if_aumac.c revision 1.12 1 /* $NetBSD: if_aumac.c,v 1.12 2004/10/30 18:08:34 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for Alchemy Semiconductor Au1x00 Ethernet Media
40 * Access Controller.
41 *
42 * TODO:
43 *
44 * Better Rx buffer management; we want to get new Rx buffers
45 * to the chip more quickly than we currently do.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_aumac.c,v 1.12 2004/10/30 18:08:34 thorpej Exp $");
50
51 #include "bpfilter.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #include <sys/device.h>
63 #include <sys/queue.h>
64
65 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <mips/alchemy/include/aureg.h>
84 #include <mips/alchemy/include/auvar.h>
85 #include <mips/alchemy/include/aubusvar.h>
86 #include <mips/alchemy/dev/if_aumacreg.h>
87
88 /*
89 * The Au1X00 MAC has 4 transmit and receive descriptors. Each buffer
90 * must consist of a single DMA segment, and must be aligned to a 2K
91 * boundary. Therefore, this driver does not perform DMA directly
92 * to/from mbufs. Instead, we copy the data to/from buffers allocated
93 * at device attach time.
94 *
95 * We also skip the bus_dma dance. The MAC is built in to the CPU, so
96 * there's little point in not making assumptions based on the CPU type.
97 * We also program the Au1X00 cache to be DMA coherent, so the buffers
98 * are accessed via KSEG0 addresses.
99 */
100 #define AUMAC_NTXDESC 4
101 #define AUMAC_NTXDESC_MASK (AUMAC_NTXDESC - 1)
102
103 #define AUMAC_NRXDESC 4
104 #define AUMAC_NRXDESC_MASK (AUMAC_NRXDESC - 1)
105
106 #define AUMAC_NEXTTX(x) (((x) + 1) & AUMAC_NTXDESC_MASK)
107 #define AUMAC_NEXTRX(x) (((x) + 1) & AUMAC_NRXDESC_MASK)
108
109 #define AUMAC_TXBUF_OFFSET 0
110 #define AUMAC_RXBUF_OFFSET (MAC_BUFLEN * AUMAC_NTXDESC)
111 #define AUMAC_BUFSIZE (MAC_BUFLEN * (AUMAC_NTXDESC + AUMAC_NRXDESC))
112
113 struct aumac_buf {
114 caddr_t buf_vaddr; /* virtual address of buffer */
115 bus_addr_t buf_paddr; /* DMA address of buffer */
116 };
117
118 /*
119 * Software state per device.
120 */
121 struct aumac_softc {
122 struct device sc_dev; /* generic device information */
123 bus_space_tag_t sc_st; /* bus space tag */
124 bus_space_handle_t sc_mac_sh; /* MAC space handle */
125 bus_space_handle_t sc_macen_sh; /* MAC enable space handle */
126 bus_space_handle_t sc_dma_sh; /* DMA space handle */
127 struct ethercom sc_ethercom; /* Ethernet common data */
128 void *sc_sdhook; /* shutdown hook */
129
130 void *sc_ih; /* interrupt cookie */
131
132 struct mii_data sc_mii; /* MII/media information */
133
134 struct callout sc_tick_ch; /* tick callout */
135
136 /* Transmit and receive buffers */
137 struct aumac_buf sc_txbufs[AUMAC_NTXDESC];
138 struct aumac_buf sc_rxbufs[AUMAC_NRXDESC];
139 caddr_t sc_bufaddr;
140
141 int sc_txfree; /* number of free Tx descriptors */
142 int sc_txnext; /* next Tx descriptor to use */
143 int sc_txdirty; /* first dirty Tx descriptor */
144
145 int sc_rxptr; /* next ready Rx descriptor */
146
147 #ifdef AUMAC_EVENT_COUNTERS
148 struct evcnt sc_ev_txstall; /* Tx stalled */
149 struct evcnt sc_ev_rxstall; /* Rx stalled */
150 struct evcnt sc_ev_txintr; /* Tx interrupts */
151 struct evcnt sc_ev_rxintr; /* Rx interrupts */
152 #endif
153
154 uint32_t sc_control; /* MAC_CONTROL contents */
155 uint32_t sc_flowctrl; /* MAC_FLOWCTRL contents */
156 };
157
158 #ifdef AUMAC_EVENT_COUNTERS
159 #define AUMAC_EVCNT_INCR(ev) (ev)->ev_count++
160 #else
161 #define AUMAC_EVCNT_INCR(ev) /* nothing */
162 #endif
163
164 #define AUMAC_INIT_RXDESC(sc, x) \
165 do { \
166 bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \
