Home | History | Annotate | Line # | Download | only in hp300
pmap_bootstrap.c revision 1.20
      1 /*	$NetBSD: pmap_bootstrap.c,v 1.20 2002/03/15 05:55:38 gmcgarry Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * the Systems Programming Group of the University of Utah Computer
      9  * Science Department.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the University of
     22  *	California, Berkeley and its contributors.
     23  * 4. Neither the name of the University nor the names of its contributors
     24  *    may be used to endorse or promote products derived from this software
     25  *    without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37  * SUCH DAMAGE.
     38  *
     39  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
     40  */
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.20 2002/03/15 05:55:38 gmcgarry Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/proc.h>
     47 
     48 #include <machine/frame.h>
     49 #include <machine/cpu.h>
     50 #include <machine/hp300spu.h>
     51 #include <machine/vmparam.h>
     52 #include <machine/pte.h>
     53 
     54 #include <hp300/hp300/clockreg.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa))
     59 
     60 extern char *etext;
     61 extern int Sysptsize;
     62 extern char *extiobase, *proc0paddr;
     63 extern st_entry_t *Sysseg;
     64 extern pt_entry_t *Sysptmap, *Sysmap;
     65 extern vaddr_t CLKbase, MMUbase;
     66 extern paddr_t bootinfo_pa;
     67 extern vaddr_t bootinfo_va;
     68 
     69 extern int maxmem, physmem;
     70 extern paddr_t avail_start, avail_end;
     71 extern vaddr_t virtual_avail, virtual_end;
     72 extern vsize_t mem_size;
     73 extern int protection_codes[];
     74 #ifdef M68K_MMU_HP
     75 extern int pmap_aliasmask;
     76 #endif
     77 
     78 void	pmap_bootstrap __P((paddr_t, paddr_t));
     79 
     80 /*
     81  * Special purpose kernel virtual addresses, used for mapping
     82  * physical pages for a variety of temporary or permanent purposes:
     83  *
     84  *	CADDR1, CADDR2:	pmap zero/copy operations
     85  *	vmmap:		/dev/mem, crash dumps, parity error checking
     86  *	ledbase:	SPU LEDs
     87  *	msgbufaddr:	kernel message buffer
     88  */
     89 caddr_t		CADDR1, CADDR2, vmmap, ledbase;
     90 extern caddr_t	msgbufaddr;
     91 
     92 /*
     93  * Bootstrap the VM system.
     94  *
     95  * Called with MMU off so we must relocate all global references by `firstpa'
     96  * (don't call any functions here!)  `nextpa' is the first available physical
     97  * memory address.  Returns an updated first PA reflecting the memory we
     98  * have allocated.  MMU is still off when we return.
     99  *
    100  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
    101  * XXX a PIC compiler would make this much easier.
    102  */
    103 void
    104 pmap_bootstrap(nextpa, firstpa)
    105 	paddr_t nextpa;
    106 	paddr_t firstpa;
    107 {
    108 	paddr_t kstpa, kptpa, iiopa, eiopa, kptmpa, lkptpa, p0upa;
    109 	u_int nptpages, kstsize;
    110 	st_entry_t protoste, *ste;
    111 	pt_entry_t protopte, *pte, *epte;
    112 
    113 	/*
    114 	 * Calculate important physical addresses:
    115 	 *
    116 	 *	kstpa		kernel segment table	1 page (!040)
    117 	 *						N pages (040)
    118 	 *
    119 	 *	kptpa		statically allocated
    120 	 *			kernel PT pages		Sysptsize+ pages
    121 	 *
    122 	 *	iiopa		internal IO space
    123 	 *			PT pages		IIOMAPSIZE pages
    124 	 *
    125 	 *	eiopa		external IO space
    126 	 *			PT pages		EIOMAPSIZE pages
    127 	 *
    128 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
    129 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
    130 	 *   the total to a page boundary with IO maps at the end. ]
    131 	 *
    132 	 *	kptmpa		kernel PT map		1 page
    133 	 *
    134 	 *	lkptpa		last kernel PT page	1 page
    135 	 *
    136 	 *	p0upa		proc 0 u-area		UPAGES pages
    137 	 *
    138 	 * The KVA corresponding to any of these PAs is:
    139 	 *	(PA - firstpa + KERNBASE).
