Home | History | Annotate | Line # | Download | only in include
pmap_private.h revision 1.4
      1  1.4  riastrad /*	$NetBSD: pmap_private.h,v 1.4 2022/08/21 09:12:43 riastradh Exp $	*/
      2  1.1  riastrad 
      3  1.1  riastrad /*
      4  1.1  riastrad  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.1  riastrad  * All rights reserved.
      6  1.1  riastrad  *
      7  1.1  riastrad  * Redistribution and use in source and binary forms, with or without
      8  1.1  riastrad  * modification, are permitted provided that the following conditions
      9  1.1  riastrad  * are met:
     10  1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     11  1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     12  1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     15  1.1  riastrad  *
     16  1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  1.1  riastrad  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  1.1  riastrad  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  1.1  riastrad  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  1.1  riastrad  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  1.1  riastrad  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  1.1  riastrad  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  1.1  riastrad  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  1.1  riastrad  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  1.1  riastrad  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  1.1  riastrad  */
     27  1.1  riastrad 
     28  1.1  riastrad /*
     29  1.1  riastrad  * Copyright (c) 2001 Wasabi Systems, Inc.
     30  1.1  riastrad  * All rights reserved.
     31  1.1  riastrad  *
     32  1.1  riastrad  * Written by Frank van der Linden for Wasabi Systems, Inc.
     33  1.1  riastrad  *
     34  1.1  riastrad  * Redistribution and use in source and binary forms, with or without
     35  1.1  riastrad  * modification, are permitted provided that the following conditions
     36  1.1  riastrad  * are met:
     37  1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     38  1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     39  1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     40  1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     41  1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     42  1.1  riastrad  * 3. All advertising materials mentioning features or use of this software
     43  1.1  riastrad  *    must display the following acknowledgement:
     44  1.1  riastrad  *      This product includes software developed for the NetBSD Project by
     45  1.1  riastrad  *      Wasabi Systems, Inc.
     46  1.1  riastrad  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     47  1.1  riastrad  *    or promote products derived from this software without specific prior
     48  1.1  riastrad  *    written permission.
     49  1.1  riastrad  *
     50  1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     51  1.1  riastrad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52  1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53  1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     54  1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60  1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     61  1.1  riastrad  */
     62  1.1  riastrad 
     63  1.1  riastrad #ifndef	_I386_PMAP_H_
     64  1.1  riastrad #define	_I386_PMAP_H_
     65  1.1  riastrad 
     66  1.1  riastrad #if defined(_KERNEL_OPT)
     67  1.1  riastrad #include "opt_xen.h"
     68  1.1  riastrad #endif
     69  1.1  riastrad 
     70  1.1  riastrad #include <sys/atomic.h>
     71  1.1  riastrad 
     72  1.1  riastrad #include <i386/pte.h>
     73  1.1  riastrad #include <i386/vmparam.h>
     74  1.1  riastrad #include <machine/segments.h>
     75  1.1  riastrad #if defined(_KERNEL)
     76  1.1  riastrad #include <machine/cpufunc.h>
     77  1.1  riastrad #endif
     78  1.1  riastrad 
     79  1.1  riastrad #include <uvm/uvm_object.h>
     80  1.1  riastrad #ifdef XENPV
     81  1.1  riastrad #include <xen/xenfunc.h>
     82  1.1  riastrad #include <xen/xenpmap.h>
     83  1.1  riastrad #endif /* XENPV */
     84  1.1  riastrad 
     85  1.1  riastrad /*
     86  1.1  riastrad  * see pte.h for a description of i386 MMU terminology and hardware
     87  1.1  riastrad  * interface.
     88  1.1  riastrad  *
     89  1.1  riastrad  * a pmap describes a processes' 4GB virtual address space.  when PAE
     90  1.1  riastrad  * is not in use, this virtual address space can be broken up into 1024 4MB
     91  1.1  riastrad  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     92  1.1  riastrad  * follows:
     93  1.1  riastrad  *
     94  1.1  riastrad  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     95  1.1  riastrad  * (the following assumes that KERNBASE is 0xc0000000)
     96  1.1  riastrad  *
     97  1.1  riastrad  * PDE#s	VA range		usage
     98  1.1  riastrad  * 0->766	0x0 -> 0xbfc00000	user address space
     99  1.1  riastrad  * 767		0xbfc00000->		recursive mapping of PDP (used for
    100  1.1  riastrad  *			0xc0000000	linear mapping of PTPs)
    101  1.1  riastrad  * 768->1023	0xc0000000->		kernel address space (constant
    102  1.1  riastrad  *			0xffc00000	across all pmap's/processes)
    103  1.1  riastrad  *			<end>
    104  1.1  riastrad  *
    105  1.1  riastrad  *
    106  1.1  riastrad  * note: a recursive PDP mapping provides a way to map all the PTEs for
    107  1.1  riastrad  * a 4GB address space into a linear chunk of virtual memory.  in other
    108  1.1  riastrad  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    109  1.1  riastrad  * area.  the PTE for page 1 is the second int.  the very last int in the
    110  1.1  riastrad  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    111  1.1  riastrad  * address).
