arspi.c revision 1.4 1 1.4 thorpej /* $NetBSD: arspi.c,v 1.4 2007/02/21 22:59:47 thorpej Exp $ */
2 1.1 gdamore
3 1.1 gdamore /*-
4 1.1 gdamore * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 1.1 gdamore * Copyright (c) 2006 Garrett D'Amore.
6 1.1 gdamore * All rights reserved.
7 1.1 gdamore *
8 1.1 gdamore * Portions of this code were written by Garrett D'Amore for the
9 1.1 gdamore * Champaign-Urbana Community Wireless Network Project.
10 1.1 gdamore *
11 1.1 gdamore * Redistribution and use in source and binary forms, with or
12 1.1 gdamore * without modification, are permitted provided that the following
13 1.1 gdamore * conditions are met:
14 1.1 gdamore * 1. Redistributions of source code must retain the above copyright
15 1.1 gdamore * notice, this list of conditions and the following disclaimer.
16 1.1 gdamore * 2. Redistributions in binary form must reproduce the above
17 1.1 gdamore * copyright notice, this list of conditions and the following
18 1.1 gdamore * disclaimer in the documentation and/or other materials provided
19 1.1 gdamore * with the distribution.
20 1.1 gdamore * 3. All advertising materials mentioning features or use of this
21 1.1 gdamore * software must display the following acknowledgements:
22 1.1 gdamore * This product includes software developed by the Urbana-Champaign
23 1.1 gdamore * Independent Media Center.
24 1.1 gdamore * This product includes software developed by Garrett D'Amore.
25 1.1 gdamore * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 1.1 gdamore * D'Amore's name may not be used to endorse or promote products
27 1.1 gdamore * derived from this software without specific prior written permission.
28 1.1 gdamore *
29 1.1 gdamore * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 1.1 gdamore * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 1.1 gdamore * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 1.1 gdamore * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 1.1 gdamore * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 1.1 gdamore * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 1.1 gdamore * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 1.1 gdamore * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 1.1 gdamore * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 1.1 gdamore * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 1.1 gdamore * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 1.1 gdamore * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 1.1 gdamore * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 1.1 gdamore */
43 1.1 gdamore
44 1.1 gdamore #include <sys/cdefs.h>
45 1.4 thorpej __KERNEL_RCSID(0, "$NetBSD: arspi.c,v 1.4 2007/02/21 22:59:47 thorpej Exp $");
46 1.1 gdamore
47 1.1 gdamore #include "locators.h"
48 1.1 gdamore
49 1.1 gdamore #include <sys/param.h>
50 1.1 gdamore #include <sys/systm.h>
51 1.1 gdamore #include <sys/kernel.h>
52 1.1 gdamore #include <sys/device.h>
53 1.1 gdamore #include <sys/errno.h>
54 1.1 gdamore #include <sys/malloc.h>
55 1.1 gdamore #include <sys/proc.h>
56 1.1 gdamore #include <sys/queue.h>
57 1.1 gdamore
58 1.1 gdamore #include <machine/bus.h>
59 1.1 gdamore #include <machine/cpu.h>
60 1.1 gdamore
61 1.1 gdamore #include <mips/atheros/include/ar5315reg.h>
62 1.1 gdamore #include <mips/atheros/include/ar531xvar.h>
63 1.1 gdamore #include <mips/atheros/include/arbusvar.h>
64 1.1 gdamore
65 1.1 gdamore #include <mips/atheros/dev/arspireg.h>
66 1.1 gdamore
67 1.1 gdamore #include <dev/spi/spiflash.h>
68 1.1 gdamore #include <dev/spi/spivar.h>
69 1.1 gdamore
70 1.1 gdamore /*
71 1.1 gdamore * This device is intended only to operate with specific SPI flash
72 1.1 gdamore * parts, and is not a general purpose SPI host. (Or at least if it
73 1.1 gdamore * is, the Linux and eCos sources do not show how to use it as such.)
74 1.1 gdamore * And lack of documentation on the Atheros SoCs is less than helpful.
