if_aumac.c revision 1.2.6.3 1 /* $NetBSD: if_aumac.c,v 1.2.6.3 2002/10/10 18:34:04 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for Alchemy Semiconductor Au1x00 Ethernet Media
40 * Access Controller.
41 *
42 * TODO:
43 *
44 * Better Rx buffer management; we want to get new Rx buffers
45 * to the chip more quickly than we currently do.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_aumac.c,v 1.2.6.3 2002/10/10 18:34:04 jdolecek Exp $");
50
51 #include "bpfilter.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #include <sys/device.h>
63 #include <sys/queue.h>
64
65 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <mips/alchemy/include/aureg.h>
84 #include <mips/alchemy/include/auvar.h>
85 #include <mips/alchemy/include/aubusvar.h>
86 #include <mips/alchemy/dev/if_aumacreg.h>
87
88 /*
89 * The Au1X00 MAC has 4 transmit and receive descriptors. Each buffer
90 * must consist of a single DMA segment, and must be aligned to a 2K
91 * boundary. Therefore, this driver does not perform DMA directly
92 * to/from mbufs. Instead, we copy the data to/from buffers allocated
93 * at device attach time.
94 *
95 * We also skip the bus_dma dance. The MAC is built in to the CPU, so
96 * there's little point in not making assumptions based on the CPU type.
97 * We also program the Au1X00 cache to be DMA coherent, so the buffers
98 * are accessed via KSEG0 addresses.
99 */
100 #define AUMAC_NTXDESC 4
101 #define AUMAC_NTXDESC_MASK (AUMAC_NTXDESC - 1)
102
103 #define AUMAC_NRXDESC 4
104 #define AUMAC_NRXDESC_MASK (AUMAC_NRXDESC - 1)
105
106 #define AUMAC_NEXTTX(x) (((x) + 1) & AUMAC_NTXDESC_MASK)
107 #define AUMAC_NEXTRX(x) (((x) + 1) & AUMAC_NRXDESC_MASK)
108
109 #define AUMAC_TXBUF_OFFSET 0
110 #define AUMAC_RXBUF_OFFSET (MAC_BUFLEN * AUMAC_NTXDESC)
111 #define AUMAC_BUFSIZE (MAC_BUFLEN * (AUMAC_NTXDESC + AUMAC_NRXDESC))
112
113 struct aumac_buf {
114 caddr_t buf_vaddr; /* virtual address of buffer */
115 bus_addr_t buf_paddr; /* DMA address of buffer */
116 };
117
118 /*
119 * Software state per device.
120 */
121 struct aumac_softc {
122 struct device sc_dev; /* generic device information */
123 bus_space_tag_t sc_st; /* bus space tag */
124 bus_space_handle_t sc_mac_sh; /* MAC space handle */
125 bus_space_handle_t sc_macen_sh; /* MAC enable space handle */
126 bus_space_handle_t sc_dma_sh; /* DMA space handle */
127 struct ethercom sc_ethercom; /* Ethernet common data */
128 void *sc_sdhook; /* shutdown hook */
129
130 void *sc_ih; /* interrupt cookie */
131
132 struct mii_data sc_mii; /* MII/media information */
133
134 struct callout sc_tick_ch; /* tick callout */
135
136 /* Transmit and receive buffers */
137 struct aumac_buf sc_txbufs[AUMAC_NTXDESC];
138 struct aumac_buf sc_rxbufs[AUMAC_NRXDESC];
139 caddr_t sc_bufaddr;
140
141 int sc_txfree; /* number of free Tx descriptors */
142 int sc_txnext; /* next Tx descriptor to use */
143 int sc_txdirty; /* first dirty Tx descriptor */
144
145 int sc_rxptr; /* next ready Rx descriptor */
146
147 #ifdef AUMAC_EVENT_COUNTERS
148 struct evcnt sc_ev_txstall; /* Tx stalled */
149 struct evcnt sc_ev_rxstall; /* Rx stalled */
150 struct evcnt sc_ev_txintr; /* Tx interrupts */
151 struct evcnt sc_ev_rxintr; /* Rx interrupts */
152 #endif
153
154 uint32_t sc_control; /* MAC_CONTROL contents */
155 uint32_t sc_flowctrl; /* MAC_FLOWCTRL contents */
156 };
157
158 #ifdef AUMAC_EVENT_COUNTERS
159 #define AUMAC_EVCNT_INCR(ev) (ev)->ev_count++
160 #endif
161
162 #define AUMAC_INIT_RXDESC(sc, x) \
163 do { \
164 bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \
165 MACDMA_RX_STAT((x)), 0); \
166 bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \
167 MACDMA_RX_ADDR((x)), \
168 (sc)->sc_rxbufs[(x)].buf_paddr | RX_ADDR_EN); \
