Home | History | Annotate | Line # | Download | only in include
      1 /*	$NetBSD: pmap_private.h,v 1.4 2022/08/21 09:12:43 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 /*
     29  * Copyright (c) 2001 Wasabi Systems, Inc.
     30  * All rights reserved.
     31  *
     32  * Written by Frank van der Linden for Wasabi Systems, Inc.
     33  *
     34  * Redistribution and use in source and binary forms, with or without
     35  * modification, are permitted provided that the following conditions
     36  * are met:
     37  * 1. Redistributions of source code must retain the above copyright
     38  *    notice, this list of conditions and the following disclaimer.
     39  * 2. Redistributions in binary form must reproduce the above copyright
     40  *    notice, this list of conditions and the following disclaimer in the
     41  *    documentation and/or other materials provided with the distribution.
     42  * 3. All advertising materials mentioning features or use of this software
     43  *    must display the following acknowledgement:
     44  *      This product includes software developed for the NetBSD Project by
     45  *      Wasabi Systems, Inc.
     46  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     47  *    or promote products derived from this software without specific prior
     48  *    written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60  * POSSIBILITY OF SUCH DAMAGE.
     61  */
     62 
     63 #ifndef	_I386_PMAP_H_
     64 #define	_I386_PMAP_H_
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_xen.h"
     68 #endif
     69 
     70 #include <sys/atomic.h>
     71 
     72 #include <i386/pte.h>
     73 #include <i386/vmparam.h>
     74 #include <machine/segments.h>
     75 #if defined(_KERNEL)
     76 #include <machine/cpufunc.h>
     77 #endif
     78 
     79 #include <uvm/uvm_object.h>
     80 #ifdef XENPV
     81 #include <xen/xenfunc.h>
     82 #include <xen/xenpmap.h>
     83 #endif /* XENPV */
     84 
     85 /*
     86  * see pte.h for a description of i386 MMU terminology and hardware
     87  * interface.
     88  *
     89  * a pmap describes a processes' 4GB virtual address space.  when PAE
     90  * is not in use, this virtual address space can be broken up into 1024 4MB
     91  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     92  * follows:
     93  *
     94  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     95  * (the following assumes that KERNBASE is 0xc0000000)
     96  *
     97  * PDE#s	VA range		usage
     98  * 0->766	0x0 -> 0xbfc00000	user address space
     99  * 767		0xbfc00000->		recursive mapping of PDP (used for
    100  *			0xc0000000	linear mapping of PTPs)
    101  * 768->1023	0xc0000000->		kernel address space (constant
    102  *			0xffc00000	across all pmap's/processes)
    103  *			<end>
    104  *
    105  *
    106  * note: a recursive PDP mapping provides a way to map all the PTEs for
    107  * a 4GB address space into a linear chunk of virtual memory.  in other
    108  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    109  * area.  the PTE for page 1 is the second int.  the very last int in the
    110  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    111  * address).
    112  *
    113  * all pmap's PD's must have the same values in slots 768->1023 so that
    114  * the kernel is always mapped in every process.  these values are loaded
    115  * into the PD at pmap creation time.
    116  *
    117  * at any one time only one pmap can be active on a processor.  this is
    118  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    119  * will have all its PTEs mapped into memory at the recursive mapping
    120  * point (slot #767 as show above).  when the pmap code wants to find the
    121  * PTE for a virtual address, all it has to do is the following:
    122  *
    123  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    124  *                = 0xbfc00000 + (VA / 4096) * 4
    125  *
    126  * what happens if the pmap layer is asked to perform an operation
    127  * on a pmap that is not the one which is currently active?  in that
    128  * case we temporarily load this pmap, perform the operation, and mark
    129  * the currently active one as pending lazy reload.
    130  *
    131  * the following figure shows the effects of the recursive PDP mapping:
    132  *
    133  *   PDP (%cr3)
    134  *   +----+
    135  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    136  *   |    |
    137  *   |    |
    138  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    139  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    140  *   |    |
    141  *   +----+
    142  *
    143  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    144  *
    145  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    146  * PTP:
    147  *
    148  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    149  *   +----+
    150  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    151  *   |    |
    152  *   |    |
    153  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    154  *   | 768| -> maps contents of first kernel PTP
    155  *   |    |
    156  *   |1023|
    157  *   +----+
    158  *
    159  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    160  * defined as "PDP_BASE".... within that mapping there are two
    161  * defines:
    162  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    163  *      which points back to itself.
    164  *
    165  * - PAE support -
    166  * ---------------
    167  *
    168  * PAE adds another layer of indirection during address translation, breaking
    169  * up the translation process in 3 different levels:
    170  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    171  * bits [31:30] from the virtual address). This breaks up the address space
    172  * in 4 1GB regions.
    173  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    174  * in 512 * 2MB regions.
    175  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    176  * the pages is still 4K).
    177  *
    178  * The kernel virtual space is mapped by the last entry in the L3 page,
    179  * the first 3 entries mapping the user VA space.
    180  *
    181  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    182  * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
    183  * virtual space). There are also restrictions imposed by Xen on the
    184  * last entry of the L3 PD (reference count to this page cannot be
    185  * bigger than 1), which makes it hard to use one L3 page per pmap to
    186  * switch between pmaps using %cr3.