167 MACDMA_RX_STAT((x)), 0); \
168 bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \
169 MACDMA_RX_ADDR((x)), \
170 (sc)->sc_rxbufs[(x)].buf_paddr | RX_ADDR_EN); \
171 } while (/*CONSTCOND*/0)
172
173 static void aumac_start(struct ifnet *);
174 static void aumac_watchdog(struct ifnet *);
175 static int aumac_ioctl(struct ifnet *, u_long, caddr_t);
176 static int aumac_init(struct ifnet *);
177 static void aumac_stop(struct ifnet *, int);
178
179 static void aumac_shutdown(void *);
180
181 static void aumac_tick(void *);
182
183 static void aumac_set_filter(struct aumac_softc *);
184
185 static void aumac_powerup(struct aumac_softc *);
186 static void aumac_powerdown(struct aumac_softc *);
187
188 static int aumac_intr(void *);
189 static void aumac_txintr(struct aumac_softc *);
190 static void aumac_rxintr(struct aumac_softc *);
191
192 static int aumac_mii_readreg(struct device *, int, int);
193 static void aumac_mii_writereg(struct device *, int, int, int);
194 static void aumac_mii_statchg(struct device *);
195 static int aumac_mii_wait(struct aumac_softc *, const char *);
196
197 static int aumac_mediachange(struct ifnet *);
198 static void aumac_mediastatus(struct ifnet *, struct ifmediareq *);
199
200 static int aumac_match(struct device *, struct cfdata *, void *);
201 static void aumac_attach(struct device *, struct device *, void *);
202
203 int aumac_copy_small = 0;
204
205 CFATTACH_DECL(aumac, sizeof(struct aumac_softc),
206 aumac_match, aumac_attach, NULL, NULL);
207
208 static int
209 aumac_match(struct device *parent, struct cfdata *cf, void *aux)
210 {
211 struct aubus_attach_args *aa = aux;
212
213 if (strcmp(aa->aa_name, cf->cf_name) == 0)
214 return (1);
215
216 return (0);
217 }
218
219 static void
220 aumac_attach(struct device *parent, struct device *self, void *aux)
221 {
222 uint8_t enaddr[ETHER_ADDR_LEN];
223 struct aumac_softc *sc = (void *) self;
224 struct aubus_attach_args *aa = aux;
225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 struct pglist pglist;
227 paddr_t bufaddr;
228 caddr_t vbufaddr;
229 int i;
230
231 callout_init(&sc->sc_tick_ch);
232
233 printf(": Au1X00 10/100 Ethernet\n");
234
235 sc->sc_st = aa->aa_st;
236
237 /* Get the MAC address. */
238 if (prop_get(dev_propdb, &sc->sc_dev, "mac-addr", enaddr,
239 sizeof(enaddr), NULL) != sizeof(enaddr)) {
240 printf("%s: unable to get mac-addr property\n",
241 sc->sc_dev.dv_xname);
242 return;
243 }
244
245 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
246 ether_sprintf(enaddr));
247
248 /* Map the device. */
249 if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_BASE],
250 MACx_SIZE, 0, &sc->sc_mac_sh) != 0) {
251 printf("%s: unable to map MAC registers\n",
252 sc->sc_dev.dv_xname);
253 return;
254 }
255 if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_ENABLE],
256 MACENx_SIZE, 0, &sc->sc_macen_sh) != 0) {
257 printf("%s: unable to map MACEN registers\n",
258 sc->sc_dev.dv_xname);
259 return;
260 }
261 if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_DMA_BASE],
262 MACx_DMA_SIZE, 0, &sc->sc_dma_sh) != 0) {
263 printf("%s: unable to map MACDMA registers\n",
264 sc->sc_dev.dv_xname);
265 return;
266 }
267
268 /* Make sure the MAC is powered off. */
269 aumac_powerdown(sc);
270
271 /* Hook up the interrupt handler. */
272 sc->sc_ih = au_intr_establish(aa->aa_irq[0], 1, IPL_NET, IST_LEVEL,
273 aumac_intr, sc);
274 if (sc->sc_ih == NULL) {
275 printf("%s: unable to register interrupt handler\n",
276 sc->sc_dev.dv_xname);
277 return;
278 }
279
280 /*
281 * Allocate space for the transmit and receive buffers.
