arspi.c revision 1.14.8.1 1 1.14.8.1 thorpej /* $NetBSD: arspi.c,v 1.14.8.1 2021/08/04 02:44:15 thorpej Exp $ */
2 1.1 gdamore
3 1.1 gdamore /*-
4 1.1 gdamore * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 1.1 gdamore * Copyright (c) 2006 Garrett D'Amore.
6 1.1 gdamore * All rights reserved.
7 1.1 gdamore *
8 1.1 gdamore * Portions of this code were written by Garrett D'Amore for the
9 1.1 gdamore * Champaign-Urbana Community Wireless Network Project.
10 1.1 gdamore *
11 1.1 gdamore * Redistribution and use in source and binary forms, with or
12 1.1 gdamore * without modification, are permitted provided that the following
13 1.1 gdamore * conditions are met:
14 1.1 gdamore * 1. Redistributions of source code must retain the above copyright
15 1.1 gdamore * notice, this list of conditions and the following disclaimer.
16 1.1 gdamore * 2. Redistributions in binary form must reproduce the above
17 1.1 gdamore * copyright notice, this list of conditions and the following
18 1.1 gdamore * disclaimer in the documentation and/or other materials provided
19 1.1 gdamore * with the distribution.
20 1.1 gdamore * 3. All advertising materials mentioning features or use of this
21 1.1 gdamore * software must display the following acknowledgements:
22 1.1 gdamore * This product includes software developed by the Urbana-Champaign
23 1.1 gdamore * Independent Media Center.
24 1.1 gdamore * This product includes software developed by Garrett D'Amore.
25 1.1 gdamore * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 1.1 gdamore * D'Amore's name may not be used to endorse or promote products
27 1.1 gdamore * derived from this software without specific prior written permission.
28 1.1 gdamore *
29 1.1 gdamore * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 1.1 gdamore * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 1.1 gdamore * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 1.1 gdamore * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 1.1 gdamore * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 1.1 gdamore * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 1.1 gdamore * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 1.1 gdamore * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 1.1 gdamore * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 1.1 gdamore * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 1.1 gdamore * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 1.1 gdamore * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 1.1 gdamore * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 1.1 gdamore */
43 1.1 gdamore
44 1.1 gdamore #include <sys/cdefs.h>
45 1.14.8.1 thorpej __KERNEL_RCSID(0, "$NetBSD: arspi.c,v 1.14.8.1 2021/08/04 02:44:15 thorpej Exp $");
46 1.1 gdamore
47 1.1 gdamore #include "locators.h"
48 1.1 gdamore
49 1.1 gdamore #include <sys/param.h>
50 1.9 matt #include <sys/bus.h>
51 1.9 matt #include <sys/cpu.h>
52 1.1 gdamore #include <sys/device.h>
53 1.1 gdamore #include <sys/errno.h>
54 1.9 matt #include <sys/kernel.h>
55 1.13 thorpej #include <sys/kmem.h>
56 1.1 gdamore #include <sys/proc.h>
57 1.9 matt #include <sys/systm.h>
58 1.1 gdamore
59 1.1 gdamore #include <mips/atheros/include/ar5315reg.h>
60 1.1 gdamore #include <mips/atheros/include/arbusvar.h>
61 1.1 gdamore
62 1.1 gdamore #include <mips/atheros/dev/arspireg.h>
63 1.1 gdamore
64 1.1 gdamore #include <dev/spi/spiflash.h>
65 1.1 gdamore #include <dev/spi/spivar.h>
66 1.1 gdamore
67 1.1 gdamore /*
68 1.1 gdamore * This device is intended only to operate with specific SPI flash
69 1.1 gdamore * parts, and is not a general purpose SPI host. (Or at least if it
70 1.1 gdamore * is, the Linux and eCos sources do not show how to use it as such.)
71 1.1 gdamore * And lack of documentation on the Atheros SoCs is less than helpful.
72 1.1 gdamore *
73 1.1 gdamore * So for now we just "emulate" enough of the host bus framework to
74 1.1 gdamore * make the SPI flash drivers happy.