75 1.1 gdamore *
76 1.1 gdamore * So for now we just "emulate" enough of the host bus framework to
77 1.1 gdamore * make the SPI flash drivers happy.
78 1.1 gdamore */
79 1.1 gdamore
80 1.1 gdamore struct arspi_job {
81 1.1 gdamore uint8_t job_opcode;
82 1.1 gdamore struct spi_chunk *job_chunk;
83 1.1 gdamore uint32_t job_flags;
84 1.1 gdamore uint32_t job_addr;
85 1.1 gdamore uint32_t job_data;
86 1.1 gdamore int job_rxcnt;
87 1.1 gdamore int job_txcnt;
88 1.1 gdamore int job_addrcnt;
89 1.1 gdamore int job_rresid;
90 1.1 gdamore int job_wresid;
91 1.1 gdamore };
92 1.1 gdamore
93 1.1 gdamore #define JOB_READ 0x1
94 1.1 gdamore #define JOB_WRITE 0x2
95 1.1 gdamore #define JOB_LAST 0x4
96 1.1 gdamore #define JOB_WAIT 0x8 /* job must wait for WIP bits */
97 1.1 gdamore #define JOB_WREN 0x10 /* WREN needed */
98 1.1 gdamore
99 1.1 gdamore struct arspi_softc {
100 1.1 gdamore struct device sc_dev;
101 1.1 gdamore struct spi_controller sc_spi;
102 1.1 gdamore void *sc_ih;
103 1.4 thorpej bool sc_interrupts;
104 1.1 gdamore
105 1.1 gdamore struct spi_transfer *sc_transfer;
106 1.1 gdamore struct spi_chunk *sc_wchunk; /* for partial writes */
107 1.1 gdamore struct spi_transq sc_transq;
108 1.1 gdamore bus_space_tag_t sc_st;
109 1.1 gdamore bus_space_handle_t sc_sh;
110 1.1 gdamore bus_size_t sc_size;
111 1.1 gdamore };
112 1.1 gdamore
113 1.1 gdamore #define STATIC
114 1.1 gdamore
115 1.1 gdamore STATIC int arspi_match(struct device *, struct cfdata *, void *);
116 1.1 gdamore STATIC void arspi_attach(struct device *, struct device *, void *);
117 1.1 gdamore STATIC void arspi_interrupts(struct device *);
118 1.1 gdamore STATIC int arspi_intr(void *);
119 1.1 gdamore /* SPI service routines */
120 1.1 gdamore STATIC int arspi_configure(void *, int, int, int);
121 1.1 gdamore STATIC int arspi_transfer(void *, struct spi_transfer *);
122 1.1 gdamore /* internal support */
123 1.1 gdamore STATIC void arspi_poll(struct arspi_softc *);
124 1.1 gdamore STATIC void arspi_done(struct arspi_softc *, int);
125 1.1 gdamore STATIC void arspi_sched(struct arspi_softc *);
126 1.1 gdamore STATIC int arspi_get_byte(struct spi_chunk **, uint8_t *);
127 1.1 gdamore STATIC int arspi_put_byte(struct spi_chunk **, uint8_t);
128 1.1 gdamore STATIC int arspi_make_job(struct spi_transfer *);
129 1.1 gdamore STATIC void arspi_update_job(struct spi_transfer *);
130 1.1 gdamore STATIC void arspi_finish_job(struct spi_transfer *);
131 1.1 gdamore
132 1.1 gdamore
133 1.1 gdamore CFATTACH_DECL(arspi, sizeof(struct arspi_softc),
134 1.1 gdamore arspi_match, arspi_attach, NULL, NULL);
135 1.1 gdamore
136 1.1 gdamore #define GETREG(sc, o) bus_space_read_4(sc->sc_st, sc->sc_sh, o)
137 1.1 gdamore #define PUTREG(sc, o, v) bus_space_write_4(sc->sc_st, sc->sc_sh, o, v)
138 1.1 gdamore
139 1.1 gdamore int
140 1.1 gdamore arspi_match(struct device *parent, struct cfdata *cf, void *aux)
141 1.1 gdamore {
142 1.1 gdamore struct arbus_attach_args *aa = aux;
143 1.1 gdamore
144 1.1 gdamore if (strcmp(aa->aa_name, cf->cf_name) != 0)
145 1.1 gdamore return 0;
146 1.1 gdamore return 1;
147 1.1 gdamore }
148 1.1 gdamore
149 1.1 gdamore void
150 1.1 gdamore arspi_attach(struct device *parent, struct device *self, void *aux)
151 1.1 gdamore {
152 1.1 gdamore struct arspi_softc *sc = device_private(self);
153 1.1 gdamore struct spibus_attach_args sba;
154 1.1 gdamore struct arbus_attach_args *aa = aux;
155 1.1 gdamore
156 1.1 gdamore /*
157 1.1 gdamore * Map registers.