169 } while (/*CONSTCOND*/0)
170
171 static void aumac_start(struct ifnet *);
172 static void aumac_watchdog(struct ifnet *);
173 static int aumac_ioctl(struct ifnet *, u_long, caddr_t);
174 static int aumac_init(struct ifnet *);
175 static void aumac_stop(struct ifnet *, int);
176
177 static void aumac_shutdown(void *);
178
179 static void aumac_tick(void *);
180
181 static void aumac_set_filter(struct aumac_softc *);
182
183 static void aumac_powerup(struct aumac_softc *);
184 static void aumac_powerdown(struct aumac_softc *);
185
186 static int aumac_intr(void *);
187 static void aumac_txintr(struct aumac_softc *);
188 static void aumac_rxintr(struct aumac_softc *);
189
190 static int aumac_mii_readreg(struct device *, int, int);
191 static void aumac_mii_writereg(struct device *, int, int, int);
192 static void aumac_mii_statchg(struct device *);
193 static int aumac_mii_wait(struct aumac_softc *, const char *);
194
195 static int aumac_mediachange(struct ifnet *);
196 static void aumac_mediastatus(struct ifnet *, struct ifmediareq *);
197
198 static int aumac_match(struct device *, struct cfdata *, void *);
199 static void aumac_attach(struct device *, struct device *, void *);
200
201 int aumac_copy_small = 0;
202
203 CFATTACH_DECL(aumac, sizeof(struct aumac_softc),
204 aumac_match, aumac_attach, NULL, NULL);
205
206 static const struct {
207 bus_addr_t mac_base;
208 bus_addr_t macen_base;
209 bus_addr_t macdma_base;
210 } regmap[] = {
211 { MAC0_BASE, MAC0_ENABLE, MAC0_DMA_BASE },
212 { MAC1_BASE, MAC1_ENABLE, MAC1_DMA_BASE },
213 };
214
215 static int
216 aumac_match(struct device *parent, struct cfdata *cf, void *aux)
217 {
218 struct aubus_attach_args *aa = aux;
219
220 if (strcmp(aa->aa_name, cf->cf_name) == 0)
221 return (1);
222
223 return (0);
224 }
225
226 static void
227 aumac_attach(struct device *parent, struct device *self, void *aux)
228 {
229 char prop_name[sizeof("0xffffffff:mac-addr") + 1];
230 uint8_t enaddr[ETHER_ADDR_LEN];
231 struct aumac_softc *sc = (void *) self;
232 struct aubus_attach_args *aa = aux;
233 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
234 struct pglist pglist;
235 paddr_t bufaddr;
236 caddr_t vbufaddr;
237 int i;
238
239 callout_init(&sc->sc_tick_ch);
240
241 printf(": Au1X00 10/100 Ethernet\n");
242
243 sc->sc_st = aa->aa_st;
244
245 /* Get the MAC address. */
246 snprintf(prop_name, sizeof(prop_name), "%p:mac-addr", self);
247 if (alchemy_info_get(prop_name, enaddr, sizeof(enaddr)) == -1) {
248 printf("%s: unable to determine MAC address\n",
249 sc->sc_dev.dv_xname);
250 return;
251 }
252
253 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
254 ether_sprintf(enaddr));
255
256 /* Map the device. */
257 if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_BASE],
258 MACx_SIZE, 0, &sc->sc_mac_sh) != 0) {
259 printf("%s: unable to map MAC registers\n",
260 sc->sc_dev.dv_xname);
261 return;
262 }
263 if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_ENABLE],
264 MACENx_SIZE, 0, &sc->sc_macen_sh) != 0) {
265 printf("%s: unable to map MACEN registers\n",
266 sc->sc_dev.dv_xname);
267 return;
268 }
269 if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_DMA_BASE],
270 MACx_DMA_SIZE, 0, &sc->sc_dma_sh) != 0) {
271 printf("%s: unable to map MACDMA registers\n",
272 sc->sc_dev.dv_xname);
273 return;
274 }
275
276 /* Make sure the MAC is powered off. */
277 aumac_powerdown(sc);
278
279 /* Hook up the interrupt handler. */
280 sc->sc_ih = au_intr_establish(aa->aa_irq[0], 1, IPL_NET, IST_LEVEL,
281 aumac_intr, sc);
282 if (sc->sc_ih == NULL) {
283 printf("%s: unable to register interrupt handler\n",
284 sc->sc_dev.dv_xname);
285 return;
286 }
287
288 /*
289 * Allocate space for the transmit and receive buffers.