282 */
283 if (uvm_pglistalloc(AUMAC_BUFSIZE, 0, ctob(physmem), PAGE_SIZE, 0,
284 &pglist, 1, 0))
285 return;
286
287 bufaddr = TAILQ_FIRST(&pglist)->phys_addr;
288 vbufaddr = (void *)MIPS_PHYS_TO_KSEG0(bufaddr);
289
290 for (i = 0; i < AUMAC_NTXDESC; i++) {
291 int offset = AUMAC_TXBUF_OFFSET + (i * MAC_BUFLEN);
292
293 sc->sc_txbufs[i].buf_vaddr = vbufaddr + offset;
294 sc->sc_txbufs[i].buf_paddr = bufaddr + offset;
295 }
296
297 for (i = 0; i < AUMAC_NRXDESC; i++) {
298 int offset = AUMAC_RXBUF_OFFSET + (i * MAC_BUFLEN);
299
300 sc->sc_rxbufs[i].buf_vaddr = vbufaddr + offset;
301 sc->sc_rxbufs[i].buf_paddr = bufaddr + offset;
302 }
303
304 /*
305 * Power up the MAC before accessing any MAC registers (including
306 * MII configuration.
307 */
308 aumac_powerup(sc);
309
310 /*
311 * Initialize the media structures and probe the MII.
312 */
313 sc->sc_mii.mii_ifp = ifp;
314 sc->sc_mii.mii_readreg = aumac_mii_readreg;
315 sc->sc_mii.mii_writereg = aumac_mii_writereg;
316 sc->sc_mii.mii_statchg = aumac_mii_statchg;
317 ifmedia_init(&sc->sc_mii.mii_media, 0, aumac_mediachange,
318 aumac_mediastatus);
319
320 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
321 MII_OFFSET_ANY, 0);
322
323 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
324 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
325 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
326 } else
327 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
328
329 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
330 ifp->if_softc = sc;
331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 ifp->if_ioctl = aumac_ioctl;
333 ifp->if_start = aumac_start;
334 ifp->if_watchdog = aumac_watchdog;
335 ifp->if_init = aumac_init;
336 ifp->if_stop = aumac_stop;
337 IFQ_SET_READY(&ifp->if_snd);
338
339 /* Attach the interface. */
340 if_attach(ifp);
341 ether_ifattach(ifp, enaddr);
342
343 #ifdef AUMAC_EVENT_COUNTERS
344 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
345 NULL, sc->sc_dev.dv_xname, "txstall");
346 evcnt_attach_dynamic(&sc->sc_ev_rxstall, EVCNT_TYPE_MISC,
347 NULL, sc->sc_dev.dv_xname, "rxstall");
348 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_MISC,
349 NULL, sc->sc_dev.dv_xname, "txintr");
350 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_MISC,
351 NULL, sc->sc_dev.dv_xname, "rxintr");
352 #endif
353
354 /* Make sure the interface is shutdown during reboot. */
355 sc->sc_sdhook = shutdownhook_establish(aumac_shutdown, sc);
356 if (sc->sc_sdhook == NULL)
357 printf("%s: WARNING: unable to establish shutdown hook\n",
358 sc->sc_dev.dv_xname);
359 return;
360 }
361
362 /*
363 * aumac_shutdown:
364 *
365 * Make sure the interface is stopped at reboot time.