158 1.1 gdamore */
159 1.1 gdamore sc->sc_st = aa->aa_bst;
160 1.1 gdamore sc->sc_size = aa->aa_size;
161 1.1 gdamore if (bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
162 1.1 gdamore &sc->sc_sh) != 0) {
163 1.1 gdamore printf(": unable to map registers!\n");
164 1.1 gdamore return;
165 1.1 gdamore }
166 1.1 gdamore
167 1.1 gdamore aprint_normal(": Atheros SPI controller\n");
168 1.1 gdamore
169 1.1 gdamore /*
170 1.1 gdamore * Initialize SPI controller.
171 1.1 gdamore */
172 1.1 gdamore sc->sc_spi.sct_cookie = sc;
173 1.1 gdamore sc->sc_spi.sct_configure = arspi_configure;
174 1.1 gdamore sc->sc_spi.sct_transfer = arspi_transfer;
175 1.1 gdamore sc->sc_spi.sct_nslaves = 1;
176 1.1 gdamore
177 1.1 gdamore
178 1.1 gdamore /*
179 1.1 gdamore * Initialize the queue.
180 1.1 gdamore */
181 1.1 gdamore spi_transq_init(&sc->sc_transq);
182 1.1 gdamore
183 1.1 gdamore /*
184 1.1 gdamore * Enable device interrupts.
185 1.1 gdamore */
186 1.1 gdamore sc->sc_ih = arbus_intr_establish(aa->aa_cirq, aa->aa_mirq,
187 1.1 gdamore arspi_intr, sc);
188 1.1 gdamore if (sc->sc_ih == NULL) {
189 1.1 gdamore aprint_error("%s: couldn't establish interrupt\n",
190 1.1 gdamore device_xname(self));
191 1.1 gdamore /* just leave it in polled mode */
192 1.1 gdamore } else
193 1.1 gdamore config_interrupts(self, arspi_interrupts);
194 1.1 gdamore
195 1.1 gdamore /*
196 1.1 gdamore * Initialize and attach bus attach.
197 1.1 gdamore */
198 1.1 gdamore sba.sba_controller = &sc->sc_spi;
199 1.1 gdamore (void) config_found_ia(&sc->sc_dev, "spibus", &sba, spibus_print);
200 1.1 gdamore }
201 1.1 gdamore
202 1.1 gdamore void
203 1.1 gdamore arspi_interrupts(struct device *self)
204 1.1 gdamore {
205 1.1 gdamore /*
206 1.1 gdamore * we never leave polling mode, because, apparently, we
207 1.1 gdamore * are missing some data about how to drive the SPI in interrupt
208 1.1 gdamore * mode.
