Home | History | Annotate | Line # | Download | only in hp300
pmap_bootstrap.c revision 1.44
      1 /*	$NetBSD: pmap_bootstrap.c,v 1.44 2009/12/06 02:42:34 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * the Systems Programming Group of the University of Utah Computer
      9  * Science Department.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.44 2009/12/06 02:42:34 tsutsui Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <machine/frame.h>
     44 #include <machine/cpu.h>
     45 #include <machine/hp300spu.h>
     46 #include <machine/vmparam.h>
     47 #include <machine/pte.h>
     48 
     49 #include <hp300/hp300/clockreg.h>
     50 
     51 #include <uvm/uvm_extern.h>
     52 
     53 #define RELOC(v, t)	*((t*)((uintptr_t)&(v) + firstpa))
     54 #define RELOCPTR(v, t)	((t)((uintptr_t)RELOC((v), t) + firstpa))
     55 
     56 extern char *etext;
     57 extern vaddr_t CLKbase, MMUbase;
     58 extern paddr_t bootinfo_pa;
     59 extern vaddr_t bootinfo_va;
     60 
     61 extern int maxmem, physmem;
     62 extern paddr_t avail_start, avail_end;
     63 #ifdef M68K_MMU_HP
     64 extern int pmap_aliasmask;
     65 #endif
     66 
     67 void	pmap_bootstrap(paddr_t, paddr_t);
     68 
     69 /*
     70  * Special purpose kernel virtual addresses, used for mapping
     71  * physical pages for a variety of temporary or permanent purposes:
     72  *
     73  *	CADDR1, CADDR2:	pmap zero/copy operations
     74  *	vmmap:		/dev/mem, crash dumps, parity error checking
     75  *	ledbase:	SPU LEDs
     76  *	msgbufaddr:	kernel message buffer
     77  */
     78 void *CADDR1, *CADDR2, *ledbase;
     79 char *vmmap;
     80 void *msgbufaddr;
     81 
     82 /*
     83  * Bootstrap the VM system.
     84  *
     85  * Called with MMU off so we must relocate all global references by `firstpa'
     86  * (don't call any functions here!)  `nextpa' is the first available physical
     87  * memory address.  Returns an updated first PA reflecting the memory we
     88  * have allocated.  MMU is still off when we return.
     89  *
     90  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
     91  * XXX a PIC compiler would make this much easier.
     92  */
     93 void
     94 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
     95 {
     96 	paddr_t kstpa, kptpa, kptmpa, lkptpa, lwp0upa;
     97 	u_int nptpages, kstsize;
     98 	st_entry_t protoste, *ste, *este;
     99 	pt_entry_t protopte, *pte, *epte;
    100 	u_int stfree = 0;	/* XXX: gcc -Wuninitialized */
    101 
    102 	/*
    103 	 * Calculate important physical addresses:
    104 	 *
    105 	 *	lwp0upa		lwp 0 u-area		UPAGES pages
    106 	 *
    107 	 *	kstpa		kernel segment table	1 page (!040)
    108 	 *						N pages (040)
    109 	 *
    110 	 *	kptmpa		kernel PT map		1 page
    111 	 *
    112 	 *	lkptpa		last kernel PT page	1 page
    113 	 *
    114 	 *	kptpa		statically allocated
    115 	 *			kernel PT pages		Sysptsize+ pages
    116 	 *
    117 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
    118 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
    119 	 *   the total to a page boundary with IO maps at the end. ]
    120 	 *
    121 	 * The KVA corresponding to any of these PAs is:
    122 	 *	(PA - firstpa + KERNBASE).
    123 	 */
    124 	lwp0upa = nextpa;
    125 	nextpa += USPACE;
    126 	if (RELOC(mmutype, int) == MMU_68040)
    127 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
    128 	else
    129 		kstsize = 1;
    130 	kstpa = nextpa;
    131 	nextpa += kstsize * PAGE_SIZE;
    132 	kptmpa = nextpa;
    133 	nextpa += PAGE_SIZE;
    134 	lkptpa = nextpa;
    135 	nextpa += PAGE_SIZE;
    136 	kptpa = nextpa;
    137 	nptpages = RELOC(Sysptsize, int) +
    138 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
    139 	nextpa += nptpages * PAGE_SIZE;
    140 
    141 	/*
    142 	 * Initialize segment table and kernel page table map.