    112  1.1  riastrad  *
    113  1.1  riastrad  * all pmap's PD's must have the same values in slots 768->1023 so that
    114  1.1  riastrad  * the kernel is always mapped in every process.  these values are loaded
    115  1.1  riastrad  * into the PD at pmap creation time.
    116  1.1  riastrad  *
    117  1.1  riastrad  * at any one time only one pmap can be active on a processor.  this is
    118  1.1  riastrad  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    119  1.1  riastrad  * will have all its PTEs mapped into memory at the recursive mapping
    120  1.1  riastrad  * point (slot #767 as show above).  when the pmap code wants to find the
    121  1.1  riastrad  * PTE for a virtual address, all it has to do is the following:
    122  1.1  riastrad  *
    123  1.1  riastrad  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    124  1.1  riastrad  *                = 0xbfc00000 + (VA / 4096) * 4
    125  1.1  riastrad  *
    126  1.1  riastrad  * what happens if the pmap layer is asked to perform an operation
    127  1.1  riastrad  * on a pmap that is not the one which is currently active?  in that
    128  1.1  riastrad  * case we temporarily load this pmap, perform the operation, and mark
    129  1.1  riastrad  * the currently active one as pending lazy reload.
    130  1.1  riastrad  *
    131  1.1  riastrad  * the following figure shows the effects of the recursive PDP mapping:
    132  1.1  riastrad  *
    133  1.1  riastrad  *   PDP (%cr3)
    134  1.1  riastrad  *   +----+
    135  1.1  riastrad  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    136  1.1  riastrad  *   |    |
    137  1.1  riastrad  *   |    |
    138  1.1  riastrad  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    139  1.1  riastrad  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    140  1.1  riastrad  *   |    |
    141  1.1  riastrad  *   +----+
    142  1.1  riastrad  *
    143  1.1  riastrad  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    144  1.1  riastrad  *
    145  1.1  riastrad  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    146  1.1  riastrad  * PTP:
    147  1.1  riastrad  *
    148  1.1  riastrad  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    149  1.1  riastrad  *   +----+
    150  1.1  riastrad  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    151  1.1  riastrad  *   |    |
    152  1.1  riastrad  *   |    |
    153  1.1  riastrad  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    154  1.1  riastrad  *   | 768| -> maps contents of first kernel PTP
    155  1.1  riastrad  *   |    |
    156  1.1  riastrad  *   |1023|
    157  1.1  riastrad  *   +----+
    158  1.1  riastrad  *
    159  1.1  riastrad  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    160  1.1  riastrad  * defined as "PDP_BASE".... within that mapping there are two
    161  1.1  riastrad  * defines:
    162  1.1  riastrad  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    163  1.1  riastrad  *      which points back to itself.
    164  1.1  riastrad  *
    165  1.1  riastrad  * - PAE support -
    166  1.1  riastrad  * ---------------
    167  1.1  riastrad  *
    168  1.1  riastrad  * PAE adds another layer of indirection during address translation, breaking
    169  1.1  riastrad  * up the translation process in 3 different levels:
    170  1.1  riastrad  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    171  1.1  riastrad  * bits [31:30] from the virtual address). This breaks up the address space
    172  1.1  riastrad  * in 4 1GB regions.
    173  1.1  riastrad  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    174  1.1  riastrad  * in 512 * 2MB regions.
    175  1.1  riastrad  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    176  1.1  riastrad  * the pages is still 4K).
    177  1.1  riastrad  *
    178  1.1  riastrad  * The kernel virtual space is mapped by the last entry in the L3 page,
    179  1.1  riastrad  * the first 3 entries mapping the user VA space.
    180  1.1  riastrad  *
    181  1.1  riastrad  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    182  1.1  riastrad  * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
    183  1.1  riastrad  * virtual space). There are also restrictions imposed by Xen on the
    184  1.1  riastrad  * last entry of the L3 PD (reference count to this page cannot be
    185  1.1  riastrad  * bigger than 1), which makes it hard to use one L3 page per pmap to
    186  1.1  riastrad  * switch between pmaps using %cr3.