209 1.1 gdamore */
210 1.1 gdamore #if 0
211 1.1 gdamore struct arspi_softc *sc = device_private(self);
212 1.1 gdamore int s;
213 1.1 gdamore
214 1.1 gdamore s = splserial();
215 1.1 gdamore sc->sc_interrupts = TRUE;
216 1.1 gdamore splx(s);
217 1.1 gdamore #endif
218 1.1 gdamore }
219 1.1 gdamore
220 1.1 gdamore int
221 1.1 gdamore arspi_intr(void *arg)
222 1.1 gdamore {
223 1.1 gdamore struct arspi_softc *sc = arg;
224 1.1 gdamore
225 1.1 gdamore while (GETREG(sc, ARSPI_REG_CTL) & ARSPI_CTL_BUSY);
226 1.1 gdamore
227 1.1 gdamore arspi_done(sc, 0);
228 1.1 gdamore
229 1.1 gdamore return 1;
230 1.1 gdamore }
231 1.1 gdamore
232 1.1 gdamore void
233 1.1 gdamore arspi_poll(struct arspi_softc *sc)
234 1.1 gdamore {
235 1.1 gdamore
236 1.1 gdamore while (sc->sc_transfer) {
237 1.1 gdamore arspi_intr(sc);
238 1.1 gdamore }
239 1.1 gdamore }
240 1.1 gdamore
241 1.1 gdamore int
242 1.1 gdamore arspi_configure(void *cookie, int slave, int mode, int speed)
243 1.1 gdamore {
244 1.1 gdamore
245 1.1 gdamore /*
246 1.1 gdamore * We don't support the full SPI protocol, and hopefully the
247 1.1 gdamore * firmware has programmed a reasonable mode already. So
248 1.1 gdamore * just a couple of quick sanity checks, then bail.
249 1.1 gdamore */
250 1.1 gdamore if ((mode != 0) || (slave != 0))
251 1.1 gdamore return EINVAL;
252 1.1 gdamore
253 1.1 gdamore return 0;
254 1.1 gdamore }
255 1.1 gdamore
256 1.1 gdamore int
257 1.1 gdamore arspi_transfer(void *cookie, struct spi_transfer *st)
258 1.1 gdamore {
259 1.1 gdamore struct arspi_softc *sc = cookie;
260 1.1 gdamore int rv;
261 1.1 gdamore int s;
262 1.1 gdamore
263 1.1 gdamore st->st_busprivate = NULL;
264 1.1 gdamore if ((rv = arspi_make_job(st)) != 0) {
265 1.1 gdamore if (st->st_busprivate) {
266 1.1 gdamore free(st->st_busprivate, M_DEVBUF);
267 1.1 gdamore st->st_busprivate = NULL;
268 1.1 gdamore }
269 1.1 gdamore spi_done(st, rv);
270 1.1 gdamore return rv;
271 1.1 gdamore }
272 1.1 gdamore
273 1.1 gdamore s = splserial();
274 1.1 gdamore spi_transq_enqueue(&sc->sc_transq, st);
275 1.1 gdamore if (sc->sc_transfer == NULL) {
276 1.1 gdamore arspi_sched(sc);
277 1.1 gdamore if (!sc->sc_interrupts)
278 1.1 gdamore arspi_poll(sc);
279 1.1 gdamore }
280 1.1 gdamore splx(s);
281 1.1 gdamore return 0;
282 1.1 gdamore }
283 1.1 gdamore
284 1.1 gdamore void
285 1.1 gdamore arspi_sched(struct arspi_softc *sc)
286 1.1 gdamore {
287 1.1 gdamore struct spi_transfer *st;
288 1.1 gdamore struct arspi_job *job;
289 1.1 gdamore uint32_t ctl, cnt;
290 1.1 gdamore
291 1.1 gdamore for (;;) {
292 1.1 gdamore if ((st = sc->sc_transfer) == NULL) {
293 1.1 gdamore if ((st = spi_transq_first(&sc->sc_transq)) == NULL) {
294 1.1 gdamore /* no work left to do */
295 1.1 gdamore break;
296 1.1 gdamore }
297 1.1 gdamore spi_transq_dequeue(&sc->sc_transq);
298 1.1 gdamore sc->sc_transfer = st;
299 1.1 gdamore }
300 1.1 gdamore
301 1.1 gdamore arspi_update_job(st);
302 1.1 gdamore job = st->st_busprivate;