75 1.1 gdamore */
76 1.1 gdamore
77 1.1 gdamore struct arspi_job {
78 1.1 gdamore uint8_t job_opcode;
79 1.1 gdamore struct spi_chunk *job_chunk;
80 1.1 gdamore uint32_t job_flags;
81 1.1 gdamore uint32_t job_addr;
82 1.1 gdamore uint32_t job_data;
83 1.1 gdamore int job_rxcnt;
84 1.1 gdamore int job_txcnt;
85 1.1 gdamore int job_addrcnt;
86 1.1 gdamore int job_rresid;
87 1.1 gdamore int job_wresid;
88 1.1 gdamore };
89 1.1 gdamore
90 1.1 gdamore #define JOB_READ 0x1
91 1.1 gdamore #define JOB_WRITE 0x2
92 1.1 gdamore #define JOB_LAST 0x4
93 1.1 gdamore #define JOB_WAIT 0x8 /* job must wait for WIP bits */
94 1.1 gdamore #define JOB_WREN 0x10 /* WREN needed */
95 1.1 gdamore
96 1.1 gdamore struct arspi_softc {
97 1.1 gdamore struct spi_controller sc_spi;
98 1.1 gdamore void *sc_ih;
99 1.4 thorpej bool sc_interrupts;
100 1.1 gdamore
101 1.1 gdamore struct spi_transfer *sc_transfer;
102 1.1 gdamore struct spi_chunk *sc_wchunk; /* for partial writes */
103 1.1 gdamore struct spi_transq sc_transq;
104 1.1 gdamore bus_space_tag_t sc_st;
105 1.1 gdamore bus_space_handle_t sc_sh;
106 1.1 gdamore bus_size_t sc_size;
107 1.1 gdamore };
108 1.1 gdamore
109 1.1 gdamore #define STATIC
110 1.1 gdamore
111 1.10 chs STATIC int arspi_match(device_t, cfdata_t, void *);
112 1.10 chs STATIC void arspi_attach(device_t, device_t, void *);
113 1.10 chs STATIC void arspi_interrupts(device_t);
114 1.1 gdamore STATIC int arspi_intr(void *);
115 1.1 gdamore /* SPI service routines */
116 1.1 gdamore STATIC int arspi_configure(void *, int, int, int);
117 1.1 gdamore STATIC int arspi_transfer(void *, struct spi_transfer *);
118 1.1 gdamore /* internal support */
119 1.1 gdamore STATIC void arspi_poll(struct arspi_softc *);
120 1.1 gdamore STATIC void arspi_done(struct arspi_softc *, int);
121 1.1 gdamore STATIC void arspi_sched(struct arspi_softc *);
122 1.1 gdamore STATIC int arspi_get_byte(struct spi_chunk **, uint8_t *);
123 1.1 gdamore STATIC int arspi_put_byte(struct spi_chunk **, uint8_t);
124 1.1 gdamore STATIC int arspi_make_job(struct spi_transfer *);
125 1.1 gdamore STATIC void arspi_update_job(struct spi_transfer *);
126 1.1 gdamore STATIC void arspi_finish_job(struct spi_transfer *);
127 1.1 gdamore
128 1.1 gdamore
129 1.10 chs CFATTACH_DECL_NEW(arspi, sizeof(struct arspi_softc),
130 1.1 gdamore arspi_match, arspi_attach, NULL, NULL);
131 1.1 gdamore
132 1.1 gdamore #define GETREG(sc, o) bus_space_read_4(sc->sc_st, sc->sc_sh, o)
133 1.1 gdamore #define PUTREG(sc, o, v) bus_space_write_4(sc->sc_st, sc->sc_sh, o, v)
134 1.1 gdamore
135 1.1 gdamore int
136 1.10 chs arspi_match(device_t parent, cfdata_t cf, void *aux)
137 1.1 gdamore {
138 1.1 gdamore struct arbus_attach_args *aa = aux;
139 1.1 gdamore
140 1.1 gdamore if (strcmp(aa->aa_name, cf->cf_name) != 0)
141 1.1 gdamore return 0;
142 1.1 gdamore return 1;
143 1.1 gdamore }
144 1.1 gdamore
145 1.1 gdamore void
146 1.10 chs arspi_attach(device_t parent, device_t self, void *aux)
147 1.1 gdamore {
148 1.1 gdamore struct arspi_softc *sc = device_private(self);
149 1.1 gdamore struct spibus_attach_args sba;
150 1.1 gdamore struct arbus_attach_args *aa = aux;
151 1.1 gdamore
152 1.1 gdamore /*
153 1.1 gdamore * Map registers.