290 */
291 if (uvm_pglistalloc(AUMAC_BUFSIZE, 0, ctob(physmem), PAGE_SIZE, 0,
292 &pglist, 1, 0))
293 return;
294
295 bufaddr = TAILQ_FIRST(&pglist)->phys_addr;
296 vbufaddr = (void *)MIPS_PHYS_TO_KSEG0(bufaddr);
297
298 for (i = 0; i < AUMAC_NTXDESC; i++) {
299 int offset = AUMAC_TXBUF_OFFSET + (i * MAC_BUFLEN);
300
301 sc->sc_txbufs[i].buf_vaddr = vbufaddr + offset;
302 sc->sc_txbufs[i].buf_paddr = bufaddr + offset;
303 }
304
305 for (i = 0; i < AUMAC_NRXDESC; i++) {
306 int offset = AUMAC_RXBUF_OFFSET + (i * MAC_BUFLEN);
307
308 sc->sc_rxbufs[i].buf_vaddr = vbufaddr + offset;
309 sc->sc_rxbufs[i].buf_paddr = bufaddr + offset;
310 }
311
312 /*
313 * Power up the MAC before accessing any MAC registers (including
314 * MII configuration.
315 */
316 aumac_powerup(sc);
317
318 /*
319 * Initialize the media structures and probe the MII.
320 */
321 sc->sc_mii.mii_ifp = ifp;
322 sc->sc_mii.mii_readreg = aumac_mii_readreg;
323 sc->sc_mii.mii_writereg = aumac_mii_writereg;
324 sc->sc_mii.mii_statchg = aumac_mii_statchg;
325 ifmedia_init(&sc->sc_mii.mii_media, 0, aumac_mediachange,
326 aumac_mediastatus);
327
328 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
329 MII_OFFSET_ANY, 0);
330
331 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
332 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
333 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
334 } else
335 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
336
337 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
338 ifp->if_softc = sc;
339 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
340 ifp->if_ioctl = aumac_ioctl;
341 ifp->if_start = aumac_start;
342 ifp->if_watchdog = aumac_watchdog;
343 ifp->if_init = aumac_init;
344 ifp->if_stop = aumac_stop;
345 IFQ_SET_READY(&ifp->if_snd);
346
347 /* Attach the interface. */
348 if_attach(ifp);
349 ether_ifattach(ifp, enaddr);
350
351 #ifdef AUMAC_EVENT_COUNTERS
352 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
353 NULL, sc->sc_dev.dv_xname, "txstall");
354 evcnt_attach_dynamic(&sc->sc_ev_rxstall, EVCNT_TYPE_MISC,
355 NULL, sc->sc_dev.dv_xname, "rxstall");
356 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_MISC,
357 NULL, sc->sc_dev.dv_xname, "txintr");
358 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_MISC,
359 NULL, sc->sc_dev.dv_xname, "txintr");
360 #endif
361
362 /* Make sure the interface is shutdown during reboot. */
363 sc->sc_sdhook = shutdownhook_establish(aumac_shutdown, sc);
364 if (sc->sc_sdhook == NULL)
365 printf("%s: WARNING: unable to establish shutdown hook\n",
366 sc->sc_dev.dv_xname);
367 return;
368 }
369
370 /*
371 * aumac_shutdown:
372 *
373 * Make sure the interface is stopped at reboot time.
