323 	/*
    324 	 * Validate PTEs for kernel text (RO).  The first page
    325 	 * of kernel text remains invalid; see locore.s
    326 	 */
    327 	pte = &((u_int *)kptpa)[hp300_btop(KERNBASE + NBPG)];
    328 	epte = &pte[hp300_btop(hp300_trunc_page(&etext))];
    329 	protopte = (firstpa + NBPG) | PG_RO | PG_V;
    330 	while (pte < epte) {
    331 		*pte++ = protopte;
    332 		protopte += NBPG;
    333 	}
    334 	/*
    335 	 * Validate PTEs for kernel data/bss, dynamic data allocated
    336 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
    337 	 * u-area and page table allocated below (RW).
    338 	 */
    339 	epte = &((u_int *)kptpa)[hp300_btop(nextpa - firstpa)];
    340 	protopte = (protopte & ~PG_PROT) | PG_RW;
    341 	/*
    342 	 * Enable copy-back caching of data pages
    343 	 */
    344 	if (RELOC(mmutype, int) == MMU_68040)
    345 		protopte |= PG_CCB;
    346 	while (pte < epte) {
    347 		*pte++ = protopte;
    348 		protopte += NBPG;
    349 	}
    350 	/*
    351 	 * Finally, validate the internal IO space PTEs (RW+CI).
    352 	 * We do this here since the 320/350 MMU registers (also
    353 	 * used, but to a lesser extent, on other models) are mapped
    354 	 * in this range and it would be nice to be able to access
    355 	 * them after the MMU is turned on.
    356 	 */
    357 	pte = (u_int *)iiopa;
    358 	epte = (u_int *)eiopa;
    359 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
    360 	while (pte < epte) {
    361 		*pte++ = protopte;
    362 		protopte += NBPG;
    363 	}
    364 
    365 	/*
    366 	 * Calculate important exported kernel virtual addresses
    367 	 */
    368 	/*
    369 	 * Sysseg: base of kernel segment table
    370 	 */
    371 	RELOC(Sysseg, st_entry_t *) =
    372 		(st_entry_t *)(kstpa - firstpa);
    373 	/*
    374 	 * Sysptmap: base of kernel page table map
    375 	 */
    376 	RELOC(Sysptmap, pt_entry_t *) =
    377 		(pt_entry_t *)(kptmpa - firstpa);
    378 	/*
    379 	 * Sysmap: kernel page table (as mapped through Sysptmap)
    380 	 * Immediately follows `nptpages' of static kernel page table.
    381 	 */
    382 	RELOC(Sysmap, pt_entry_t *) =
    383 		(pt_entry_t *)hp300_ptob(nptpages * NPTEPG);
    384 	/*
    385 	 * intiobase, intiolimit: base and end of internal (DIO) IO space.
    386 	 * IIOMAPSIZE pages prior to external IO space at end of static
    387 	 * kernel page table.
    388 	 */
    389 	RELOC(intiobase, char *) =
    390 		(char *)hp300_ptob(nptpages*NPTEPG - (IIOMAPSIZE+EIOMAPSIZE));
    391 	RELOC(intiolimit, char *) =
    392 		(char *)hp300_ptob(nptpages*NPTEPG - EIOMAPSIZE);
    393 	/*
    394 	 * extiobase: base of external (DIO-II) IO space.
    395 	 * EIOMAPSIZE pages at the end of the static kernel page table.
    396 	 */
    397 	RELOC(extiobase, char *) =
    398 		(char *)hp300_ptob(nptpages*NPTEPG - EIOMAPSIZE);
    399 	/*
    400 	 * CLKbase, MMUbase: important registers in internal IO space
    401 	 * accessed from assembly language.
    402 	 */
    403 	RELOC(CLKbase, vm_offset_t) =
    404 		(vm_offset_t)RELOC(intiobase, char *) + CLKBASE;
    405 	RELOC(MMUbase, vm_offset_t) =
    406 		(vm_offset_t)RELOC(intiobase, char *) + MMUBASE;
    407 
    408 	/*
    409 	 * Setup u-area for process 0.
    410 	 */
    411 	/*
    412 	 * Zero the u-area.
    413 	 * NOTE: `pte' and `epte' aren't PTEs here.