366 */
367 static void
368 aumac_shutdown(void *arg)
369 {
370 struct aumac_softc *sc = arg;
371
372 aumac_stop(&sc->sc_ethercom.ec_if, 1);
373
374 /*
375 * XXX aumac_stop leaves device powered up at the moment
376 * XXX but this still isn't enough to keep yamon happy... :-(
377 */
378 bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, 0);
379 }
380
381 /*
382 * aumac_start: [ifnet interface function]
383 *
384 * Start packet transmission on the interface.
385 */
386 static void
387 aumac_start(struct ifnet *ifp)
388 {
389 struct aumac_softc *sc = ifp->if_softc;
390 struct mbuf *m;
391 int nexttx;
392
393 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
394 return;
395
396 /*
397 * Loop through the send queue, setting up transmit descriptors
398 * unitl we drain the queue, or use up all available transmit
399 * descriptors.
400 */
401 for (;;) {
402 /* Grab a packet off the queue. */
403 IFQ_POLL(&ifp->if_snd, m);
404 if (m == NULL)
405 return;
406
407 /* Get a spare descriptor. */
408 if (sc->sc_txfree == 0) {
409 /* No more slots left; notify upper layer. */
410 ifp->if_flags |= IFF_OACTIVE;
411 AUMAC_EVCNT_INCR(&sc->sc_ev_txstall);
412 return;
413 }
414 nexttx = sc->sc_txnext;
415
416 IFQ_DEQUEUE(&ifp->if_snd, m);
417
418 /*
419 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
420 */
421
422 m_copydata(m, 0, m->m_pkthdr.len,
423 sc->sc_txbufs[nexttx].buf_vaddr);
424
425 /* Zero out the remainder of any short packets. */
426 if (m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
427 memset(sc->sc_txbufs[nexttx].buf_vaddr +
428 m->m_pkthdr.len, 0,
429 ETHER_MIN_LEN - ETHER_CRC_LEN - m->m_pkthdr.len);
430
431 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
432 MACDMA_TX_STAT(nexttx), 0);
433 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
434 MACDMA_TX_LEN(nexttx),
435 m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN) ?
436 ETHER_MIN_LEN - ETHER_CRC_LEN : m->m_pkthdr.len);
437 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
438 MACDMA_TX_ADDR(nexttx),
439 sc->sc_txbufs[nexttx].buf_paddr | TX_ADDR_EN);
440 /* XXX - needed?? we should be coherent */
441 bus_space_barrier(sc->sc_st, sc->sc_dma_sh, 0 /* XXX */,
442 0 /* XXX */, BUS_SPACE_BARRIER_WRITE);
443
444 /* Advance the Tx pointer. */
445 sc->sc_txfree--;
446 sc->sc_txnext = AUMAC_NEXTTX(nexttx);
447
448 #if NBPFILTER > 0
449 /* Pass the packet to any BPF listeners. */
450 if (ifp->if_bpf)
451 bpf_mtap(ifp->if_bpf, m);
452 #endif /* NBPFILTER */
453
454 m_freem(m);
455
456 /* Set a watchdog timer in case the chip flakes out. */
457 ifp->if_timer = 5;
458 }
459 /* NOTREACHED */
460 }
461
462 /*
463 * aumac_watchdog: [ifnet interface function]
464 *
465 * Watchdog timer handler.
466 */
467 static void
468 aumac_watchdog(struct ifnet *ifp)
469 {
470 struct aumac_softc *sc = ifp->if_softc;
471
472 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
473 (void) aumac_init(ifp);
474
475 /* Try to get more packets going. */
476 aumac_start(ifp);
477 }
478
479 /*
480 * aumac_ioctl: [ifnet interface function]
481 *
482 * Handle control requests from the operator.
483 */
484 static int
485 aumac_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
486 {
487 struct aumac_softc *sc = ifp->if_softc;
488 struct ifreq *ifr = (struct ifreq *) data;
489 int s, error;
490
491 s = splnet();
492
493 switch (cmd) {
494 case SIOCSIFMEDIA:
495 case SIOCGIFMEDIA:
496 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
497 break;
498
499 default:
500 error = ether_ioctl(ifp, cmd, data);
501 if (error == ENETRESET) {
502 /*
503 * Multicast list has changed; set the hardware filter
504 * accordingly.