    140 	 */
    141 	if (RELOC(mmutype, int) == MMU_68040)
    142 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
    143 	else
    144 		kstsize = 1;
    145 	kstpa = nextpa;
    146 	nextpa += kstsize * NBPG;
    147 	kptpa = nextpa;
    148 	nptpages = RELOC(Sysptsize, int) +
    149 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
    150 	nextpa += nptpages * NBPG;
    151 	eiopa = nextpa - EIOMAPSIZE * sizeof(pt_entry_t);
    152 	iiopa = eiopa - IIOMAPSIZE * sizeof(pt_entry_t);
    153 	kptmpa = nextpa;
    154 	nextpa += NBPG;
    155 	lkptpa = nextpa;
    156 	nextpa += NBPG;
    157 	p0upa = nextpa;
    158 	nextpa += USPACE;
    159 
    160 	/*
    161 	 * Initialize segment table and kernel page table map.
    162 	 *
    163 	 * On 68030s and earlier MMUs the two are identical except for
    164 	 * the valid bits so both are initialized with essentially the
    165 	 * same values.  On the 68040, which has a mandatory 3-level
    166 	 * structure, the segment table holds the level 1 table and part
    167 	 * (or all) of the level 2 table and hence is considerably
    168 	 * different.  Here the first level consists of 128 descriptors
    169 	 * (512 bytes) each mapping 32mb of address space.  Each of these
    170 	 * points to blocks of 128 second level descriptors (512 bytes)
    171 	 * each mapping 256kb.  Note that there may be additional "segment
    172 	 * table" pages depending on how large MAXKL2SIZE is.
    173 	 *
    174 	 * Portions of the last segment of KVA space (0xFFF00000 -
    175 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
    176 	 * for UPAGES is used for mapping the current process u-area
    177 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
    178 	 * to the last physical page of RAM to give us a region in which
    179 	 * PA == VA.  We use the first part of this page for enabling
    180 	 * and disabling mapping.  The last part of this page also contains
    181 	 * info left by the boot ROM.
    182 	 *
    183 	 * XXX cramming two levels of mapping into the single "segment"
    184 	 * table on the 68040 is intended as a temporary hack to get things
    185 	 * working.  The 224mb of address space that this allows will most
    186 	 * likely be insufficient in the future (at least for the kernel).
    187 	 */
    188 	if (RELOC(mmutype, int) == MMU_68040) {
    189 		int num;
    190 
    191 		/*
    192 		 * First invalidate the entire "segment table" pages
    193 		 * (levels 1 and 2 have the same "invalid" value).
    194 		 */
    195 		pte = (u_int *)kstpa;
    196 		epte = &pte[kstsize * NPTEPG];
    197 		while (pte < epte)
    198 			*pte++ = SG_NV;
    199 		/*
    200 		 * Initialize level 2 descriptors (which immediately
    201 		 * follow the level 1 table).  We need:
    202 		 *	NPTEPG / SG4_LEV3SIZE
    203 		 * level 2 descriptors to map each of the nptpages+1
    204 		 * pages of PTEs.  Note that we set the "used" bit
    205 		 * now to save the HW the expense of doing it.
    206 		 */
    207 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
    208 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
    209 		epte = &pte[num];
    210 		protoste = kptpa | SG_U | SG_RW | SG_V;
    211 		while (pte < epte) {
    212 			*pte++ = protoste;
    213 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    214 		}
    215 		/*
    216 		 * Initialize level 1 descriptors.  We need:
    217 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
    218 		 * level 1 descriptors to map the `num' level 2's.