    143 	 *
    144 	 * On 68030s and earlier MMUs the two are identical except for
    145 	 * the valid bits so both are initialized with essentially the
    146 	 * same values.  On the 68040, which has a mandatory 3-level
    147 	 * structure, the segment table holds the level 1 table and part
    148 	 * (or all) of the level 2 table and hence is considerably
    149 	 * different.  Here the first level consists of 128 descriptors
    150 	 * (512 bytes) each mapping 32mb of address space.  Each of these
    151 	 * points to blocks of 128 second level descriptors (512 bytes)
    152 	 * each mapping 256kb.  Note that there may be additional "segment
    153 	 * table" pages depending on how large MAXKL2SIZE is.
    154 	 *
    155 	 * Portions of the last two segment of KVA space (0xFF800000 -
    156 	 * 0xFFFFFFFF) are mapped for a couple of purposes.
    157 	 * The first segment (0xFF800000 - 0xFFBFFFFF) is mapped
    158 	 * for the kernel page tables.
    159 	 * The very last page (0xFFFFF000) in the second segment is mapped
    160 	 * to the last physical page of RAM to give us a region in which
    161 	 * PA == VA.  We use the first part of this page for enabling
    162 	 * and disabling mapping.  The last part of this page also contains
    163 	 * info left by the boot ROM.
    164 	 *
    165 	 * XXX cramming two levels of mapping into the single "segment"
    166 	 * table on the 68040 is intended as a temporary hack to get things
    167 	 * working.  The 224mb of address space that this allows will most
    168 	 * likely be insufficient in the future (at least for the kernel).
    169 	 */
    170 	if (RELOC(mmutype, int) == MMU_68040) {
    171 		int nl1desc, nl2desc, i;
    172 
    173 		/*
    174 		 * First invalidate the entire "segment table" pages
    175 		 * (levels 1 and 2 have the same "invalid" value).
    176 		 */
    177 		ste = (st_entry_t *)kstpa;
    178 		este = &ste[kstsize * NPTEPG];
    179 		while (ste < este)
    180 			*ste++ = SG_NV;
    181 		/*
    182 		 * Initialize level 2 descriptors (which immediately
    183 		 * follow the level 1 table).  We need:
    184 		 *	NPTEPG / SG4_LEV3SIZE
    185 		 * level 2 descriptors to map each of the nptpages
    186 		 * pages of PTEs.  Note that we set the "used" bit
    187 		 * now to save the HW the expense of doing it.
    188 		 */
    189 		nl2desc = nptpages * (NPTEPG / SG4_LEV3SIZE);
    190 		ste = (st_entry_t *)kstpa;
    191 		ste = &ste[SG4_LEV1SIZE];
    192 		este = &ste[nl2desc];
    193 		protoste = kptpa | SG_U | SG_RW | SG_V;
    194 		while (ste < este) {
    195 			*ste++ = protoste;
    196 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    197 		}
    198 		/*
    199 		 * Initialize level 1 descriptors.  We need:
    200 		 *	howmany(nl2desc, SG4_LEV2SIZE)
    201 		 * level 1 descriptors to map the `nl2desc' level 2's.
    202 		 */
    203 		nl1desc = howmany(nl2desc, SG4_LEV2SIZE);
    204 		ste = (st_entry_t *)kstpa;
    205 		este = &ste[nl1desc];
    206 		protoste = (paddr_t)&ste[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
    207 		while (ste < este) {
    208 			*ste++ = protoste;
    209 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
    210 		}
    211 		/*
    212 		 * Initialize the final level 1 descriptor to map the next
    213 		 * block of level 2 descriptors for Sysptmap.
    214 		 */
    215 		ste = (st_entry_t *)kstpa;
    216 		ste = &ste[SG4_LEV1SIZE - 1];
    217 		*ste = protoste;
    218 		/*
    219 		 * Now initialize the final portion of that block of
    220 		 * descriptors to map kptmpa and the "last PT page".