154 1.1 gdamore */
155 1.1 gdamore sc->sc_st = aa->aa_bst;
156 1.1 gdamore sc->sc_size = aa->aa_size;
157 1.1 gdamore if (bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
158 1.1 gdamore &sc->sc_sh) != 0) {
159 1.1 gdamore printf(": unable to map registers!\n");
160 1.1 gdamore return;
161 1.1 gdamore }
162 1.1 gdamore
163 1.1 gdamore aprint_normal(": Atheros SPI controller\n");
164 1.1 gdamore
165 1.1 gdamore /*
166 1.1 gdamore * Initialize SPI controller.
167 1.1 gdamore */
168 1.1 gdamore sc->sc_spi.sct_cookie = sc;
169 1.1 gdamore sc->sc_spi.sct_configure = arspi_configure;
170 1.1 gdamore sc->sc_spi.sct_transfer = arspi_transfer;
171 1.1 gdamore sc->sc_spi.sct_nslaves = 1;
172 1.1 gdamore
173 1.1 gdamore
174 1.1 gdamore /*
175 1.1 gdamore * Initialize the queue.
176 1.1 gdamore */
177 1.1 gdamore spi_transq_init(&sc->sc_transq);
178 1.1 gdamore
179 1.1 gdamore /*
180 1.1 gdamore * Enable device interrupts.
181 1.1 gdamore */
182 1.1 gdamore sc->sc_ih = arbus_intr_establish(aa->aa_cirq, aa->aa_mirq,
183 1.1 gdamore arspi_intr, sc);
184 1.1 gdamore if (sc->sc_ih == NULL) {
185 1.1 gdamore aprint_error("%s: couldn't establish interrupt\n",
186 1.1 gdamore device_xname(self));
187 1.1 gdamore /* just leave it in polled mode */
188 1.1 gdamore } else
189 1.1 gdamore config_interrupts(self, arspi_interrupts);
190 1.1 gdamore
191 1.1 gdamore /*
192 1.1 gdamore * Initialize and attach bus attach.
193 1.1 gdamore */
194 1.12 tnn memset(&sba, 0, sizeof(sba));
195 1.1 gdamore sba.sba_controller = &sc->sc_spi;
196 1.14.8.1 thorpej config_found(self, &sba, spibus_print, CFARGS_NONE);
197 1.1 gdamore }
198 1.1 gdamore
199 1.1 gdamore void
200 1.10 chs arspi_interrupts(device_t self)
201 1.1 gdamore {
202 1.1 gdamore /*
203 1.1 gdamore * we never leave polling mode, because, apparently, we
204 1.1 gdamore * are missing some data about how to drive the SPI in interrupt
205 1.1 gdamore * mode.
206 1.1 gdamore */
207 1.1 gdamore #if 0
208 1.1 gdamore struct arspi_softc *sc = device_private(self);
209 1.1 gdamore int s;
210 1.1 gdamore
211 1.6 rmind s = splbio();
212 1.5 thorpej sc->sc_interrupts = true;
213 1.1 gdamore splx(s);
214 1.1 gdamore #endif
215 1.1 gdamore }
216 1.1 gdamore
217 1.1 gdamore int
218 1.1 gdamore arspi_intr(void *arg)
219 1.1 gdamore {
220 1.1 gdamore struct arspi_softc *sc = arg;
221 1.1 gdamore
222 1.1 gdamore while (GETREG(sc, ARSPI_REG_CTL) & ARSPI_CTL_BUSY);
223 1.1 gdamore
224 1.1 gdamore arspi_done(sc, 0);
225 1.1 gdamore
226 1.1 gdamore return 1;
227 1.1 gdamore }
228 1.1 gdamore
229 1.1 gdamore void
230 1.1 gdamore arspi_poll(struct arspi_softc *sc)
231 1.1 gdamore {
232 1.1 gdamore
233 1.1 gdamore while (sc->sc_transfer) {
234 1.1 gdamore arspi_intr(sc);
235 1.1 gdamore }
236 1.1 gdamore }
237 1.1 gdamore
238 1.1 gdamore int
239 1.1 gdamore arspi_configure(void *cookie, int slave, int mode, int speed)
240 1.1 gdamore {
241 1.1 gdamore
242 1.1 gdamore /*
243 1.1 gdamore * We don't support the full SPI protocol, and hopefully the
244 1.1 gdamore * firmware has programmed a reasonable mode already. So
245 1.1 gdamore * just a couple of quick sanity checks, then bail.