    414 	 */
    415 	pte = (u_int *)p0upa;
    416 	epte = (u_int *)(p0upa + USPACE);
    417 	while (pte < epte)
    418 		*pte++ = 0;
    419 	/*
    420 	 * Remember the u-area address so it can be loaded in the
    421 	 * proc struct p_addr field later.
    422 	 */
    423 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
    424 
    425 	/*
    426 	 * VM data structures are now initialized, set up data for
    427 	 * the pmap module.
    428 	 *
    429 	 * Note about avail_end: msgbuf is initialized just after
    430 	 * avail_end in machdep.c.  Since the last page is used
    431 	 * for rebooting the system (code is copied there and
    432 	 * excution continues from copied code before the MMU
    433 	 * is disabled), the msgbuf will get trounced between
    434 	 * reboots if it's placed in the last physical page.
    435 	 * To work around this, we move avail_end back one more
    436 	 * page so the msgbuf can be preserved.
    437 	 */
    438 	RELOC(avail_start, vm_offset_t) = nextpa;
    439 	RELOC(avail_end, vm_offset_t) = hp300_ptob(RELOC(maxmem, int)) -
    440 	    (hp300_round_page(sizeof(struct msgbuf)) + hp300_ptob(1));
    441 	RELOC(mem_size, vm_size_t) = hp300_ptob(RELOC(physmem, int));
    442 	RELOC(virtual_avail, vm_offset_t) =
    443 		VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
    444 	RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
    445 
    446 #ifdef M68K_MMU_HP
    447 	/*
    448 	 * Determine VA aliasing distance if any
    449 	 */
    450 	if (RELOC(ectype, int) == EC_VIRT)
    451 		if (RELOC(machineid, int) == HP_320)
    452 			RELOC(pmap_aliasmask, int) = 0x3fff;	/* 16k */
    453 		else if (RELOC(machineid, int) == HP_350)
    454 			RELOC(pmap_aliasmask, int) = 0x7fff;	/* 32k */
    455 #endif
    456 
    457 	/*
    458 	 * Initialize protection array.
    459 	 * XXX don't use a switch statement, it might produce an
    460 	 * absolute "jmp" table.
    461 	 */
    462 	{
    463 		int *kp;
    464 
    465 		kp = &RELOC(protection_codes, int);
    466 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
    467 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
    468 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    469 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    470 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    471 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    472 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    473 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    474 	}
    475 
    476 	/*
    477 	 * Kernel page/segment table allocated in locore,
    478 	 * just initialize pointers.
    479 	 */
    480 	{
    481 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
    482 
    483 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
    484 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
    485 		simple_lock_init(&kpm->pm_lock);
    486 		kpm->pm_count = 1;
    487 		kpm->pm_stpa = (st_entry_t *)kstpa;
    488 		/*
    489 		 * For the 040 we also initialize the free level 2
    490 		 * descriptor mask noting that we have used:
    491 		 *	0:		level 1 table
    492 		 *	1 to `num':	map page tables
    493 		 *	MAXKL2SIZE-1:	maps last-page page table
    494 		 */
    495 		if (RELOC(mmutype, int) == MMU_68040) {
    496 			int num;
    497 
    498 			kpm->pm_stfree = ~l2tobm(0);
    499 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
    500 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
    501 			while (num)
    502 				kpm->pm_stfree &= ~l2tobm(num--);
    503 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
    504 			for (num = MAXKL2SIZE;
    505 			     num < sizeof(kpm->pm_stfree)*NBBY;
    506 			     num++)
    507 				kpm->pm_stfree &= ~l2tobm(num);
    508 		}
    509 	}
    510 
    511 	/*
    512 	 * Allocate some fixed, special purpose kernel virtual addresses
    513 	 */
    514 	{
    515 		vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
    516 
    517 		RELOC(CADDR1, caddr_t) = (caddr_t)va;
    518 		va += NBPG;
    519 		RELOC(CADDR2, caddr_t) = (caddr_t)va;
    520 		va += NBPG;
    521 		RELOC(vmmap, caddr_t) = (caddr_t)va;
    522 		va += NBPG;
    523 		RELOC(ledbase, caddr_t) = (caddr_t)va;
    524 		va += NBPG;
    525 		RELOC(msgbufp, struct msgbuf *) = (struct msgbuf *)va;
    526 		va += NBPG;
    527 		RELOC(virtual_avail, vm_offset_t) = va;
    528 	}
    529 }
    530