    221 		 */
    222 		i = SG4_LEV1SIZE + (nl1desc * SG4_LEV2SIZE);
    223 		ste = (st_entry_t *)kstpa;
    224 		ste = &ste[i + SG4_LEV2SIZE - (NPTEPG / SG4_LEV3SIZE) * 2];
    225 		este = &ste[NPTEPG / SG4_LEV3SIZE];
    226 		protoste = kptmpa | SG_U | SG_RW | SG_V;
    227 		while (ste < este) {
    228 			*ste++ = protoste;
    229 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    230 		}
    231 		este = &ste[NPTEPG / SG4_LEV3SIZE];
    232 		protoste = lkptpa | SG_U | SG_RW | SG_V;
    233 		while (ste < este) {
    234 			*ste++ = protoste;
    235 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
    236 		}
    237 		/*
    238 		 * Calculate the free level 2 descriptor mask
    239 		 * noting that we have used:
    240 		 *	0:		level 1 table
    241 		 *	1 to nl1desc:	map page tables
    242 		 *	nl1desc + 1:	maps kptmpa and last-page page table
    243 		 */
    244 		/* mark an entry for level 1 table */
    245 		stfree = ~l2tobm(0);
    246 		/* mark entries for map page tables */
    247 		for (i = 1; i <= nl1desc; i++)
    248 			stfree &= ~l2tobm(i);
    249 		/* mark an entry for kptmpa and lkptpa */
    250 		stfree &= ~l2tobm(i);
    251 		/* mark entries not available */
    252 		for (i = MAXKL2SIZE; i < sizeof(stfree) * NBBY; i++)
    253 			stfree &= ~l2tobm(i);
    254 
    255 		/*
    256 		 * Initialize Sysptmap
    257 		 */
    258 		pte = (pt_entry_t *)kptmpa;
    259 		epte = &pte[nptpages];
    260 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    261 		while (pte < epte) {
    262 			*pte++ = protopte;
    263 			protopte += PAGE_SIZE;
    264 		}
    265 		/*
    266 		 * Invalidate all remaining entries.
    267 		 */
    268 		epte = (pt_entry_t *)kptmpa;
    269 		epte = &epte[NPTEPG];		/* XXX: should be TIB_SIZE */
    270 		while (pte < epte) {
    271 			*pte++ = PG_NV;
    272 		}
    273 		/*
    274 		 * Initialize the last ones to point to kptmpa and the page
    275 		 * table page allocated earlier.
    276 		 */
    277 		pte = (pt_entry_t *)kptmpa;
    278 		pte = &pte[NPTEPG - 2];		/* XXX: should be TIA_SIZE */
    279 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
    280 		pte++;
    281 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    282 	} else {
    283 		/*
    284 		 * Map the page table pages in both the HW segment table
    285 		 * and the software Sysptmap.
    286 		 */
    287 		ste = (st_entry_t *)kstpa;
    288 		pte = (pt_entry_t *)kptmpa;
    289 		epte = &pte[nptpages];
    290 		protoste = kptpa | SG_RW | SG_V;
    291 		protopte = kptpa | PG_RW | PG_CI | PG_V;
    292 		while (pte < epte) {
    293 			*ste++ = protoste;
    294 			*pte++ = protopte;
    295 			protoste += PAGE_SIZE;
    296 			protopte += PAGE_SIZE;
    297 		}
    298 		/*
    299 		 * Invalidate all remaining entries in both.
    300 		 */
    301 		este = (st_entry_t *)kstpa;
    302 		este = &epte[NPTEPG];		/* XXX: should be TIA_SIZE */
    303 		while (ste < este)
    304 			*ste++ = SG_NV;
    305 		epte = (pt_entry_t *)kptmpa;
    306 		epte = &epte[NPTEPG];		/* XXX: should be TIB_SIZE */
    307 		while (pte < epte)
    308 			*pte++ = PG_NV;
    309 		/*
    310 		 * Initialize the last ones to point to kptmpa and the page
    311 		 * table page allocated earlier.
    312 		 */
    313 		ste = (st_entry_t *)kstpa;
    314 		ste = &ste[NPTEPG - 2];		/* XXX: should be TIA_SIZE */
    315 		pte = (pt_entry_t *)kptmpa;
    316 		pte = &pte[NPTEPG - 2];		/* XXX: should be TIA_SIZE */
    317 		*ste = kptmpa | SG_RW | SG_V;
    318 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
    319 		ste++;
    320 		pte++;
    321 		*ste = lkptpa | SG_RW | SG_V;
    322 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
    323 	}
    324 	/*
    325 	 * Invalidate all but the final entry in the last kernel PT page.