505 */
506 if (ifp->if_flags & IFF_RUNNING)
507 aumac_set_filter(sc);
508 }
509 break;
510 }
511
512 /* Try to get more packets going. */
513 aumac_start(ifp);
514
515 splx(s);
516 return (error);
517 }
518
519 /*
520 * aumac_intr:
521 *
522 * Interrupt service routine.
523 */
524 static int
525 aumac_intr(void *arg)
526 {
527 struct aumac_softc *sc = arg;
528
529 /*
530 * There aren't really any interrupt status bits on the
531 * Au1X00 MAC, and each MAC has a dedicated interrupt
532 * in the CPU's built-in interrupt controller. Just
533 * check for new incoming packets, and then Tx completions
534 * (for status updating).
535 */
536 if ((sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
537 return (0);
538
539 aumac_rxintr(sc);
540 aumac_txintr(sc);
541
542 return (1);
543 }
544
545 /*
546 * aumac_txintr:
547 *
548 * Helper; handle transmit interrupts.
549 */
550 static void
551 aumac_txintr(struct aumac_softc *sc)
552 {
553 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
554 uint32_t stat;
555 int i;
556 #ifdef AUMAC_EVENT_COUNTERS
557 int gotone = 0;
558 #endif
559
560 for (i = sc->sc_txdirty; sc->sc_txfree != AUMAC_NTXDESC;
561 i = AUMAC_NEXTTX(i)) {
562 if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
563 MACDMA_TX_ADDR(i)) & TX_ADDR_DN) == 0)
564 break;
565 #ifdef AUMAC_EVENT_COUNTERS
566 gotone = 1;
567 #endif
568
569 /* ACK interrupt. */
570 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
571 MACDMA_TX_ADDR(i), 0);
572
573 stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
574 MACDMA_TX_STAT(i));
575
576 if (stat & TX_STAT_FA) {
577 /* XXX STATS */
578 ifp->if_oerrors++;
579 } else
580 ifp->if_opackets++;
581
582 if (stat & TX_STAT_EC)
583 ifp->if_collisions += 16;
584 else
585 ifp->if_collisions += TX_STAT_CC(stat);
586
587 sc->sc_txfree++;
588 ifp->if_flags &= ~IFF_OACTIVE;
589
590 /* Try to queue more packets. */
591 aumac_start(ifp);
592 }
593
594 if (gotone)
595 AUMAC_EVCNT_INCR(&sc->sc_ev_txintr);
596
597 /* Update the dirty descriptor pointer. */
598 sc->sc_txdirty = i;
599
600 /*
601 * If there are no more pending transmissions, cancel the watchdog
602 * timer.
603 */
604 if (sc->sc_txfree == AUMAC_NTXDESC)
605 ifp->if_timer = 0;
606 }
607
608 /*
609 * aumac_rxintr:
610 *
611 * Helper; handle receive interrupts.
612 */
613 static void
614 aumac_rxintr(struct aumac_softc *sc)
615 {
616 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
617 struct mbuf *m;
618 uint32_t stat;
619 int i, len;
620 #ifdef AUMAC_EVENT_COUNTERS
621 int pkts = 0;
622 #endif
623
624 for (i = sc->sc_rxptr;; i = AUMAC_NEXTRX(i)) {
625 if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
626 MACDMA_RX_ADDR(i)) & RX_ADDR_DN) == 0)
627 break;
628 #ifdef AUMAC_EVENT_COUNTERS
629 pkts++;
630 #endif
631
632 stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
633 MACDMA_RX_STAT(i));
634
635 #define PRINTERR(str) \
636 do { \
637 error++; \
638 printf("%s: %s\n", sc->sc_dev.dv_xname, str); \
639 } while (0)
640
641 if (stat & RX_STAT_ERRS) {
642 int error = 0;
643
644 if (stat & RX_STAT_MI)
645 PRINTERR("missed frame");
646 if (stat & RX_STAT_UC)
647 PRINTERR("unknown control frame");
648 if (stat & RX_STAT_LE)
649 PRINTERR("short frame");
650 if (stat & RX_STAT_CR)
651 PRINTERR("CRC error");
652 if (stat & RX_STAT_ME)
653 PRINTERR("medium error");
654 if (stat & RX_STAT_CS)
655 PRINTERR("late collision");
656 if (stat & RX_STAT_FL)
657 PRINTERR("frame too big");
658 if (stat & RX_STAT_RF)
659 PRINTERR("runt frame (collision)");
660 if (stat & RX_STAT_WT)
661 PRINTERR("watch dog");
662 if (stat & RX_STAT_DB) {
663 if (stat & (RX_STAT_CS | RX_STAT_RF |
664 RX_STAT_CR)) {
665 if (!error)
666 goto pktok;
667 } else
668 PRINTERR("dribbling bit");
669 }
670 #undef PRINTERR
671 ifp->if_ierrors++;
672
673 dropit:
674 /* reuse the current descriptor */
675 AUMAC_INIT_RXDESC(sc, i);
676 continue;
677 }
678 pktok:
679 len = RX_STAT_L(stat);
680
681 /*
682 * The Au1X00 MAC includes the CRC with every packet;
683 * trim it off here.