246 1.1 gdamore */
247 1.1 gdamore if ((mode != 0) || (slave != 0))
248 1.1 gdamore return EINVAL;
249 1.1 gdamore
250 1.1 gdamore return 0;
251 1.1 gdamore }
252 1.1 gdamore
253 1.1 gdamore int
254 1.1 gdamore arspi_transfer(void *cookie, struct spi_transfer *st)
255 1.1 gdamore {
256 1.1 gdamore struct arspi_softc *sc = cookie;
257 1.1 gdamore int rv;
258 1.1 gdamore int s;
259 1.1 gdamore
260 1.1 gdamore st->st_busprivate = NULL;
261 1.1 gdamore if ((rv = arspi_make_job(st)) != 0) {
262 1.1 gdamore if (st->st_busprivate) {
263 1.13 thorpej struct arspi_job *job = st->st_busprivate;
264 1.1 gdamore st->st_busprivate = NULL;
265 1.13 thorpej kmem_free(job, sizeof(*job));
266 1.1 gdamore }
267 1.1 gdamore spi_done(st, rv);
268 1.1 gdamore return rv;
269 1.1 gdamore }
270 1.1 gdamore
271 1.6 rmind s = splbio();
272 1.1 gdamore spi_transq_enqueue(&sc->sc_transq, st);
273 1.1 gdamore if (sc->sc_transfer == NULL) {
274 1.1 gdamore arspi_sched(sc);
275 1.1 gdamore if (!sc->sc_interrupts)
276 1.1 gdamore arspi_poll(sc);
277 1.1 gdamore }
278 1.1 gdamore splx(s);
279 1.1 gdamore return 0;
280 1.1 gdamore }
281 1.1 gdamore
282 1.1 gdamore void
283 1.1 gdamore arspi_sched(struct arspi_softc *sc)
284 1.1 gdamore {
285 1.1 gdamore struct spi_transfer *st;
286 1.1 gdamore struct arspi_job *job;
287 1.1 gdamore uint32_t ctl, cnt;
288 1.1 gdamore
289 1.1 gdamore for (;;) {
290 1.1 gdamore if ((st = sc->sc_transfer) == NULL) {
291 1.1 gdamore if ((st = spi_transq_first(&sc->sc_transq)) == NULL) {
292 1.1 gdamore /* no work left to do */
293 1.1 gdamore break;
294 1.1 gdamore }
295 1.1 gdamore spi_transq_dequeue(&sc->sc_transq);
296 1.1 gdamore sc->sc_transfer = st;
297 1.1 gdamore }
298 1.1 gdamore
299 1.1 gdamore arspi_update_job(st);
300 1.1 gdamore job = st->st_busprivate;
301 1.1 gdamore
302 1.1 gdamore /* there shouldn't be anything running, but ensure it */
303 1.1 gdamore do {
304 1.1 gdamore ctl = GETREG(sc, ARSPI_REG_CTL);
305 1.1 gdamore } while (ctl & ARSPI_CTL_BUSY);
306 1.1 gdamore /* clear all of the tx and rx bits */
307 1.1 gdamore ctl &= ~(ARSPI_CTL_TXCNT_MASK | ARSPI_CTL_RXCNT_MASK);
308 1.1 gdamore
309 1.1 gdamore if (job->job_flags & JOB_WAIT) {
310 1.1 gdamore PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_RDSR);
311 1.1 gdamore /* only the opcode for tx */
312 1.1 gdamore ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