374 */
375 static void
376 aumac_shutdown(void *arg)
377 {
378 struct aumac_softc *sc = arg;
379
380 aumac_stop(&sc->sc_ethercom.ec_if, 1);
381
382 /*
383 * XXX aumac_stop leaves device powered up at the moment
384 * XXX but this still isn't enough to keep yamon happy... :-(
385 */
386 bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, 0);
387 }
388
389 /*
390 * aumac_start: [ifnet interface function]
391 *
392 * Start packet transmission on the interface.
393 */
394 static void
395 aumac_start(struct ifnet *ifp)
396 {
397 struct aumac_softc *sc = ifp->if_softc;
398 struct mbuf *m;
399 int nexttx;
400
401 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
402 return;
403
404 /*
405 * Loop through the send queue, setting up transmit descriptors
406 * unitl we drain the queue, or use up all available transmit
407 * descriptors.
408 */
409 for (;;) {
410 /* Grab a packet off the queue. */
411 IFQ_POLL(&ifp->if_snd, m);
412 if (m == NULL)
413 return;
414
415 /* Get a spare descriptor. */
416 if (sc->sc_txfree == 0) {
417 /* No more slots left; notify upper layer. */
418 ifp->if_flags |= IFF_OACTIVE;
419 #ifdef AUMAC_EVENT_COUNTERS
420 AUMAC_EVCNT_INCR(&sc->sc_ev_txstall);
421 #endif
422 return;
423 }
424 nexttx = sc->sc_txnext;
425
426 IFQ_DEQUEUE(&ifp->if_snd, m);
427
428 /*
429 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
430 */
431
432 m_copydata(m, 0, m->m_pkthdr.len,
433 sc->sc_txbufs[nexttx].buf_vaddr);
434
435 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
436 MACDMA_TX_STAT(nexttx), 0);
437 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
438 MACDMA_TX_LEN(nexttx),
439 m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN) ?
440 ETHER_MIN_LEN - ETHER_CRC_LEN : m->m_pkthdr.len);
441 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
442 MACDMA_TX_ADDR(nexttx),
443 sc->sc_txbufs[nexttx].buf_paddr | TX_ADDR_EN);
444 /* XXX - needed?? we should be coherent */
445 bus_space_barrier(sc->sc_st, sc->sc_dma_sh, 0 /* XXX */,
446 0 /* XXX */, BUS_SPACE_BARRIER_WRITE);
447
448 /* Advance the Tx pointer. */
449 sc->sc_txfree--;
450 sc->sc_txnext = AUMAC_NEXTTX(nexttx);
451
452 #if NBPFILTER > 0
453 /* Pass the packet to any BPF listeners. */
454 if (ifp->if_bpf)
455 bpf_mtap(ifp->if_bpf, m);
456 #endif /* NBPFILTER */
457
458 m_freem(m);
459
460 /* Set a watchdog timer in case the chip flakes out. */
461 ifp->if_timer = 5;
462 }
463 /* NOTREACHED */
464 }
465
466 /*
467 * aumac_watchdog: [ifnet interface function]
468 *
469 * Watchdog timer handler.
470 */
471 static void
472 aumac_watchdog(struct ifnet *ifp)
473 {
474 struct aumac_softc *sc = ifp->if_softc;
475
476 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
477 (void) aumac_init(ifp);
478
479 /* Try to get more packets going. */
480 aumac_start(ifp);
481 }
482
483 /*
484 * aumac_ioctl: [ifnet interface function]
485 *
486 * Handle control requests from the operator.
487 */
488 static int
489 aumac_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
490 {
491 struct aumac_softc *sc = ifp->if_softc;
492 struct ifreq *ifr = (struct ifreq *) data;
493 int s, error;
494
495 s = splnet();
496
497 switch (cmd) {
498 case SIOCSIFMEDIA:
499 case SIOCGIFMEDIA:
500 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
501 break;
502
503 default:
504 error = ether_ioctl(ifp, cmd, data);
505 if (error == ENETRESET) {
506 /*
507 * Multicast list has changed; set the hardware filter
508 * accordingly.