684 */
685 len -= ETHER_CRC_LEN;
686
687 /*
688 * Truncate the packet if it's too big to fit in
689 * a single mbuf cluster.
690 */
691 if (len > MCLBYTES - 2)
692 len = MCLBYTES - 2;
693
694 MGETHDR(m, M_DONTWAIT, MT_DATA);
695 if (m == NULL) {
696 printf("%s: unable to allocate Rx mbuf\n",
697 sc->sc_dev.dv_xname);
698 goto dropit;
699 }
700 if (len > MHLEN - 2) {
701 MCLGET(m, M_DONTWAIT);
702 if ((m->m_flags & M_EXT) == 0) {
703 printf("%s: unable to allocate Rx cluster\n",
704 sc->sc_dev.dv_xname);
705 m_freem(m);
706 goto dropit;
707 }
708 }
709
710 m->m_data += 2; /* align payload */
711 memcpy(mtod(m, caddr_t),
712 sc->sc_rxbufs[i].buf_vaddr, len);
713 AUMAC_INIT_RXDESC(sc, i);
714
715 m->m_pkthdr.rcvif = ifp;
716 m->m_pkthdr.len = m->m_len = len;
717
718 #if NBPFILTER > 0
719 /* Pass this up to any BPF listeners. */
720 if (ifp->if_bpf)
721 bpf_mtap(ifp->if_bpf, m);
722 #endif /* NBPFILTER > 0 */
723
724 /* Pass it on. */
725 (*ifp->if_input)(ifp, m);
726 ifp->if_ipackets++;
727 }
728 if (pkts)
729 AUMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
730 if (pkts == AUMAC_NRXDESC)
731 AUMAC_EVCNT_INCR(&sc->sc_ev_rxstall);
732
733 /* Update the receive pointer. */
734 sc->sc_rxptr = i;
735 }
736
737 /*
738 * aumac_tick:
739 *
740 * One second timer, used to tick the MII.
741 */
742 static void
743 aumac_tick(void *arg)
744 {
745 struct aumac_softc *sc = arg;
746 int s;
747
748 s = splnet();
749 mii_tick(&sc->sc_mii);
750 splx(s);
751
752 callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
753 }
754
755 /*
756 * aumac_init: [ifnet interface function]
757 *
758 * Initialize the interface. Must be called at splnet().
759 */
760 static int
761 aumac_init(struct ifnet *ifp)
762 {
763 struct aumac_softc *sc = ifp->if_softc;
764 int i, error = 0;
765
766 /* Cancel any pending I/O, reset MAC. */
767 aumac_stop(ifp, 0);
768
769 /* Set up the transmit ring. */
770 for (i = 0; i < AUMAC_NTXDESC; i++) {
771 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
772 MACDMA_TX_STAT(i), 0);
773 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
774 MACDMA_TX_LEN(i), 0);
775 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
776 MACDMA_TX_ADDR(i), sc->sc_txbufs[i].buf_paddr);
777 }
778 sc->sc_txfree = AUMAC_NTXDESC;
779 sc->sc_txnext = TX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
780 MACDMA_TX_ADDR(0)));
781 sc->sc_txdirty = sc->sc_txnext;
782
783 /* Set up the receive ring. */
784 for (i = 0; i < AUMAC_NRXDESC; i++)
785 AUMAC_INIT_RXDESC(sc, i);
786 sc->sc_rxptr = RX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
787 MACDMA_RX_ADDR(0)));
788
789 /*
790 * Power up the MAC.