    219 		 */
    220 		pte = (u_int *)kstpa;
    221 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
    222 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
    223 		while (pte < epte) {
    224 			*pte++ = protoste;
    225 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
    226 		}
    227 		/*
    228 		 * Initialize the final level 1 descriptor to map the last
    229 		 * block of level 2 descriptors.
    230 		 */
    231 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
    232 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
    233 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
    234 		/*
    235 		 * Now initialize the final portion of that block of
    236 		 * descriptors to map the "last PT page".
    237 		 */
    238 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
    239 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
    240 		protoste = lkptpa | SG_U | SG_RW | SG_V;
    241 		while (pte < epte) {
    242 			*pte++ = protoste;
    243 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    244 		}
    245 		/*
    246 		 * Initialize Sysptmap
    247 		 */
    248 		pte = (u_int *)kptmpa;
    249 		epte = &pte[nptpages+1];
    250 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    251 		while (pte < epte) {
    252 			*pte++ = protopte;
    253 			protopte += NBPG;
    254 		}
    255 		/*
    256 		 * Invalidate all but the last remaining entry.
    257 		 */
    258 		epte = &((u_int *)kptmpa)[NPTEPG-1];
    259 		while (pte < epte) {
    260 			*pte++ = PG_NV;
    261 		}
    262 		/*
    263 		 * Initialize the last to point to the page
    264 		 * table page allocated earlier.
    265 		 */
    266 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    267 	} else {
    268 		/*
    269 		 * Map the page table pages in both the HW segment table
    270 		 * and the software Sysptmap.  Note that Sysptmap is also
    271 		 * considered a PT page hence the +1.
    272 		 */
    273 		ste = (u_int *)kstpa;
    274 		pte = (u_int *)kptmpa;
    275 		epte = &pte[nptpages+1];
    276 		protoste = kptpa | SG_RW | SG_V;
    277 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    278 		while (pte < epte) {
    279 			*ste++ = protoste;
    280 			*pte++ = protopte;
    281 			protoste += NBPG;
    282 			protopte += NBPG;
    283 		}
    284 		/*
    285 		 * Invalidate all but the last remaining entries in both.
    286 		 */
    287 		epte = &((u_int *)kptmpa)[NPTEPG-1];
    288 		while (pte < epte) {
    289 			*ste++ = SG_NV;
    290 			*pte++ = PG_NV;
    291 		}
    292 		/*
    293 		 * Initialize the last to point to point to the page
    294 		 * table page allocated earlier.
    295 		 */
    296 		*ste = lkptpa | SG_RW | SG_V;
    297 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    298 	}
    299 	/*
    300 	 * Invalidate all but the final entry in the last kernel PT page
    301 	 * (u-area PTEs will be validated later).  The final entry maps
    302 	 * the last page of physical memory.
    303 	 */
    304 	pte = (u_int *)lkptpa;
    305 	epte = &pte[NPTEPG-1];
    306 	while (pte < epte)
    307 		*pte++ = PG_NV;
    308 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
    309 	/*
    310 	 * Initialize kernel page table.
    311 	 * Start by invalidating the `nptpages' that we have allocated.
    312 	 */
    313 	pte = (u_int *)kptpa;
    314 	epte = &pte[nptpages * NPTEPG];
    315 	while (pte < epte)
    316 		*pte++ = PG_NV;
    317 
    318 	/*
    319 	 * The page of kernel text is zero-filled in locore.s,
    320 	 * and not mapped (at VA 0).  The boot loader places the
    321 	 * bootinfo here after the kernel is loaded.  Remember
    322 	 * the physical address; we'll map it to a virtual address
    323 	 * later.
    324 	 */
    325 	RELOC(bootinfo_pa, paddr_t) = firstpa;
    326 
    327 	/*
    328 	 * Validate PTEs for kernel text (RO).  The first page
    329 	 * of kernel text remains invalid; see locore.s
    330 	 */
    331 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE + NBPG)];
    332 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
    333 	protopte = (firstpa + NBPG) | PG_RO | PG_V;
    334 	while (pte < epte) {
    335 		*pte++ = protopte;
    336 		protopte += NBPG;
    337 	}
    338 	/*
    339 	 * Validate PTEs for kernel data/bss, dynamic data allocated
    340 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
    341 	 * u-area and page table allocated below (RW).