509 */
510 aumac_set_filter(sc);
511 }
512 break;
513 }
514
515 /* Try to get more packets going. */
516 aumac_start(ifp);
517
518 splx(s);
519 return (error);
520 }
521
522 /*
523 * aumac_intr:
524 *
525 * Interrupt service routine.
526 */
527 static int
528 aumac_intr(void *arg)
529 {
530 struct aumac_softc *sc = arg;
531
532 /*
533 * There aren't really any interrupt status bits on the
534 * Au1X00 MAC, and each MAC has a dedicated interrupt
535 * in the CPU's built-in interrupt controller. Just
536 * check for new incoming packets, and then Tx completions
537 * (for status updating).
538 */
539 if ((sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
540 return (0);
541
542 aumac_rxintr(sc);
543 aumac_txintr(sc);
544
545 return (1);
546 }
547
548 /*
549 * aumac_txintr:
550 *
551 * Helper; handle transmit interrupts.
552 */
553 static void
554 aumac_txintr(struct aumac_softc *sc)
555 {
556 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
557 uint32_t stat;
558 int i;
559 #ifdef AUMAC_EVENT_COUNTERS
560 int gotone = 0;
561 #endif
562
563 for (i = sc->sc_txdirty; sc->sc_txfree != AUMAC_NTXDESC;
564 i = AUMAC_NEXTTX(i)) {
565 if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
566 MACDMA_TX_ADDR(i)) & TX_ADDR_DN) == 0)
567 break;
568 #ifdef AUMAC_EVENT_COUNTERS
569 gotone = 1;
570 #endif
571
572 /* ACK interrupt. */
573 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
574 MACDMA_TX_ADDR(i), 0);
575
576 stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
577 MACDMA_TX_STAT(i));
578
579 if (stat & TX_STAT_FA) {
580 /* XXX STATS */
581 ifp->if_oerrors++;
582 } else
583 ifp->if_opackets++;
584
585 if (stat & TX_STAT_EC)
586 ifp->if_collisions += 16;
587 else
588 ifp->if_collisions += TX_STAT_CC(stat);
589
590 sc->sc_txfree++;
591 ifp->if_flags &= ~IFF_OACTIVE;
592
593 /* Try to queue more packets. */
594 aumac_start(ifp);
595 }
596
597 #ifdef AUMAC_EVENT_COUNTERS
598 if (gotone)
599 AUMAC_EVCNT_INCR(&sc->sc_ev_txintr);
600 #endif
601
602 /* Update the dirty descriptor pointer. */
603 sc->sc_txdirty = i;
604
605 /*
606 * If there are no more pending transmissions, cancel the watchdog
607 * timer.
608 */
609 if (sc->sc_txfree == AUMAC_NTXDESC)
610 ifp->if_timer = 0;
611 }
612
613 /*
614 * aumac_rxintr:
615 *
616 * Helper; handle receive interrupts.
617 */
618 static void
619 aumac_rxintr(struct aumac_softc *sc)
620 {
621 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
622 struct mbuf *m;
623 uint32_t stat;
624 int i, len;
625 #ifdef AUMAC_EVENT_COUNTERS
626 int pkts = 0;
627 #endif
628
629 for (i = sc->sc_rxptr;; i = AUMAC_NEXTRX(i)) {
630 if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
631 MACDMA_RX_ADDR(i)) & RX_ADDR_DN) == 0)
632 break;
633 #ifdef AUMAC_EVENT_COUNTERS
634 pkts++;
635 #endif
636
637 stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
638 MACDMA_RX_STAT(i));
639
640 #define PRINTERR(str) \
641 do { \
642 error++; \
643 printf("%s: %s\n", sc->sc_dev.dv_xname, str); \
644 } while (0)
645
646 if (stat & RX_STAT_ERRS) {
647 int error = 0;
648
649 if (stat & RX_STAT_MI)
650 PRINTERR("missed frame");
651 if (stat & RX_STAT_UC)
652 PRINTERR("unknown control frame");
653 if (stat & RX_STAT_LE)
654 PRINTERR("short frame");
655 if (stat & RX_STAT_CR)
656 PRINTERR("CRC error");
657 if (stat & RX_STAT_ME)
658 PRINTERR("medium error");
659 if (stat & RX_STAT_CS)
660 PRINTERR("late collision");
661 if (stat & RX_STAT_FL)
662 PRINTERR("frame too big");
663 if (stat & RX_STAT_RF)
664 PRINTERR("runt frame (collision)");
665 if (stat & RX_STAT_WT)
666 PRINTERR("watch dog");
667 if (stat & RX_STAT_DB) {
668 if (stat & (RX_STAT_CS | RX_STAT_RF |
669 RX_STAT_CR)) {
670 if (!error)
671 goto pktok;
672 } else
673 PRINTERR("dribbling bit");
674 }
675 #undef PRINTERR
676 ifp->if_ierrors++;
677
678 dropit:
679 /* reuse the current descriptor */
680 AUMAC_INIT_RXDESC(sc, i);
681 continue;
682 }
683 pktok:
684 len = RX_STAT_L(stat);
685
686 /*
687 * The Au1X00 MAC includes the CRC with every packet;
688 * trim it off here.