791 */
792 aumac_powerup(sc);
793
794 sc->sc_control |= CONTROL_DO | CONTROL_TE | CONTROL_RE;
795 #if _BYTE_ORDER == _BIG_ENDIAN
796 sc->sc_control |= CONTROL_EM;
797 #endif
798
799 /* Set the media. */
800 aumac_mediachange(ifp);
801
802 /*
803 * Set the receive filter. This will actually start the transmit
804 * and receive processes.
805 */
806 aumac_set_filter(sc);
807
808 /* Start the one second clock. */
809 callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
810
811 /* ...all done! */
812 ifp->if_flags |= IFF_RUNNING;
813 ifp->if_flags &= ~IFF_OACTIVE;
814
815 if (error)
816 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
817 return (error);
818 }
819
820 /*
821 * aumac_stop: [ifnet interface function]
822 *
823 * Stop transmission on the interface.
824 */
825 static void
826 aumac_stop(struct ifnet *ifp, int disable)
827 {
828 struct aumac_softc *sc = ifp->if_softc;
829
830 /* Stop the one-second clock. */
831 callout_stop(&sc->sc_tick_ch);
832
833 /* Down the MII. */
834 mii_down(&sc->sc_mii);
835
836 /* Stop the transmit and receive processes. */
837 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, 0);
838
839 /* Power down/reset the MAC. */
840 aumac_powerdown(sc);
841
842 /* Mark the interface as down and cancel the watchdog timer. */
843 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
844 ifp->if_timer = 0;
845 }
846
847 /*
848 * aumac_powerdown:
849 *
850 * Power down the MAC.
851 */
852 static void
853 aumac_powerdown(struct aumac_softc *sc)
854 {
855
856 /* Disable the MAC clocks, and place the device in reset. */
857 // bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP);
858
859 // delay(10000);
860 }
861
862 /*
863 * aumac_powerup:
864 *
865 * Bring the device out of reset.
866 */
867 static void
868 aumac_powerup(struct aumac_softc *sc)
869 {
870
871 /* Enable clocks to the MAC. */
872 bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP|MACEN_CE);
873
874 /* Enable MAC, coherent transactions, pass only valid frames. */
875 bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0,
876 MACEN_E2|MACEN_E1|MACEN_E0|MACEN_CE);
877
878 delay(20000);
879 }
880
881 /*
882 * aumac_set_filter:
883 *
884 * Set up the receive filter.
885 */
886 static void
887 aumac_set_filter(struct aumac_softc *sc)
888 {
889 struct ethercom *ec = &sc->sc_ethercom;
890 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
891 struct ether_multi *enm;
892 struct ether_multistep step;
893 const uint8_t *enaddr = LLADDR(ifp->if_sadl);
894 uint32_t mchash[2], crc;
895
896 sc->sc_control &= ~(CONTROL_PM | CONTROL_PR);
897
898 /* Stop the receiver. */
899 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
900 sc->sc_control & ~CONTROL_RE);
901
902 if (ifp->if_flags & IFF_PROMISC) {
903 sc->sc_control |= CONTROL_PR;
904 goto allmulti;
905 }
906
907 /* Set the station address. */
908 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRHIGH,
909 enaddr[4] | (enaddr[5] << 8));
910 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRLOW,
911 enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
912 (enaddr[3] << 24));
913
914 sc->sc_control |= CONTROL_HP;
915
916 mchash[0] = mchash[1] = 0;
917
918 /*
919 * Set up the multicast address filter by passing all multicast
920 * addresses through a CRC generator, and then using the high
921 * order 6 bits as an index into the 64-bit multicast hash table.
922 * The high order bits select the word, while the rest of the bits
923 * select the bit within the word.
924 */
925 ETHER_FIRST_MULTI(step, ec, enm);
926 while (enm != NULL) {
927 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
928 /*
929 * We must listen to a range of multicast addresses.