303 1.1 gdamore
304 1.1 gdamore /* there shouldn't be anything running, but ensure it */
305 1.1 gdamore do {
306 1.1 gdamore ctl = GETREG(sc, ARSPI_REG_CTL);
307 1.1 gdamore } while (ctl & ARSPI_CTL_BUSY);
308 1.1 gdamore /* clear all of the tx and rx bits */
309 1.1 gdamore ctl &= ~(ARSPI_CTL_TXCNT_MASK | ARSPI_CTL_RXCNT_MASK);
310 1.1 gdamore
311 1.1 gdamore if (job->job_flags & JOB_WAIT) {
312 1.1 gdamore PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_RDSR);
313 1.1 gdamore /* only the opcode for tx */
314 1.1 gdamore ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
315 1.1 gdamore /* and one rx byte */
316 1.1 gdamore ctl |= (1 << ARSPI_CTL_RXCNT_SHIFT);
317 1.1 gdamore } else if (job->job_flags & JOB_WREN) {
318 1.1 gdamore PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_WREN);
319 1.1 gdamore /* just the opcode */
320 1.1 gdamore ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
321 1.1 gdamore /* no rx bytes */
322 1.1 gdamore } else {
323 1.1 gdamore /* set the data */
324 1.1 gdamore PUTREG(sc, ARSPI_REG_DATA, job->job_data);
325 1.1 gdamore
326 1.1 gdamore /* set the opcode and the address */
327 1.1 gdamore PUTREG(sc, ARSPI_REG_OPCODE, job->job_opcode |
328 1.1 gdamore (job->job_addr << 8));
329 1.1 gdamore
330 1.1 gdamore /* now set txcnt */
331 1.1 gdamore cnt = 1; /* opcode */
332 1.1 gdamore cnt += job->job_addrcnt + job->job_txcnt;
333 1.1 gdamore ctl |= (cnt << ARSPI_CTL_TXCNT_SHIFT);
334 1.1 gdamore
335 1.1 gdamore /* now set rxcnt */
336 1.1 gdamore cnt = job->job_rxcnt;
337 1.1 gdamore ctl |= (cnt << ARSPI_CTL_RXCNT_SHIFT);
338 1.1 gdamore }
339 1.1 gdamore
340 1.1 gdamore /* set the start bit */
341 1.1 gdamore ctl |= ARSPI_CTL_START;
342 1.1 gdamore
343 1.1 gdamore PUTREG(sc, ARSPI_REG_CTL, ctl);
344 1.1 gdamore break;
345 1.1 gdamore }
346 1.1 gdamore }
347 1.1 gdamore
348 1.1 gdamore void
349 1.1 gdamore arspi_done(struct arspi_softc *sc, int err)
350 1.1 gdamore {
351 1.1 gdamore struct spi_transfer *st;
352 1.1 gdamore struct arspi_job *job;
353 1.1 gdamore
354 1.1 gdamore if ((st = sc->sc_transfer) != NULL) {
355 1.1 gdamore job = st->st_busprivate;
356 1.1 gdamore
357 1.1 gdamore if (job->job_flags & JOB_WAIT) {
358 1.1 gdamore if (err == 0) {
359 1.1 gdamore if ((GETREG(sc, ARSPI_REG_DATA) &
360 1.1 gdamore SPIFLASH_SR_BUSY) == 0) {
361 1.1 gdamore /* intermediate wait done */
362 1.1 gdamore job->job_flags &= ~JOB_WAIT;
363 1.1 gdamore goto done;
364 1.1 gdamore }
365 1.1 gdamore }
366 1.1 gdamore } else if (job->job_flags & JOB_WREN) {
367 1.1 gdamore if (err == 0) {
368 1.1 gdamore job->job_flags &= ~JOB_WREN;
369 1.1 gdamore goto done;
370 1.1 gdamore }
371 1.1 gdamore } else if (err == 0) {
372 1.1 gdamore /*
373 1.1 gdamore * When breaking up write jobs, we have to wait until
374 1.3 wiz * the WIP bit is clear, and we have to separately
375 1.1 gdamore * send WREN for each chunk. These flags facilitate
376 1.1 gdamore * that.