689 */
690 len -= ETHER_CRC_LEN;
691
692 /*
693 * Truncate the packet if it's too big to fit in
694 * a single mbuf cluster.
695 */
696 if (len > MCLBYTES - 2)
697 len = MCLBYTES - 2;
698
699 MGETHDR(m, M_DONTWAIT, MT_DATA);
700 if (m == NULL) {
701 printf("%s: unable to allocate Rx mbuf\n",
702 sc->sc_dev.dv_xname);
703 goto dropit;
704 }
705 if (len > MHLEN - 2) {
706 MCLGET(m, M_DONTWAIT);
707 if ((m->m_flags & M_EXT) == 0) {
708 printf("%s: unable to allocate Rx cluster\n",
709 sc->sc_dev.dv_xname);
710 m_freem(m);
711 goto dropit;
712 }
713 }
714
715 m->m_data += 2; /* align payload */
716 memcpy(mtod(m, caddr_t),
717 sc->sc_rxbufs[i].buf_vaddr, len);
718 AUMAC_INIT_RXDESC(sc, i);
719
720 m->m_pkthdr.rcvif = ifp;
721 m->m_pkthdr.len = m->m_len = len;
722
723 #if NBPFILTER > 0
724 /* Pass this up to any BPF listeners. */
725 if (ifp->if_bpf)
726 bpf_mtap(ifp->if_bpf, m);
727 #endif /* NBPFILTER > 0 */
728
729 /* Pass it on. */
730 (*ifp->if_input)(ifp, m);
731 ifp->if_ipackets++;
732 }
733 #ifdef AUMAC_EVENT_COUNTERS
734 if (pkts)
735 AUMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
736 if (pkts == AUMAC_NRXDESC)
737 AUMAC_EVCNT_INCR(&sc->sc_ev_rxstall);
738 #endif
739
740 /* Update the receive pointer. */
741 sc->sc_rxptr = i;
742 }
743
744 /*
745 * aumac_tick:
746 *
747 * One second timer, used to tick the MII.
748 */
749 static void
750 aumac_tick(void *arg)
751 {
752 struct aumac_softc *sc = arg;
753 int s;
754
755 s = splnet();
756 mii_tick(&sc->sc_mii);
757 splx(s);
758
759 callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
760 }
761
762 /*
763 * aumac_init: [ifnet interface function]
764 *
765 * Initialize the interface. Must be called at splnet().
766 */
767 static int
768 aumac_init(struct ifnet *ifp)
769 {
770 struct aumac_softc *sc = ifp->if_softc;
771 int i, error = 0;
772
773 /* Cancel any pending I/O, reset MAC. */
774 aumac_stop(ifp, 0);
775
776 /* Set up the transmit ring. */
777 for (i = 0; i < AUMAC_NTXDESC; i++) {
778 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
779 MACDMA_TX_STAT(i), 0);
780 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
781 MACDMA_TX_LEN(i), 0);
782 bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
783 MACDMA_TX_ADDR(i), sc->sc_txbufs[i].buf_paddr);
784 }
785 sc->sc_txfree = AUMAC_NTXDESC;
786 sc->sc_txnext = TX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
787 MACDMA_TX_ADDR(0)));
788 sc->sc_txdirty = sc->sc_txnext;
789
790 /* Set up the receive ring. */
791 for (i = 0; i < AUMAC_NRXDESC; i++)
792 AUMAC_INIT_RXDESC(sc, i);
793 sc->sc_rxptr = RX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
794 MACDMA_RX_ADDR(0)));
795
796 /*
797 * Power up the MAC.