    326 	 * The final entry maps the last page of physical memory to
    327 	 * prepare a page that is PA == VA to turn on the MMU.
    328 	 */
    329 	pte = (pt_entry_t *)lkptpa;
    330 	epte = &pte[NPTEPG - 1];
    331 	while (pte < epte)
    332 		*pte++ = PG_NV;
    333 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
    334 	/*
    335 	 * Initialize kernel page table.
    336 	 * Start by invalidating the `nptpages' that we have allocated.
    337 	 */
    338 	pte = (pt_entry_t *)kptpa;
    339 	epte = &pte[nptpages * NPTEPG];
    340 	while (pte < epte)
    341 		*pte++ = PG_NV;
    342 
    343 	/*
    344 	 * The page of kernel text is zero-filled in locore.s,
    345 	 * and not mapped (at VA 0).  The boot loader places the
    346 	 * bootinfo here after the kernel is loaded.  Remember
    347 	 * the physical address; we'll map it to a virtual address
    348 	 * later.
    349 	 */
    350 	RELOC(bootinfo_pa, paddr_t) = firstpa;
    351 
    352 	/*
    353 	 * Validate PTEs for kernel text (RO).  The first page
    354 	 * of kernel text remains invalid; see locore.s
    355 	 */
    356 	pte = (pt_entry_t *)kptpa;
    357 	pte = &pte[m68k_btop(KERNBASE + PAGE_SIZE)];
    358 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
    359 	protopte = (firstpa + PAGE_SIZE) | PG_RO | PG_V;
    360 	while (pte < epte) {
    361 		*pte++ = protopte;
    362 		protopte += PAGE_SIZE;
    363 	}
    364 	/*
    365 	 * Validate PTEs for kernel data/bss, dynamic data allocated
    366 	 * by us so far (nextpa - firstpa bytes), and pages for lwp0
    367 	 * u-area and page table allocated below (RW).
    368 	 */
    369 	epte = (pt_entry_t *)kptpa;
    370 	epte = &epte[m68k_btop(nextpa - firstpa)];
    371 	protopte = (protopte & ~PG_PROT) | PG_RW;
    372 	/*
    373 	 * Enable copy-back caching of data pages
    374 	 */
    375 	if (RELOC(mmutype, int) == MMU_68040)
    376 		protopte |= PG_CCB;
    377 	while (pte < epte) {
    378 		*pte++ = protopte;
    379 		protopte += PAGE_SIZE;
    380 	}
    381 	/*
    382 	 * Finally, validate the internal IO space PTEs (RW+CI).
    383 	 * We do this here since the 320/350 MMU registers (also
    384 	 * used, but to a lesser extent, on other models) are mapped
    385 	 * in this range and it would be nice to be able to access
    386 	 * them after the MMU is turned on.
    387 	 */
    388 
    389 #define	PTE2VA(pte)	m68k_ptob(pte - ((pt_entry_t *)kptpa))
    390 
    391 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
    392 	epte = &pte[IIOMAPSIZE];
    393 	RELOC(intiobase, uint8_t *) = (uint8_t *)PTE2VA(pte);
    394 	RELOC(intiolimit, uint8_t *) = (uint8_t *)PTE2VA(epte);
    395 	while (pte < epte) {
    396 		*pte++ = protopte;
    397 		protopte += PAGE_SIZE;
    398 	}
    399 	RELOC(extiobase, uint8_t *) = (uint8_t *)PTE2VA(pte);
    400 	pte += EIOMAPSIZE;
    401 	RELOC(virtual_avail, vaddr_t) = PTE2VA(pte);
    402 
    403 	/*
    404 	 * Calculate important exported kernel virtual addresses
    405 	 */
    406 	/*
    407 	 * Sysseg: base of kernel segment table
    408 	 */
    409 	RELOC(Sysseg, st_entry_t *) = (st_entry_t *)(kstpa - firstpa);
    410 	/*
    411 	 * Sysptmap: base of kernel page table map
    412 	 */
    413 	RELOC(Sysptmap, pt_entry_t *) = (pt_entry_t *)(kptmpa - firstpa);
    414 	/*
    415 	 * Sysmap: kernel page table (as mapped through Sysptmap)
    416 	 * Allocated at the end of KVA space.