377 1.1 gdamore */
378 1.1 gdamore if (job->job_flags & JOB_WRITE)
379 1.1 gdamore job->job_flags |= (JOB_WAIT | JOB_WREN);
380 1.1 gdamore job->job_data = GETREG(sc, ARSPI_REG_DATA);
381 1.1 gdamore arspi_finish_job(st);
382 1.1 gdamore }
383 1.1 gdamore
384 1.1 gdamore if (err || (job->job_flags & JOB_LAST)) {
385 1.1 gdamore sc->sc_transfer = NULL;
386 1.1 gdamore st->st_busprivate = NULL;
387 1.1 gdamore spi_done(st, err);
388 1.1 gdamore free(job, M_DEVBUF);
389 1.1 gdamore }
390 1.1 gdamore }
391 1.1 gdamore done:
392 1.1 gdamore arspi_sched(sc);
393 1.1 gdamore }
394 1.1 gdamore
395 1.1 gdamore int
396 1.1 gdamore arspi_get_byte(struct spi_chunk **chunkp, uint8_t *bytep)
397 1.1 gdamore {
398 1.1 gdamore struct spi_chunk *chunk;
399 1.1 gdamore
400 1.1 gdamore chunk = *chunkp;
401 1.1 gdamore
402 1.1 gdamore /* skip leading empty (or already consumed) chunks */
403 1.1 gdamore while (chunk && chunk->chunk_wresid == 0)
404 1.1 gdamore chunk = chunk->chunk_next;
405 1.1 gdamore
406 1.1 gdamore if (chunk == NULL) {
407 1.1 gdamore return ENODATA;
408 1.1 gdamore }
409 1.1 gdamore
410 1.1 gdamore /*
411 1.1 gdamore * chunk must be write only. SPI flash doesn't support
412 1.1 gdamore * any full duplex operations.
413 1.1 gdamore */
414 1.1 gdamore if ((chunk->chunk_rptr) || !(chunk->chunk_wptr)) {
415 1.1 gdamore return EINVAL;
416 1.1 gdamore }
417 1.1 gdamore
418 1.1 gdamore *bytep = *chunk->chunk_wptr;
419 1.1 gdamore chunk->chunk_wptr++;
420 1.1 gdamore chunk->chunk_wresid--;
421 1.1 gdamore chunk->chunk_rresid--;
422 1.1 gdamore /* clearing wptr and rptr makes sanity checks later easier */
423 1.1 gdamore if (chunk->chunk_wresid == 0)
424 1.1 gdamore chunk->chunk_wptr = NULL;
425 1.1 gdamore if (chunk->chunk_rresid == 0)
426 1.1 gdamore chunk->chunk_rptr = NULL;
427 1.1 gdamore while (chunk && chunk->chunk_wresid == 0)
428 1.1 gdamore chunk = chunk->chunk_next;
429 1.1 gdamore
430 1.1 gdamore *chunkp = chunk;
431 1.1 gdamore return 0;
432 1.1 gdamore }
433 1.1 gdamore
434 1.1 gdamore int
435 1.1 gdamore arspi_put_byte(struct spi_chunk **chunkp, uint8_t byte)
436 1.1 gdamore {
437 1.1 gdamore struct spi_chunk *chunk;
438 1.1 gdamore
439 1.1 gdamore chunk = *chunkp;
440 1.1 gdamore
441 1.1 gdamore /* skip leading empty (or already consumed) chunks */
442 1.1 gdamore while (chunk && chunk->chunk_rresid == 0)
443 1.1 gdamore chunk = chunk->chunk_next;
444 1.1 gdamore
445 1.1 gdamore if (chunk == NULL) {
446 1.1 gdamore return EOVERFLOW;
447 1.1 gdamore }
448 1.1 gdamore
449 1.1 gdamore /*
450 1.1 gdamore * chunk must be read only. SPI flash doesn't support
451 1.1 gdamore * any full duplex operations.