313 1.1 gdamore /* and one rx byte */
314 1.1 gdamore ctl |= (1 << ARSPI_CTL_RXCNT_SHIFT);
315 1.1 gdamore } else if (job->job_flags & JOB_WREN) {
316 1.1 gdamore PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_WREN);
317 1.1 gdamore /* just the opcode */
318 1.1 gdamore ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
319 1.1 gdamore /* no rx bytes */
320 1.1 gdamore } else {
321 1.1 gdamore /* set the data */
322 1.1 gdamore PUTREG(sc, ARSPI_REG_DATA, job->job_data);
323 1.1 gdamore
324 1.1 gdamore /* set the opcode and the address */
325 1.1 gdamore PUTREG(sc, ARSPI_REG_OPCODE, job->job_opcode |
326 1.1 gdamore (job->job_addr << 8));
327 1.1 gdamore
328 1.1 gdamore /* now set txcnt */
329 1.1 gdamore cnt = 1; /* opcode */
330 1.1 gdamore cnt += job->job_addrcnt + job->job_txcnt;
331 1.1 gdamore ctl |= (cnt << ARSPI_CTL_TXCNT_SHIFT);
332 1.1 gdamore
333 1.1 gdamore /* now set rxcnt */
334 1.1 gdamore cnt = job->job_rxcnt;
335 1.1 gdamore ctl |= (cnt << ARSPI_CTL_RXCNT_SHIFT);
336 1.1 gdamore }
337 1.1 gdamore
338 1.1 gdamore /* set the start bit */
339 1.1 gdamore ctl |= ARSPI_CTL_START;
340 1.1 gdamore
341 1.1 gdamore PUTREG(sc, ARSPI_REG_CTL, ctl);
342 1.1 gdamore break;
343 1.1 gdamore }
344 1.1 gdamore }
345 1.1 gdamore
346 1.1 gdamore void
347 1.1 gdamore arspi_done(struct arspi_softc *sc, int err)
348 1.1 gdamore {
349 1.1 gdamore struct spi_transfer *st;
350 1.1 gdamore struct arspi_job *job;
351 1.1 gdamore
352 1.1 gdamore if ((st = sc->sc_transfer) != NULL) {
353 1.1 gdamore job = st->st_busprivate;
354 1.1 gdamore
355 1.1 gdamore if (job->job_flags & JOB_WAIT) {
356 1.1 gdamore if (err == 0) {
357 1.1 gdamore if ((GETREG(sc, ARSPI_REG_DATA) &
358 1.1 gdamore SPIFLASH_SR_BUSY) == 0) {
359 1.1 gdamore /* intermediate wait done */
360 1.1 gdamore job->job_flags &= ~JOB_WAIT;
361 1.1 gdamore goto done;
362 1.1 gdamore }
363 1.1 gdamore }
364 1.1 gdamore } else if (job->job_flags & JOB_WREN) {
365 1.1 gdamore if (err == 0) {
366 1.1 gdamore job->job_flags &= ~JOB_WREN;
367 1.1 gdamore goto done;
368 1.1 gdamore }
369 1.1 gdamore } else if (err == 0) {
370 1.1 gdamore /*
371 1.1 gdamore * When breaking up write jobs, we have to wait until
372 1.3 wiz * the WIP bit is clear, and we have to separately
373 1.1 gdamore * send WREN for each chunk. These flags facilitate
374 1.1 gdamore * that.