    187  1.1  riastrad  *
    188  1.1  riastrad  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    189  1.1  riastrad  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    190  1.1  riastrad  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    191  1.1  riastrad  * pages long (corresponding to the 4 entries of the L3), and the different
    192  1.1  riastrad  * index/slots (like PDP_PDE) are adapted accordingly.
    193  1.1  riastrad  *
    194  1.1  riastrad  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    195  1.1  riastrad  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    196  1.1  riastrad  *
    197  1.1  riastrad  * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
    198  1.1  riastrad  * recursively.
    199  1.1  riastrad  *
    200  1.1  riastrad  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    201  1.1  riastrad  * count on this page to be exactly one), so we use a shadow PD page for
    202  1.1  riastrad  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    203  1.1  riastrad  * contiguous we'll allocate/copy one page per pmap.
    204  1.1  riastrad  */
    205  1.1  riastrad 
    206  1.1  riastrad /*
    207  1.1  riastrad  * the following defines give the virtual addresses of various MMU
    208  1.1  riastrad  * data structures:
    209  1.1  riastrad  * PTE_BASE: the base VA of the linear PTE mappings
    210  1.1  riastrad  * PDP_BASE: the base VA of the recursive mapping of the PDP
    211  1.1  riastrad  * PDP_PDE: the VA of the PDE that points back to the PDP
    212  1.1  riastrad  */
    213  1.1  riastrad 
    214  1.1  riastrad #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    215  1.1  riastrad 
    216  1.1  riastrad #define L1_BASE		PTE_BASE
    217  1.1  riastrad 
    218  1.1  riastrad #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    219  1.1  riastrad 
    220  1.1  riastrad #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    221  1.1  riastrad 
    222  1.1  riastrad #define PDP_BASE	L2_BASE
    223  1.1  riastrad 
    224  1.1  riastrad #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    225  1.1  riastrad 
    226  1.1  riastrad #define PTP_MASK_INITIALIZER	{ L1_MASK, L2_MASK }
    227  1.1  riastrad #define PTP_FRAME_INITIALIZER	{ L1_FRAME, L2_FRAME }
    228  1.1  riastrad #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    229  1.1  riastrad #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    230  1.1  riastrad #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    231  1.1  riastrad #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    232  1.1  riastrad #define PDES_INITIALIZER	{ L2_BASE }
    233  1.1  riastrad 
    234  1.2  riastrad #define PTP_LEVELS	2
    235  1.2  riastrad 
    236  1.1  riastrad /*
    237  1.1  riastrad  * PTE_AVL usage: we make use of the ignored bits of the PTE
    238  1.1  riastrad  */
    239  1.1  riastrad #define PTE_WIRED	PTE_AVL1	/* Wired Mapping */
    240  1.1  riastrad #define PTE_PVLIST	PTE_AVL2	/* Mapping has entry on pvlist */
    241  1.1  riastrad #define PTE_X		PTE_AVL3	/* Executable */
    242  1.1  riastrad 
    243  1.1  riastrad /* XXX To be deleted. */
    244  1.1  riastrad #define PG_W		PTE_WIRED
    245  1.1  riastrad #define PG_PVLIST	PTE_PVLIST
    246  1.1  riastrad #define PG_X		PTE_X
    247  1.1  riastrad 
    248  1.1  riastrad #define	_MACHINE_PMAP_PRIVATE_H_X86
    249  1.1  riastrad #include <x86/pmap_private.h>
    250  1.1  riastrad #undef	_MACHINE_PMAP_PRIVATE_H_X86
    251  1.1  riastrad 
    252  1.1  riastrad #ifndef XENPV
    253  1.3  riastrad 
    254  1.1  riastrad #define pmap_pa2pte(a)			(a)
    255  1.1  riastrad #define pmap_pte2pa(a)			((a) & PTE_FRAME)
    256  1.1  riastrad #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    257  1.1  riastrad #define pmap_pte_flush()		/* nothing */
    258  1.1  riastrad 
    259  1.1  riastrad #ifdef PAE
    260  1.1  riastrad #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    261  1.1  riastrad #define pmap_pte_testset(p, n)		\
    262  1.1  riastrad     atomic_swap_64((volatile uint64_t *)p, n)
    263  1.1  riastrad #define pmap_pte_setbits(p, b)		\
    264  1.1  riastrad     atomic_or_64((volatile uint64_t *)p, b)
    265  1.1  riastrad #define pmap_pte_clearbits(p, b)	\