    187  *
    188  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    189  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    190  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    191  * pages long (corresponding to the 4 entries of the L3), and the different
    192  * index/slots (like PDP_PDE) are adapted accordingly.
    193  *
    194  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    195  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    196  *
    197  * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
    198  * recursively.
    199  *
    200  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    201  * count on this page to be exactly one), so we use a shadow PD page for
    202  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    203  * contiguous we'll allocate/copy one page per pmap.
    204  */
    205 
    206 /*
    207  * the following defines give the virtual addresses of various MMU
    208  * data structures:
    209  * PTE_BASE: the base VA of the linear PTE mappings
    210  * PDP_BASE: the base VA of the recursive mapping of the PDP
    211  * PDP_PDE: the VA of the PDE that points back to the PDP
    212  */
    213 
    214 #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    215 
    216 #define L1_BASE		PTE_BASE
    217 
    218 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    219 
    220 #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    221 
    222 #define PDP_BASE	L2_BASE
    223 
    224 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    225 
    226 #define PTP_MASK_INITIALIZER	{ L1_MASK, L2_MASK }
    227 #define PTP_FRAME_INITIALIZER	{ L1_FRAME, L2_FRAME }
    228 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    229 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    230 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    231 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    232 #define PDES_INITIALIZER	{ L2_BASE }
    233 
    234 #define PTP_LEVELS	2
    235 
    236 /*
    237  * PTE_AVL usage: we make use of the ignored bits of the PTE
    238  */
    239 #define PTE_WIRED	PTE_AVL1	/* Wired Mapping */
    240 #define PTE_PVLIST	PTE_AVL2	/* Mapping has entry on pvlist */
    241 #define PTE_X		PTE_AVL3	/* Executable */
    242 
    243 /* XXX To be deleted. */
    244 #define PG_W		PTE_WIRED
    245 #define PG_PVLIST	PTE_PVLIST
    246 #define PG_X		PTE_X
    247 
    248 #define	_MACHINE_PMAP_PRIVATE_H_X86
    249 #include <x86/pmap_private.h>
    250 #undef	_MACHINE_PMAP_PRIVATE_H_X86
    251 
    252 #ifndef XENPV
    253 
    254 #define pmap_pa2pte(a)			(a)
    255 #define pmap_pte2pa(a)			((a) & PTE_FRAME)
    256 #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    257 #define pmap_pte_flush()		/* nothing */
    258 
    259 #ifdef PAE
    260 #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    261 #define pmap_pte_testset(p, n)		\
    262     atomic_swap_64((volatile uint64_t *)p, n)
    263 #define pmap_pte_setbits(p, b)		\
    264     atomic_or_64((volatile uint64_t *)p, b)
    265 #define pmap_pte_clearbits(p, b)	\
    266     atomic_and_64((volatile uint64_t *)p, ~(b))
    267 #else /* PAE */
    268 #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    269 #define pmap_pte_testset(p, n)		\
    270     atomic_swap_ulong((volatile unsigned long *)p, n)
    271 #define pmap_pte_setbits(p, b)		\
    272     atomic_or_ulong((volatile unsigned long *)p, b)
    273 #define pmap_pte_clearbits(p, b)	\
    274     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    275 #endif /* PAE */
    276 
    277 #else /* XENPV */
    278 
    279 extern kmutex_t pte_lock;
    280 
    281 static __inline pt_entry_t
    282 pmap_pa2pte(paddr_t pa)
    283 {
    284 	return (pt_entry_t)xpmap_ptom_masked(pa);
    285 }
    286 
    287 static __inline paddr_t
    288 pmap_pte2pa(pt_entry_t pte)
    289 {
    290 	return xpmap_mtop_masked(pte & PTE_FRAME);
    291 }
    292 
    293 static __inline void
    294 pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    295 {
    296 	int s = splvm();
    297 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    298 	splx(s);
    299 }
    300 
    301 static __inline pt_entry_t
    302 pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    303 {
    304 	pt_entry_t opte;
    305 
    306 	mutex_enter(&pte_lock);
    307 	opte = *ptep;
    308 	if (opte == o) {
    309 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    310 		xpq_flush_queue();
    311 	}
    312 	mutex_exit(&pte_lock);
    313 	return opte;
    314 }
    315 
    316 static __inline pt_entry_t
    317 pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    318 {
    319 	pt_entry_t opte;
    320 
    321 	mutex_enter(&pte_lock);
    322 	opte = *pte;
    323 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), npte);
    324 	xpq_flush_queue();
    325 	mutex_exit(&pte_lock);
    326 	return opte;
    327 }
    328 
    329 static __inline void
    330 pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    331 {
    332 	mutex_enter(&pte_lock);
    333 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    334 	xpq_flush_queue();
    335 	mutex_exit(&pte_lock);
    336 }
    337 
    338 static __inline void
    339 pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    340 {
    341 	mutex_enter(&pte_lock);
    342 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    343 	    (*pte) & ~bits);
    344 	xpq_flush_queue();
    345 	mutex_exit(&pte_lock);
    346 }
    347 
    348 static __inline void
    349 pmap_pte_flush(void)
    350 {
    351 	int s = splvm();
    352 	xpq_flush_queue();
    353 	splx(s);
    354 }
    355 
    356 #endif
    357 
    358 struct vm_map;
    359 struct trapframe;
    360 struct pcb;
    361 
    362 int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    363 
    364 #endif	/* _I386_PMAP_H_ */
    365