    342 	 */
    343 	epte = &((u_int *)kptpa)[m68k_btop(nextpa - firstpa)];
    344 	protopte = (protopte & ~PG_PROT) | PG_RW;
    345 	/*
    346 	 * Enable copy-back caching of data pages
    347 	 */
    348 	if (RELOC(mmutype, int) == MMU_68040)
    349 		protopte |= PG_CCB;
    350 	while (pte < epte) {
    351 		*pte++ = protopte;
    352 		protopte += NBPG;
    353 	}
    354 	/*
    355 	 * Finally, validate the internal IO space PTEs (RW+CI).
    356 	 * We do this here since the 320/350 MMU registers (also
    357 	 * used, but to a lesser extent, on other models) are mapped
    358 	 * in this range and it would be nice to be able to access
    359 	 * them after the MMU is turned on.
    360 	 */
    361 	pte = (u_int *)iiopa;
    362 	epte = (u_int *)eiopa;
    363 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
    364 	while (pte < epte) {
    365 		*pte++ = protopte;
    366 		protopte += NBPG;
    367 	}
    368 
    369 	/*
    370 	 * Calculate important exported kernel virtual addresses
    371 	 */
    372 	/*
    373 	 * Sysseg: base of kernel segment table
    374 	 */
    375 	RELOC(Sysseg, st_entry_t *) =
    376 		(st_entry_t *)(kstpa - firstpa);
    377 	/*
    378 	 * Sysptmap: base of kernel page table map
    379 	 */
    380 	RELOC(Sysptmap, pt_entry_t *) =
    381 		(pt_entry_t *)(kptmpa - firstpa);
    382 	/*
    383 	 * Sysmap: kernel page table (as mapped through Sysptmap)
    384 	 * Immediately follows `nptpages' of static kernel page table.
    385 	 */
    386 	RELOC(Sysmap, pt_entry_t *) =
    387 		(pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
    388 	/*
    389 	 * intiobase, intiolimit: base and end of internal (DIO) IO space.
    390 	 * IIOMAPSIZE pages prior to external IO space at end of static
    391 	 * kernel page table.
    392 	 */
    393 	RELOC(intiobase, char *) =
    394 		(char *)m68k_ptob(nptpages*NPTEPG - (IIOMAPSIZE+EIOMAPSIZE));
    395 	RELOC(intiolimit, char *) =
    396 		(char *)m68k_ptob(nptpages*NPTEPG - EIOMAPSIZE);
    397 	/*
    398 	 * extiobase: base of external (DIO-II) IO space.
    399 	 * EIOMAPSIZE pages at the end of the static kernel page table.
    400 	 */
    401 	RELOC(extiobase, char *) =
    402 		(char *)m68k_ptob(nptpages*NPTEPG - EIOMAPSIZE);
    403 	/*
    404 	 * CLKbase, MMUbase: important registers in internal IO space
    405 	 * accessed from assembly language.
    406 	 */
    407 	RELOC(CLKbase, vaddr_t) =
    408 		(vaddr_t)RELOC(intiobase, char *) + CLKBASE;
    409 	RELOC(MMUbase, vaddr_t) =
    410 		(vaddr_t)RELOC(intiobase, char *) + MMUBASE;
    411 
    412 	/*
    413 	 * Setup u-area for process 0.
    414 	 */
    415 	/*
    416 	 * Zero the u-area.
    417 	 * NOTE: `pte' and `epte' aren't PTEs here.
    418 	 */
    419 	pte = (u_int *)p0upa;
    420 	epte = (u_int *)(p0upa + USPACE);
    421 	while (pte < epte)
    422 		*pte++ = 0;
    423 	/*
    424 	 * Remember the u-area address so it can be loaded in the
    425 	 * proc struct p_addr field later.