375 1.1 gdamore */
376 1.1 gdamore if (job->job_flags & JOB_WRITE)
377 1.1 gdamore job->job_flags |= (JOB_WAIT | JOB_WREN);
378 1.1 gdamore job->job_data = GETREG(sc, ARSPI_REG_DATA);
379 1.1 gdamore arspi_finish_job(st);
380 1.1 gdamore }
381 1.1 gdamore
382 1.1 gdamore if (err || (job->job_flags & JOB_LAST)) {
383 1.1 gdamore sc->sc_transfer = NULL;
384 1.1 gdamore st->st_busprivate = NULL;
385 1.1 gdamore spi_done(st, err);
386 1.13 thorpej kmem_free(job, sizeof(*job));
387 1.1 gdamore }
388 1.1 gdamore }
389 1.1 gdamore done:
390 1.1 gdamore arspi_sched(sc);
391 1.1 gdamore }
392 1.1 gdamore
393 1.1 gdamore int
394 1.1 gdamore arspi_get_byte(struct spi_chunk **chunkp, uint8_t *bytep)
395 1.1 gdamore {
396 1.1 gdamore struct spi_chunk *chunk;
397 1.1 gdamore
398 1.1 gdamore chunk = *chunkp;
399 1.1 gdamore
400 1.1 gdamore /* skip leading empty (or already consumed) chunks */
401 1.1 gdamore while (chunk && chunk->chunk_wresid == 0)
402 1.1 gdamore chunk = chunk->chunk_next;
403 1.1 gdamore
404 1.1 gdamore if (chunk == NULL) {
405 1.1 gdamore return ENODATA;
406 1.1 gdamore }
407 1.1 gdamore
408 1.1 gdamore /*
409 1.1 gdamore * chunk must be write only. SPI flash doesn't support
410 1.1 gdamore * any full duplex operations.
411 1.1 gdamore */
412 1.1 gdamore if ((chunk->chunk_rptr) || !(chunk->chunk_wptr)) {
413 1.1 gdamore return EINVAL;
414 1.1 gdamore }
415 1.1 gdamore
416 1.1 gdamore *bytep = *chunk->chunk_wptr;
417 1.1 gdamore chunk->chunk_wptr++;
418 1.1 gdamore chunk->chunk_wresid--;
419 1.1 gdamore chunk->chunk_rresid--;
420 1.1 gdamore /* clearing wptr and rptr makes sanity checks later easier */
421 1.1 gdamore if (chunk->chunk_wresid == 0)
422 1.1 gdamore chunk->chunk_wptr = NULL;
423 1.1 gdamore if (chunk->chunk_rresid == 0)
424 1.1 gdamore chunk->chunk_rptr = NULL;
425 1.1 gdamore while (chunk && chunk->chunk_wresid == 0)
426 1.1 gdamore chunk = chunk->chunk_next;
427 1.1 gdamore
428 1.1 gdamore *chunkp = chunk;
429 1.1 gdamore return 0;
430 1.1 gdamore }
431 1.1 gdamore
432 1.1 gdamore int
433 1.1 gdamore arspi_put_byte(struct spi_chunk **chunkp, uint8_t byte)
434 1.1 gdamore {
435 1.1 gdamore struct spi_chunk *chunk;
436 1.1 gdamore
437 1.1 gdamore chunk = *chunkp;
438 1.1 gdamore
439 1.1 gdamore /* skip leading empty (or already consumed) chunks */
440 1.1 gdamore while (chunk && chunk->chunk_rresid == 0)
441 1.1 gdamore chunk = chunk->chunk_next;
442 1.1 gdamore
443 1.1 gdamore if (chunk == NULL) {
444 1.1 gdamore return EOVERFLOW;
445 1.1 gdamore }
446 1.1 gdamore
447 1.1 gdamore /*
448 1.1 gdamore * chunk must be read only. SPI flash doesn't support
449 1.1 gdamore * any full duplex operations.