930 * For now, just accept all multicasts, rather than
931 * trying to set only those filter bits needed to match
932 * the range. (At this time, the only use of address
933 * ranges is for IP multicast routing, for which the
934 * range is large enough to require all bits set.)
935 */
936 goto allmulti;
937 }
938
939 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
940
941 /* Just want the 6 most significant bits. */
942 crc >>= 26;
943
944 /* Set the corresponding bit in the filter. */
945 mchash[crc >> 5] |= 1U << (crc & 0x1f);
946
947 ETHER_NEXT_MULTI(step, enm);
948 }
949
950 ifp->if_flags &= ~IFF_ALLMULTI;
951
952 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHHIGH,
953 mchash[1]);
954 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHLOW,
955 mchash[0]);
956
957 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
958 sc->sc_control);
959 return;
960
961 allmulti:
962 sc->sc_control |= CONTROL_PM;
963 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
964 sc->sc_control);
965 }
966
967 /*
968 * aumac_mediastatus: [ifmedia interface function]
969 *
970 * Get the current interface media status.
971 */
972 static void
973 aumac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
974 {
975 struct aumac_softc *sc = ifp->if_softc;
976
977 mii_pollstat(&sc->sc_mii);
978 ifmr->ifm_status = sc->sc_mii.mii_media_status;
979 ifmr->ifm_active = sc->sc_mii.mii_media_active;
980 }
981
982 /*
983 * aumac_mediachange: [ifmedia interface function]
984 *
985 * Set hardware to newly selected media.
986 */
987 static int
988 aumac_mediachange(struct ifnet *ifp)
989 {
990 struct aumac_softc *sc = ifp->if_softc;
991
992 if (ifp->if_flags & IFF_UP)
993 mii_mediachg(&sc->sc_mii);
994 return (0);
995 }
996
997 /*
998 * aumac_mii_wait:
999 *
1000 * Wait for the MII interface to not be busy.
1001 */
1002 static int
1003 aumac_mii_wait(struct aumac_softc *sc, const char *msg)
1004 {
1005 int i;
1006
1007 for (i = 0; i < 10000; i++) {
1008 if ((bus_space_read_4(sc->sc_st, sc->sc_mac_sh,
1009 MAC_MIICTRL) & MIICTRL_MB) == 0)
1010 return (0);
1011 delay(10);
1012 }
1013
1014 printf("%s: MII failed to %s\n", sc->sc_dev.dv_xname, msg);
1015 return (1);
1016 }
1017
1018 /*
1019 * aumac_mii_readreg: [mii interface function]
1020 *
1021 * Read a PHY register on the MII.
1022 */
1023 static int
1024 aumac_mii_readreg(struct device *self, int phy, int reg)
1025 {
1026 struct aumac_softc *sc = (void *) self;
1027
1028 if (aumac_mii_wait(sc, "become ready"))
1029 return (0);
1030
1031 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1032 MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg));
1033
1034 if (aumac_mii_wait(sc, "complete"))
1035 return (0);
1036
1037 return (bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA) &
1038 MIIDATA_MASK);
1039 }
1040
1041 /*
1042 * aumac_mii_writereg: [mii interface function]
1043 *
1044 * Write a PHY register on the MII.
1045 */
1046 static void
1047 aumac_mii_writereg(struct device *self, int phy, int reg, int val)
1048 {
1049 struct aumac_softc *sc = (void *) self;
1050
1051 if (aumac_mii_wait(sc, "become ready"))
1052 return;
1053
1054 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA, val);
1055 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1056 MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg) | MIICTRL_MW);
1057
1058 (void) aumac_mii_wait(sc, "complete");
1059 }
1060
1061 /*
1062 * aumac_mii_statchg: [mii interface function]
1063 *
1064 * Callback from MII layer when media changes.
1065 */
1066 static void
1067 aumac_mii_statchg(struct device *self)
1068 {
1069 struct aumac_softc *sc = (void *) self;
1070
1071 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1072 sc->sc_control |= CONTROL_F;
1073 else
1074 sc->sc_control &= ~CONTROL_F;
1075
1076 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
1077 sc->sc_control);
1078 }
1079