798 */
799 aumac_powerup(sc);
800
801 sc->sc_control |= CONTROL_DO | CONTROL_TE | CONTROL_RE;
802 #if _BYTE_ORDER == _BIG_ENDIAN
803 sc->sc_control |= CONTROL_EM;
804 #endif
805
806 /* Set the media. */
807 aumac_mediachange(ifp);
808
809 /*
810 * Set the receive filter. This will actually start the transmit
811 * and receive processes.
812 */
813 aumac_set_filter(sc);
814
815 /* Start the one second clock. */
816 callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
817
818 /* ...all done! */
819 ifp->if_flags |= IFF_RUNNING;
820 ifp->if_flags &= ~IFF_OACTIVE;
821
822 if (error)
823 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
824 return (error);
825 }
826
827 /*
828 * aumac_stop: [ifnet interface function]
829 *
830 * Stop transmission on the interface.
831 */
832 static void
833 aumac_stop(struct ifnet *ifp, int disable)
834 {
835 struct aumac_softc *sc = ifp->if_softc;
836
837 /* Stop the one-second clock. */
838 callout_stop(&sc->sc_tick_ch);
839
840 /* Down the MII. */
841 mii_down(&sc->sc_mii);
842
843 /* Stop the transmit and receive processes. */
844 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, 0);
845
846 /* Power down/reset the MAC. */
847 aumac_powerdown(sc);
848
849 /* Mark the interface as down and cancel the watchdog timer. */
850 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
851 ifp->if_timer = 0;
852 }
853
854 /*
855 * aumac_powerdown:
856 *
857 * Power down the MAC.
858 */
859 static void
860 aumac_powerdown(struct aumac_softc *sc)
861 {
862
863 /* Disable the MAC clocks, and place the device in reset. */
864 // bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP);
865
866 // delay(10000);
867 }
868
869 /*
870 * aumac_powerup:
871 *
872 * Bring the device out of reset.
873 */
874 static void
875 aumac_powerup(struct aumac_softc *sc)
876 {
877
878 /* Enable clocks to the MAC. */
879 bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP|MACEN_CE);
880
881 /* Enable MAC, coherent transactions, pass only valid frames. */
882 bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0,
883 MACEN_E2|MACEN_E1|MACEN_E0|MACEN_CE);
884
885 delay(20000);
886 }
887
888 /*
889 * aumac_set_filter:
890 *
891 * Set up the receive filter.
892 */
893 static void
894 aumac_set_filter(struct aumac_softc *sc)
895 {
896 struct ethercom *ec = &sc->sc_ethercom;
897 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
898 struct ether_multi *enm;
899 struct ether_multistep step;
900 const uint8_t *enaddr = LLADDR(ifp->if_sadl);
901 uint32_t mchash[2], crc;
902
903 sc->sc_control &= ~(CONTROL_PM | CONTROL_PR);
904
905 /* Stop the receiver. */
906 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
907 sc->sc_control & ~CONTROL_RE);
908
909 if (ifp->if_flags & IFF_PROMISC) {
910 sc->sc_control |= CONTROL_PR;
911 goto allmulti;
912 }
913
914 /* Set the station address. */
915 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRHIGH,
916 enaddr[4] | (enaddr[5] << 8));
917 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRLOW,
918 enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
919 (enaddr[3] << 24));
920
921 sc->sc_control |= CONTROL_HP;
922
923 mchash[0] = mchash[1] = 0;
924
925 /*
926 * Set up the multicast address filter by passing all multicast
927 * addresses through a CRC generator, and then using the high
928 * order 6 bits as an index into the 64-bit multicast hash table.
929 * The high order bits select the word, while the rest of the bits
930 * select the bit within the word.
931 */
932 ETHER_FIRST_MULTI(step, ec, enm);
933 while (enm != NULL) {
934 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
935 /*
936 * We must listen to a range of multicast addresses.