    426 	 */
    427 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
    428 
    429 	/*
    430 	 * VM data structures are now initialized, set up data for
    431 	 * the pmap module.
    432 	 *
    433 	 * Note about avail_end: msgbuf is initialized just after
    434 	 * avail_end in machdep.c.  Since the last page is used
    435 	 * for rebooting the system (code is copied there and
    436 	 * excution continues from copied code before the MMU
    437 	 * is disabled), the msgbuf will get trounced between
    438 	 * reboots if it's placed in the last physical page.
    439 	 * To work around this, we move avail_end back one more
    440 	 * page so the msgbuf can be preserved.
    441 	 */
    442 	RELOC(avail_start, paddr_t) = nextpa;
    443 	RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)) -
    444 	    (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
    445 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
    446 	RELOC(virtual_avail, vaddr_t) =
    447 		VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
    448 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
    449 
    450 #ifdef M68K_MMU_HP
    451 	/*
    452 	 * Determine VA aliasing distance if any
    453 	 */
    454 	if (RELOC(ectype, int) == EC_VIRT) {
    455 		if (RELOC(machineid, int) == HP_320)
    456 			RELOC(pmap_aliasmask, int) = 0x3fff;	/* 16k */
    457 		else if (RELOC(machineid, int) == HP_350)
    458 			RELOC(pmap_aliasmask, int) = 0x7fff;	/* 32k */
    459 	}
    460 #endif
    461 
    462 	/*
    463 	 * Initialize protection array.
    464 	 * XXX don't use a switch statement, it might produce an
    465 	 * absolute "jmp" table.
    466 	 */
    467 	{
    468 		int *kp;
    469 
    470 		kp = &RELOC(protection_codes, int);
    471 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
    472 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
    473 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    474 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    475 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    476 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    477 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    478 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    479 	}
    480 
    481 	/*
    482 	 * Kernel page/segment table allocated in locore,
    483 	 * just initialize pointers.
    484 	 */
    485 	{
    486 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
    487 
    488 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
    489 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
    490 		simple_lock_init(&kpm->pm_lock);
    491 		kpm->pm_count = 1;
    492 		kpm->pm_stpa = (st_entry_t *)kstpa;
    493 		/*
    494 		 * For the 040 we also initialize the free level 2
    495 		 * descriptor mask noting that we have used:
    496 		 *	0:		level 1 table
    497 		 *	1 to `num':	map page tables
    498 		 *	MAXKL2SIZE-1:	maps last-page page table
    499 		 */
    500 		if (RELOC(mmutype, int) == MMU_68040) {
    501 			int num;
    502 
    503 			kpm->pm_stfree = ~l2tobm(0);
    504 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
    505 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
    506 			while (num)
    507 				kpm->pm_stfree &= ~l2tobm(num--);
    508 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
    509 			for (num = MAXKL2SIZE;
    510 			     num < sizeof(kpm->pm_stfree)*NBBY;
    511 			     num++)
    512 				kpm->pm_stfree &= ~l2tobm(num);
    513 		}
    514 	}
    515 
    516 	/*
    517 	 * Allocate some fixed, special purpose kernel virtual addresses
    518 	 */
    519 	{
    520 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
    521 
    522 		RELOC(bootinfo_va, vaddr_t) = (vaddr_t)va;
    523 		va += NBPG;
    524 		RELOC(CADDR1, caddr_t) = (caddr_t)va;
    525 		va += NBPG;
    526 		RELOC(CADDR2, caddr_t) = (caddr_t)va;
    527 		va += NBPG;
    528 		RELOC(vmmap, caddr_t) = (caddr_t)va;
    529 		va += NBPG;
    530 		RELOC(ledbase, caddr_t) = (caddr_t)va;
    531 		va += NBPG;
    532 		RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
    533 		va += m68k_round_page(MSGBUFSIZE);
    534 		RELOC(virtual_avail, vaddr_t) = va;
    535 	}
    536 }
    537