    417 	 */
    418 	RELOC(Sysmap, pt_entry_t *) =
    419 	    (pt_entry_t *)m68k_ptob((NPTEPG - 2) * NPTEPG);
    420 	/*
    421 	 * CLKbase, MMUbase: important registers in internal IO space
    422 	 * accessed from assembly language.
    423 	 */
    424 	RELOC(CLKbase, vaddr_t) =
    425 		(vaddr_t)RELOC(intiobase, char *) + CLKBASE;
    426 	RELOC(MMUbase, vaddr_t) =
    427 		(vaddr_t)RELOC(intiobase, char *) + MMUBASE;
    428 
    429 	/*
    430 	 * Remember the u-area address so it can be loaded in the lwp0
    431 	 * via uvm_lwp_setuarea() later in pmap_bootstrap_finalize().
    432 	 */
    433 	RELOC(lwp0uarea, vaddr_t) = lwp0upa - firstpa;
    434 
    435 	/*
    436 	 * VM data structures are now initialized, set up data for
    437 	 * the pmap module.
    438 	 *
    439 	 * Note about avail_end: msgbuf is initialized just after
    440 	 * avail_end in machdep.c.  Since the last page is used
    441 	 * for rebooting the system (code is copied there and
    442 	 * excution continues from copied code before the MMU
    443 	 * is disabled), the msgbuf will get trounced between
    444 	 * reboots if it's placed in the last physical page.
    445 	 * To work around this, we move avail_end back one more
    446 	 * page so the msgbuf can be preserved.
    447 	 */
    448 	RELOC(avail_start, paddr_t) = nextpa;
    449 	RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)) -
    450 	    (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
    451 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
    452 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
    453 
    454 #ifdef M68K_MMU_HP
    455 	/*
    456 	 * Determine VA aliasing distance if any
    457 	 */
    458 	if (RELOC(ectype, int) == EC_VIRT) {
    459 		if (RELOC(machineid, int) == HP_320)
    460 			RELOC(pmap_aliasmask, int) = 0x3fff;	/* 16k */
    461 		else if (RELOC(machineid, int) == HP_350)
    462 			RELOC(pmap_aliasmask, int) = 0x7fff;	/* 32k */
    463 	}
    464 #endif
    465 
    466 	/*
    467 	 * Initialize protection array.
    468 	 * XXX don't use a switch statement, it might produce an
    469 	 * absolute "jmp" table.
    470 	 */
    471 	{
    472 		u_int *kp;
    473 
    474 		kp = &RELOC(protection_codes, u_int);
    475 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
    476 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
    477 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    478 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
    479 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    480 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    481 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
    482 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
    483 	}
    484 
    485 	/*
    486 	 * Kernel page/segment table allocated above,
    487 	 * just initialize pointers.
    488 	 */
    489 	{
    490 		struct pmap *kpm;
    491 
    492 		kpm = RELOCPTR(kernel_pmap_ptr, struct pmap *);
    493 
    494 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
    495 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
    496 		simple_lock_init(&kpm->pm_lock);
    497 		kpm->pm_count = 1;
    498 		kpm->pm_stpa = (st_entry_t *)kstpa;
    499 		if (RELOC(mmutype, int) == MMU_68040)
    500 			kpm->pm_stfree = stfree;
    501 	}
    502 
    503 	/*
    504 	 * Allocate some fixed, special purpose kernel virtual addresses
    505 	 */
    506 	{
    507 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
    508 
    509 		RELOC(bootinfo_va, vaddr_t) = (vaddr_t)va;
    510 		va += PAGE_SIZE;
    511 		RELOC(CADDR1, void *) = (void *)va;
    512 		va += PAGE_SIZE;
    513 		RELOC(CADDR2, void *) = (void *)va;
    514 		va += PAGE_SIZE;
    515 		RELOC(vmmap, void *) = (void *)va;
    516 		va += PAGE_SIZE;
    517 		RELOC(ledbase, void *) = (void *)va;
    518 		va += PAGE_SIZE;
    519 		RELOC(msgbufaddr, void *) = (void *)va;
    520 		va += m68k_round_page(MSGBUFSIZE);
    521 		RELOC(virtual_avail, vaddr_t) = va;
    522 	}
    523 }
    524