450 1.1 gdamore */
451 1.1 gdamore if ((chunk->chunk_wptr) || !(chunk->chunk_rptr)) {
452 1.1 gdamore return EINVAL;
453 1.1 gdamore }
454 1.1 gdamore
455 1.1 gdamore *chunk->chunk_rptr = byte;
456 1.1 gdamore chunk->chunk_rptr++;
457 1.1 gdamore chunk->chunk_wresid--; /* technically this was done at send time */
458 1.1 gdamore chunk->chunk_rresid--;
459 1.1 gdamore while (chunk && chunk->chunk_rresid == 0)
460 1.1 gdamore chunk = chunk->chunk_next;
461 1.1 gdamore
462 1.1 gdamore *chunkp = chunk;
463 1.1 gdamore return 0;
464 1.1 gdamore }
465 1.1 gdamore
466 1.1 gdamore int
467 1.1 gdamore arspi_make_job(struct spi_transfer *st)
468 1.1 gdamore {
469 1.1 gdamore struct arspi_job *job;
470 1.1 gdamore struct spi_chunk *chunk;
471 1.1 gdamore uint8_t byte;
472 1.1 gdamore int i, rv;
473 1.1 gdamore
474 1.13 thorpej job = kmem_zalloc(sizeof (struct arspi_job), KM_SLEEP);
475 1.1 gdamore
476 1.1 gdamore st->st_busprivate = job;
477 1.1 gdamore
478 1.1 gdamore /* skip any leading empty chunks (should not be any!) */
479 1.1 gdamore chunk = st->st_chunks;
480 1.1 gdamore
481 1.1 gdamore /* get transfer opcode */
482 1.1 gdamore if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
483 1.1 gdamore return rv;
484 1.1 gdamore
485 1.1 gdamore job->job_opcode = byte;
486 1.1 gdamore switch (job->job_opcode) {
487 1.1 gdamore case SPIFLASH_CMD_WREN:
488 1.1 gdamore case SPIFLASH_CMD_WRDI:
489 1.1 gdamore case SPIFLASH_CMD_CHIPERASE:
490 1.1 gdamore break;
491 1.1 gdamore case SPIFLASH_CMD_RDJI:
492 1.1 gdamore job->job_rxcnt = 3;
493 1.1 gdamore break;
494 1.1 gdamore case SPIFLASH_CMD_RDSR:
495 1.1 gdamore job->job_rxcnt = 1;
496 1.1 gdamore break;
497 1.1 gdamore case SPIFLASH_CMD_WRSR:
498 1.1 gdamore /*
499 1.1 gdamore * is this in data, or in address? stick it in data
500 1.1 gdamore * for now.
501 1.1 gdamore */
502 1.1 gdamore job->job_txcnt = 1;
503 1.1 gdamore break;
504 1.1 gdamore case SPIFLASH_CMD_RDID:
505 1.1 gdamore job->job_addrcnt = 3; /* 3 dummy bytes */
506 1.1 gdamore job->job_rxcnt = 1;
507 1.1 gdamore break;
508 1.1 gdamore case SPIFLASH_CMD_ERASE:
509 1.1 gdamore job->job_addrcnt = 3;
510 1.1 gdamore break;
511 1.1 gdamore case SPIFLASH_CMD_READ:
512 1.1 gdamore job->job_addrcnt = 3;
513 1.1 gdamore job->job_flags |= JOB_READ;
514 1.1 gdamore break;
515 1.1 gdamore case SPIFLASH_CMD_PROGRAM:
516 1.1 gdamore job->job_addrcnt = 3;
517 1.1 gdamore job->job_flags |= JOB_WRITE;
518 1.1 gdamore break;
519 1.1 gdamore case SPIFLASH_CMD_READFAST:
520 1.1 gdamore /*
521 1.1 gdamore * This is a pain in the arse to support, so we will
522 1.1 gdamore * rewrite as an ordinary read. But later, after we
523 1.1 gdamore * obtain the address.
524 1.1 gdamore */
525 1.1 gdamore job->job_addrcnt = 3; /* 3 address */
526 1.1 gdamore job->job_flags |= JOB_READ;
527 1.1 gdamore break;
528 1.1 gdamore default:
529 1.1 gdamore return EINVAL;
530 1.1 gdamore }
531 1.1 gdamore
532 1.1 gdamore for (i = 0; i < job->job_addrcnt; i++) {
533 1.1 gdamore if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
534 1.1 gdamore return rv;
535 1.1 gdamore job->job_addr <<= 8;
536 1.1 gdamore job->job_addr |= byte;
537 1.1 gdamore }
538 1.1 gdamore
539 1.1 gdamore
540 1.1 gdamore if (job->job_opcode == SPIFLASH_CMD_READFAST) {
541 1.1 gdamore /* eat the dummy timing byte */
542 1.1 gdamore if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
543 1.1 gdamore return rv;
544 1.1 gdamore /* rewrite this as a read */
545 1.1 gdamore job->job_opcode = SPIFLASH_CMD_READ;
546 1.1 gdamore }
547 1.1 gdamore
548 1.1 gdamore job->job_chunk = chunk;
549 1.1 gdamore
550 1.1 gdamore /*
551 1.1 gdamore * Now quickly check a few other things. Namely, we are not
552 1.1 gdamore * allowed to have both READ and WRITE.
