Home | History | Annotate | Line # | Download | only in fpe
      1 /*	$NetBSD: fpu_mul.c,v 1.9 2016/12/06 06:41:14 isaki Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * Perform an FPU multiply (return x * y).
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: fpu_mul.c,v 1.9 2016/12/06 06:41:14 isaki Exp $");
     49 
     50 #include <sys/types.h>
     51 
     52 #include <machine/reg.h>
     53 
     54 #include "fpu_arith.h"
     55 #include "fpu_emulate.h"
     56 
     57 /*
     58  * The multiplication algorithm for normal numbers is as follows:
     59  *
     60  * The fraction of the product is built in the usual stepwise fashion.
     61  * Each step consists of shifting the accumulator right one bit
     62  * (maintaining any guard bits) and, if the next bit in y is set,
     63  * adding the multiplicand (x) to the accumulator.  Then, in any case,
     64  * we advance one bit leftward in y.  Algorithmically:
     65  *
     66  *	A = 0;
     67  *	for (bit = 0; bit < FP_NMANT; bit++) {
     68  *		sticky |= A & 1, A >>= 1;
     69  *		if (Y & (1 << bit))
     70  *			A += X;
     71  *	}
     72  *
     73  * (X and Y here represent the mantissas of x and y respectively.)
     74  * The resultant accumulator (A) is the product's mantissa.  It may
     75  * be as large as 11.11111... in binary and hence may need to be
     76  * shifted right, but at most one bit.
     77  *
     78  * Since we do not have efficient multiword arithmetic, we code the
     79  * accumulator as four separate words, just like any other mantissa.
     80  *
     81  * In the algorithm above, the bits in y are inspected one at a time.
     82  * We will pick them up 32 at a time and then deal with those 32, one
     83  * at a time.  Note, however, that we know several things about y:
     84  *
     85  *    - the guard and round bits at the bottom are sure to be zero;
     86  *
     87  *    - often many low bits are zero (y is often from a single or double
     88  *	precision source);
     89  *
     90  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
     91  *
     92  * We can also test for 32-zero-bits swiftly.  In this case, the center
     93  * part of the loop---setting sticky, shifting A, and not adding---will
     94  * run 32 times without adding X to A.  We can do a 32-bit shift faster
     95  * by simply moving words.  Since zeros are common, we optimize this case.
     96  * Furthermore, since A is initially zero, we can omit the shift as well
     97  * until we reach a nonzero word.
     98  */
     99 struct fpn *
    100 fpu_mul(struct fpemu *fe)
    101 {
    102 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    103 	uint32_t a2, a1, a0, x2, x1, x0, bit, m;
    104 	int sticky;
    105 	FPU_DECL_CARRY
    106 
    107 	/*
    108 	 * Put the `heavier' operand on the right (see fpu_emu.h).
    109 	 * Then we will have one of the following cases, taken in the
    110 	 * following order:
    111 	 *
    112 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
    113 	 *	The result is y.
    114 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
    115 	 *    case was taken care of earlier).
    116 	 *	If x = 0, the result is NaN.  Otherwise the result
    117 	 *	is y, with its sign reversed if x is negative.
    118 	 *  - x = 0.  Implied: y is 0 or number.
    119 	 *	The result is 0 (with XORed sign as usual).
    120 	 *  - other.  Implied: both x and y are numbers.
    121 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
    122 	 */
    123 	ORDER(x, y);
    124 	if (ISNAN(y)) {
    125 		return (y);
    126 	}
    127 	if (ISINF(y)) {
    128 		if (ISZERO(x))
    129 			return (fpu_newnan(fe));
    130 		y->fp_sign ^= x->fp_sign;
    131 		return (y);
    132 	}
    133 	if (ISZERO(x)) {
    134 		x->fp_sign ^= y->fp_sign;
    135 		return (x);
    136 	}
    137 
    138 	/*
    139 	 * Setup.  In the code below, the mask `m' will hold the current
    140 	 * mantissa byte from y.  The variable `bit' denotes the bit
    141 	 * within m.  We also define some macros to deal with everything.
    142 	 */
    143 	x2 = x->fp_mant[2];
    144 	x1 = x->fp_mant[1];
    145 	x0 = x->fp_mant[0];
    146 	sticky = a2 = a1 = a0 = 0;
    147 
    148 #define	ADD	/* A += X */ \
    149 	FPU_ADDS(a2, a2, x2); \
    150 	FPU_ADDCS(a1, a1, x1); \
    151 	FPU_ADDC(a0, a0, x0)
    152 
    153 #define	SHR1	/* A >>= 1, with sticky */ \
    154 	sticky |= a2 & 1, \
    155 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
    156 
    157 #define	SHR32	/* A >>= 32, with sticky */ \
    158 	sticky |= a2, a2 = a1, a1 = a0, a0 = 0
    159 
    160 #define	STEP	/* each 1-bit step of the multiplication */ \
    161 	SHR1; if (bit & m) { ADD; }; bit <<= 1
    162 
    163 	/*
    164 	 * We are ready to begin.  The multiply loop runs once for each
    165 	 * of the four 32-bit words.  Some words, however, are special.
    166 	 * As noted above, the low order bits of Y are often zero.  Even
    167 	 * if not, the first loop can certainly skip the guard bits.
    168 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
    169 	 * so we stop the loop when we move past that bit.
    170 	 */
    171 	if ((m = y->fp_mant[2]) == 0) {
    172 		/* SHR32; */			/* unneeded since A==0 */
    173 	} else {
    174 		bit = 1 << FP_NG;
    175 		do {
    176 			STEP;
    177 		} while (bit != 0);
    178 	}
    179 	if ((m = y->fp_mant[1]) == 0) {
    180 		SHR32;
    181 	} else {
    182 		bit = 1;
    183 		do {
    184 			STEP;
    185 		} while (bit != 0);
    186 	}
    187 	m = y->fp_mant[0];		/* definitely != 0 */
    188 	bit = 1;
    189 	do {
    190 		STEP;
    191 	} while (bit <= m);
    192 
    193 	/*
    194 	 * Done with mantissa calculation.  Get exponent and handle
    195 	 * 11.111...1 case, then put result in place.  We reuse x since
    196 	 * it already has the right class (FP_NUM).
    197 	 */
    198 	m = x->fp_exp + y->fp_exp;
    199 	if (a0 >= FP_2) {
    200 		SHR1;
    201 		m++;
    202 	}
    203 	x->fp_sign ^= y->fp_sign;
    204 	x->fp_exp = m;
    205 	x->fp_sticky = sticky;
    206 	x->fp_mant[2] = a2;
    207 	x->fp_mant[1] = a1;
    208 	x->fp_mant[0] = a0;
    209 	return (x);
    210 }
    211