Home | History | Annotate | Line # | Download | only in fpe
fpu_mul.c revision 1.1
      1 /*	$NetBSD: fpu_mul.c,v 1.1 1995/11/03 04:47:16 briggs Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * Perform an FPU multiply (return x * y).
     49  */
     50 
     51 #include <sys/types.h>
     52 
     53 #include <machine/reg.h>
     54 
     55 #include "fpu_arith.h"
     56 #include "fpu_emulate.h"
     57 
     58 /*
     59  * The multiplication algorithm for normal numbers is as follows:
     60  *
     61  * The fraction of the product is built in the usual stepwise fashion.
     62  * Each step consists of shifting the accumulator right one bit
     63  * (maintaining any guard bits) and, if the next bit in y is set,
     64  * adding the multiplicand (x) to the accumulator.  Then, in any case,
     65  * we advance one bit leftward in y.  Algorithmically:
     66  *
     67  *	A = 0;
     68  *	for (bit = 0; bit < FP_NMANT; bit++) {
     69  *		sticky |= A & 1, A >>= 1;
     70  *		if (Y & (1 << bit))
     71  *			A += X;
     72  *	}
     73  *
     74  * (X and Y here represent the mantissas of x and y respectively.)
     75  * The resultant accumulator (A) is the product's mantissa.  It may
     76  * be as large as 11.11111... in binary and hence may need to be
     77  * shifted right, but at most one bit.
     78  *
     79  * Since we do not have efficient multiword arithmetic, we code the
     80  * accumulator as four separate words, just like any other mantissa.
     81  * We use local `register' variables in the hope that this is faster
     82  * than memory.  We keep x->fp_mant in locals for the same reason.
     83  *
     84  * In the algorithm above, the bits in y are inspected one at a time.
     85  * We will pick them up 32 at a time and then deal with those 32, one
     86  * at a time.  Note, however, that we know several things about y:
     87  *
     88  *    - the guard and round bits at the bottom are sure to be zero;
     89  *
     90  *    - often many low bits are zero (y is often from a single or double
     91  *	precision source);
     92  *
     93  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
     94  *
     95  * We can also test for 32-zero-bits swiftly.  In this case, the center
     96  * part of the loop---setting sticky, shifting A, and not adding---will
     97  * run 32 times without adding X to A.  We can do a 32-bit shift faster
     98  * by simply moving words.  Since zeros are common, we optimize this case.
     99  * Furthermore, since A is initially zero, we can omit the shift as well
    100  * until we reach a nonzero word.
    101  */
    102 struct fpn *
    103 fpu_mul(fe)
    104 	register struct fpemu *fe;
    105 {
    106 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    107 	register u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
    108 	register int sticky;
    109 	FPU_DECL_CARRY
    110 
    111 	/*
    112 	 * Put the `heavier' operand on the right (see fpu_emu.h).
    113 	 * Then we will have one of the following cases, taken in the
    114 	 * following order:
    115 	 *
    116 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
    117 	 *	The result is y.
    118 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
    119 	 *    case was taken care of earlier).
    120 	 *	If x = 0, the result is NaN.  Otherwise the result
    121 	 *	is y, with its sign reversed if x is negative.
    122 	 *  - x = 0.  Implied: y is 0 or number.
    123 	 *	The result is 0 (with XORed sign as usual).
    124 	 *  - other.  Implied: both x and y are numbers.
    125 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
    126 	 */
    127 	ORDER(x, y);
    128 	if (ISNAN(y)) {
    129 		y->fp_sign ^= x->fp_sign;
    130 		return (y);
    131 	}
    132 	if (ISINF(y)) {
    133 		if (ISZERO(x))
    134 			return (fpu_newnan(fe));
    135 		y->fp_sign ^= x->fp_sign;
    136 		return (y);
    137 	}
    138 	if (ISZERO(x)) {
    139 		x->fp_sign ^= y->fp_sign;
    140 		return (x);
    141 	}
    142 
    143 	/*
    144 	 * Setup.  In the code below, the mask `m' will hold the current
    145 	 * mantissa byte from y.  The variable `bit' denotes the bit
    146 	 * within m.  We also define some macros to deal with everything.
    147 	 */
    148 	x3 = x->fp_mant[3];
    149 	x2 = x->fp_mant[2];
    150 	x1 = x->fp_mant[1];
    151 	x0 = x->fp_mant[0];
    152 	sticky = a3 = a2 = a1 = a0 = 0;
    153 
    154 #define	ADD	/* A += X */ \
    155 	FPU_ADDS(a3, a3, x3); \
    156 	FPU_ADDCS(a2, a2, x2); \
    157 	FPU_ADDCS(a1, a1, x1); \
    158 	FPU_ADDC(a0, a0, x0)
    159 
    160 #define	SHR1	/* A >>= 1, with sticky */ \
    161 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
    162 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
    163 
    164 #define	SHR32	/* A >>= 32, with sticky */ \
    165 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
    166 
    167 #define	STEP	/* each 1-bit step of the multiplication */ \
    168 	SHR1; if (bit & m) { ADD; }; bit <<= 1
    169 
    170 	/*
    171 	 * We are ready to begin.  The multiply loop runs once for each
    172 	 * of the four 32-bit words.  Some words, however, are special.
    173 	 * As noted above, the low order bits of Y are often zero.  Even
    174 	 * if not, the first loop can certainly skip the guard bits.
    175 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
    176 	 * so we stop the loop when we move past that bit.
    177 	 */
    178 	if ((m = y->fp_mant[3]) == 0) {
    179 		/* SHR32; */			/* unneeded since A==0 */
    180 	} else {
    181 		bit = 1 << FP_NG;
    182 		do {
    183 			STEP;
    184 		} while (bit != 0);
    185 	}
    186 	if ((m = y->fp_mant[2]) == 0) {
    187 		SHR32;
    188 	} else {
    189 		bit = 1;
    190 		do {
    191 			STEP;
    192 		} while (bit != 0);
    193 	}
    194 	if ((m = y->fp_mant[1]) == 0) {
    195 		SHR32;
    196 	} else {
    197 		bit = 1;
    198 		do {
    199 			STEP;
    200 		} while (bit != 0);
    201 	}
    202 	m = y->fp_mant[0];		/* definitely != 0 */
    203 	bit = 1;
    204 	do {
    205 		STEP;
    206 	} while (bit <= m);
    207 
    208 	/*
    209 	 * Done with mantissa calculation.  Get exponent and handle
    210 	 * 11.111...1 case, then put result in place.  We reuse x since
    211 	 * it already has the right class (FP_NUM).
    212 	 */
    213 	m = x->fp_exp + y->fp_exp;
    214 	if (a0 >= FP_2) {
    215 		SHR1;
    216 		m++;
    217 	}
    218 	x->fp_sign ^= y->fp_sign;
    219 	x->fp_exp = m;
    220 	x->fp_sticky = sticky;
    221 	x->fp_mant[3] = a3;
    222 	x->fp_mant[2] = a2;
    223 	x->fp_mant[1] = a1;
    224 	x->fp_mant[0] = a0;
    225 	return (x);
    226 }
    227