553 1.1 gdamore */
554 1.1 gdamore for (chunk = job->job_chunk; chunk; chunk = chunk->chunk_next) {
555 1.1 gdamore if (chunk->chunk_wptr) {
556 1.1 gdamore job->job_wresid += chunk->chunk_wresid;
557 1.1 gdamore }
558 1.1 gdamore if (chunk->chunk_rptr) {
559 1.1 gdamore job->job_rresid += chunk->chunk_rresid;
560 1.1 gdamore }
561 1.1 gdamore }
562 1.1 gdamore
563 1.1 gdamore if (job->job_rresid && job->job_wresid) {
564 1.1 gdamore return EINVAL;
565 1.1 gdamore }
566 1.1 gdamore
567 1.1 gdamore return 0;
568 1.1 gdamore }
569 1.1 gdamore
570 1.2 gdamore /*
571 1.2 gdamore * NB: The Atheros SPI controller runs in little endian mode. So all
572 1.2 gdamore * data accesses must be swapped appropriately.
573 1.2 gdamore *
574 1.2 gdamore * The controller auto-swaps read accesses done through the mapped memory
575 1.2 gdamore * region, but when using SPI directly, we have to do the right thing to
576 1.2 gdamore * swap to or from little endian.
577 1.2 gdamore */
578 1.2 gdamore
579 1.1 gdamore void
580 1.1 gdamore arspi_update_job(struct spi_transfer *st)
581 1.1 gdamore {
582 1.1 gdamore struct arspi_job *job = st->st_busprivate;
583 1.1 gdamore uint8_t byte;
584 1.1 gdamore int i;
585 1.1 gdamore
586 1.1 gdamore if (job->job_flags & (JOB_WAIT|JOB_WREN))
587 1.1 gdamore return;
588 1.1 gdamore
589 1.1 gdamore job->job_rxcnt = 0;
590 1.1 gdamore job->job_txcnt = 0;
591 1.1 gdamore job->job_data = 0;
592 1.1 gdamore
593 1.11 riastrad job->job_txcnt = uimin(job->job_wresid, 4);
594 1.11 riastrad job->job_rxcnt = uimin(job->job_rresid, 4);
595 1.1 gdamore
596 1.1 gdamore job->job_wresid -= job->job_txcnt;
597 1.1 gdamore job->job_rresid -= job->job_rxcnt;
598 1.1 gdamore
599 1.1 gdamore for (i = 0; i < job->job_txcnt; i++) {
600 1.1 gdamore arspi_get_byte(&job->job_chunk, &byte);
601 1.2 gdamore job->job_data |= (byte << (i * 8));
602 1.1 gdamore }
603 1.1 gdamore
604 1.1 gdamore if ((!job->job_wresid) && (!job->job_rresid)) {
605 1.1 gdamore job->job_flags |= JOB_LAST;
606 1.1 gdamore }
607 1.1 gdamore }
608 1.1 gdamore
609 1.1 gdamore void
610 1.1 gdamore arspi_finish_job(struct spi_transfer *st)
611 1.1 gdamore {
612 1.1 gdamore struct arspi_job *job = st->st_busprivate;
613 1.1 gdamore uint8_t byte;
614 1.1 gdamore int i;
615 1.1 gdamore
616 1.1 gdamore job->job_addr += job->job_rxcnt;
617 1.1 gdamore job->job_addr += job->job_txcnt;
618 1.1 gdamore for (i = 0; i < job->job_rxcnt; i++) {
619 1.1 gdamore byte = job->job_data & 0xff;
620 1.1 gdamore job->job_data >>= 8;
621 1.1 gdamore arspi_put_byte(&job->job_chunk, byte);
622 1.1 gdamore }
623 1.1 gdamore }
624 1.1 gdamore
625