937 * For now, just accept all multicasts, rather than
938 * trying to set only those filter bits needed to match
939 * the range. (At this time, the only use of address
940 * ranges is for IP multicast routing, for which the
941 * range is large enough to require all bits set.)
942 */
943 goto allmulti;
944 }
945
946 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
947
948 /* Just want the 6 most significant bits. */
949 crc >>= 26;
950
951 /* Set the corresponding bit in the filter. */
952 mchash[crc >> 5] |= 1U << (crc & 0x1f);
953
954 ETHER_NEXT_MULTI(step, enm);
955 }
956
957 ifp->if_flags &= ~IFF_ALLMULTI;
958
959 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHHIGH,
960 mchash[1]);
961 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHLOW,
962 mchash[0]);
963
964 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
965 sc->sc_control);
966 return;
967
968 allmulti:
969 sc->sc_control |= CONTROL_PM;
970 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
971 sc->sc_control);
972 }
973
974 /*
975 * aumac_mediastatus: [ifmedia interface function]
976 *
977 * Get the current interface media status.
978 */
979 static void
980 aumac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
981 {
982 struct aumac_softc *sc = ifp->if_softc;
983
984 mii_pollstat(&sc->sc_mii);
985 ifmr->ifm_status = sc->sc_mii.mii_media_status;
986 ifmr->ifm_active = sc->sc_mii.mii_media_active;
987 }
988
989 /*
990 * aumac_mediachange: [ifmedia interface function]
991 *
992 * Set hardware to newly selected media.
993 */
994 static int
995 aumac_mediachange(struct ifnet *ifp)
996 {
997 struct aumac_softc *sc = ifp->if_softc;
998
999 if (ifp->if_flags & IFF_UP)
1000 mii_mediachg(&sc->sc_mii);
1001 return (0);
1002 }
1003
1004 /*
1005 * aumac_mii_wait:
1006 *
1007 * Wait for the MII interface to not be busy.
1008 */
1009 static int
1010 aumac_mii_wait(struct aumac_softc *sc, const char *msg)
1011 {
1012 int i;
1013
1014 for (i = 0; i < 10000; i++) {
1015 if ((bus_space_read_4(sc->sc_st, sc->sc_mac_sh,
1016 MAC_MIICTRL) & MIICTRL_MB) == 0)
1017 return (0);
1018 delay(10);
1019 }
1020
1021 printf("%s: MII failed to %s\n", sc->sc_dev.dv_xname, msg);
1022 return (1);
1023 }
1024
1025 /*
1026 * aumac_mii_readreg: [mii interface function]
1027 *
1028 * Read a PHY register on the MII.
1029 */
1030 static int
1031 aumac_mii_readreg(struct device *self, int phy, int reg)
1032 {
1033 struct aumac_softc *sc = (void *) self;
1034
1035 if (aumac_mii_wait(sc, "become ready"))
1036 return (0);
1037
1038 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1039 MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg));
1040
1041 if (aumac_mii_wait(sc, "complete"))
1042 return (0);
1043
1044 return (bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA) &
1045 MIIDATA_MASK);
1046 }
1047
1048 /*
1049 * aumac_mii_writereg: [mii interface function]
1050 *
1051 * Write a PHY register on the MII.
1052 */
1053 static void
1054 aumac_mii_writereg(struct device *self, int phy, int reg, int val)
1055 {
1056 struct aumac_softc *sc = (void *) self;
1057
1058 if (aumac_mii_wait(sc, "become ready"))
1059 return;
1060
1061 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA, val);
1062 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1063 MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg) | MIICTRL_MW);
1064
1065 (void) aumac_mii_wait(sc, "complete");
1066 }
1067
1068 /*
1069 * aumac_mii_statchg: [mii interface function]
1070 *
1071 * Callback from MII layer when media changes.
1072 */
1073 static void
1074 aumac_mii_statchg(struct device *self)
1075 {
1076 struct aumac_softc *sc = (void *) self;
1077
1078 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1079 sc->sc_control |= CONTROL_F;
1080 else
1081 sc->sc_control &= ~CONTROL_F;
1082
1083 bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
1084 sc->sc_control);
1085 }
1086