    266  1.1  riastrad     atomic_and_64((volatile uint64_t *)p, ~(b))
    267  1.1  riastrad #else /* PAE */
    268  1.1  riastrad #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    269  1.1  riastrad #define pmap_pte_testset(p, n)		\
    270  1.1  riastrad     atomic_swap_ulong((volatile unsigned long *)p, n)
    271  1.1  riastrad #define pmap_pte_setbits(p, b)		\
    272  1.1  riastrad     atomic_or_ulong((volatile unsigned long *)p, b)
    273  1.1  riastrad #define pmap_pte_clearbits(p, b)	\
    274  1.1  riastrad     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    275  1.1  riastrad #endif /* PAE */
    276  1.1  riastrad 
    277  1.1  riastrad #else /* XENPV */
    278  1.3  riastrad 
    279  1.1  riastrad extern kmutex_t pte_lock;
    280  1.1  riastrad 
    281  1.1  riastrad static __inline pt_entry_t
    282  1.1  riastrad pmap_pa2pte(paddr_t pa)
    283  1.1  riastrad {
    284  1.1  riastrad 	return (pt_entry_t)xpmap_ptom_masked(pa);
    285  1.1  riastrad }
    286  1.1  riastrad 
    287  1.1  riastrad static __inline paddr_t
    288  1.1  riastrad pmap_pte2pa(pt_entry_t pte)
    289  1.1  riastrad {
    290  1.1  riastrad 	return xpmap_mtop_masked(pte & PTE_FRAME);
    291  1.1  riastrad }
    292  1.3  riastrad 
    293  1.1  riastrad static __inline void
    294  1.1  riastrad pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    295  1.1  riastrad {
    296  1.1  riastrad 	int s = splvm();
    297  1.1  riastrad 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    298  1.1  riastrad 	splx(s);
    299  1.1  riastrad }
    300  1.1  riastrad 
    301  1.1  riastrad static __inline pt_entry_t
    302  1.1  riastrad pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    303  1.1  riastrad {
    304  1.1  riastrad 	pt_entry_t opte;
    305  1.1  riastrad 
    306  1.1  riastrad 	mutex_enter(&pte_lock);
    307  1.1  riastrad 	opte = *ptep;
    308  1.1  riastrad 	if (opte == o) {
    309  1.1  riastrad 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    310  1.1  riastrad 		xpq_flush_queue();
    311  1.1  riastrad 	}
    312  1.1  riastrad 	mutex_exit(&pte_lock);
    313  1.1  riastrad 	return opte;
    314  1.1  riastrad }
    315  1.1  riastrad 
    316  1.1  riastrad static __inline pt_entry_t
    317  1.1  riastrad pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    318  1.1  riastrad {
    319  1.1  riastrad 	pt_entry_t opte;
    320  1.1  riastrad 
    321  1.1  riastrad 	mutex_enter(&pte_lock);
    322  1.1  riastrad 	opte = *pte;
    323  1.3  riastrad 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), npte);
    324  1.1  riastrad 	xpq_flush_queue();
    325  1.1  riastrad 	mutex_exit(&pte_lock);
    326  1.1  riastrad 	return opte;
    327  1.1  riastrad }
    328  1.1  riastrad 
    329  1.1  riastrad static __inline void
    330  1.1  riastrad pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    331  1.1  riastrad {
    332  1.1  riastrad 	mutex_enter(&pte_lock);
    333  1.1  riastrad 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    334  1.1  riastrad 	xpq_flush_queue();
    335  1.1  riastrad 	mutex_exit(&pte_lock);
    336  1.1  riastrad }
    337  1.1  riastrad 
    338  1.1  riastrad static __inline void
    339  1.1  riastrad pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    340  1.3  riastrad {
    341  1.1  riastrad 	mutex_enter(&pte_lock);
    342  1.1  riastrad 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    343  1.1  riastrad 	    (*pte) & ~bits);
    344  1.1  riastrad 	xpq_flush_queue();
    345  1.1  riastrad 	mutex_exit(&pte_lock);
    346  1.1  riastrad }
    347  1.1  riastrad 
    348  1.1  riastrad static __inline void
    349  1.1  riastrad pmap_pte_flush(void)
    350  1.1  riastrad {
    351  1.1  riastrad 	int s = splvm();
    352  1.1  riastrad 	xpq_flush_queue();
    353  1.1  riastrad 	splx(s);
    354  1.1  riastrad }
    355  1.1  riastrad 
    356  1.1  riastrad #endif
    357  1.1  riastrad 
    358  1.1  riastrad struct vm_map;
    359  1.1  riastrad struct trapframe;
    360  1.1  riastrad struct pcb;
    361  1.1  riastrad 
    362  1.1  riastrad int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    363  1.1  riastrad 
    364  1.1  riastrad #endif	/* _I386_PMAP_H_ */
    365