452 1.1 gdamore */
453 1.1 gdamore if ((chunk->chunk_wptr) || !(chunk->chunk_rptr)) {
454 1.1 gdamore return EINVAL;
455 1.1 gdamore }
456 1.1 gdamore
457 1.1 gdamore *chunk->chunk_rptr = byte;
458 1.1 gdamore chunk->chunk_rptr++;
459 1.1 gdamore chunk->chunk_wresid--; /* technically this was done at send time */
460 1.1 gdamore chunk->chunk_rresid--;
461 1.1 gdamore while (chunk && chunk->chunk_rresid == 0)
462 1.1 gdamore chunk = chunk->chunk_next;
463 1.1 gdamore
464 1.1 gdamore *chunkp = chunk;
465 1.1 gdamore return 0;
466 1.1 gdamore }
467 1.1 gdamore
468 1.1 gdamore int
469 1.1 gdamore arspi_make_job(struct spi_transfer *st)
470 1.1 gdamore {
471 1.1 gdamore struct arspi_job *job;
472 1.1 gdamore struct spi_chunk *chunk;
473 1.1 gdamore uint8_t byte;
474 1.1 gdamore int i, rv;
475 1.1 gdamore
476 1.1 gdamore job = malloc(sizeof (struct arspi_job), M_DEVBUF, M_ZERO);
477 1.1 gdamore if (job == NULL) {
478 1.1 gdamore return ENOMEM;
479 1.1 gdamore }
480 1.1 gdamore
481 1.1 gdamore st->st_busprivate = job;
482 1.1 gdamore
483 1.1 gdamore /* skip any leading empty chunks (should not be any!) */
484 1.1 gdamore chunk = st->st_chunks;
485 1.1 gdamore
486 1.1 gdamore /* get transfer opcode */
487 1.1 gdamore if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
488 1.1 gdamore return rv;
489 1.1 gdamore
490 1.1 gdamore job->job_opcode = byte;
491 1.1 gdamore switch (job->job_opcode) {
492 1.1 gdamore case SPIFLASH_CMD_WREN:
493 1.1 gdamore case SPIFLASH_CMD_WRDI:
494 1.1 gdamore case SPIFLASH_CMD_CHIPERASE:
495 1.1 gdamore break;
496 1.1 gdamore case SPIFLASH_CMD_RDJI:
497 1.1 gdamore job->job_rxcnt = 3;
498 1.1 gdamore break;
499 1.1 gdamore case SPIFLASH_CMD_RDSR:
500 1.1 gdamore job->job_rxcnt = 1;
501 1.1 gdamore break;
502 1.1 gdamore case SPIFLASH_CMD_WRSR:
503 1.1 gdamore /*
504 1.1 gdamore * is this in data, or in address? stick it in data
505 1.1 gdamore * for now.
506 1.1 gdamore */
507 1.1 gdamore job->job_txcnt = 1;
508 1.1 gdamore break;
509 1.1 gdamore case SPIFLASH_CMD_RDID:
510 1.1 gdamore job->job_addrcnt = 3; /* 3 dummy bytes */
511 1.1 gdamore job->job_rxcnt = 1;
512 1.1 gdamore break;
513 1.1 gdamore case SPIFLASH_CMD_ERASE:
514 1.1 gdamore job->job_addrcnt = 3;
515 1.1 gdamore break;
516 1.1 gdamore case SPIFLASH_CMD_READ:
517 1.1 gdamore job->job_addrcnt = 3;
518 1.1 gdamore job->job_flags |= JOB_READ;
519 1.1 gdamore break;
520 1.1 gdamore case SPIFLASH_CMD_PROGRAM:
521 1.1 gdamore job->job_addrcnt = 3;
522 1.1 gdamore job->job_flags |= JOB_WRITE;
523 1.1 gdamore break;
524 1.1 gdamore case SPIFLASH_CMD_READFAST:
525 1.1 gdamore /*
526 1.1 gdamore * This is a pain in the arse to support, so we will
527 1.1 gdamore * rewrite as an ordinary read. But later, after we
528 1.1 gdamore * obtain the address.
529 1.1 gdamore */
530 1.1 gdamore job->job_addrcnt = 3; /* 3 address */
531 1.1 gdamore job->job_flags |= JOB_READ;
532 1.1 gdamore break;
533 1.1 gdamore default:
534 1.1 gdamore return EINVAL;
535 1.1 gdamore }
536 1.1 gdamore
537 1.1 gdamore for (i = 0; i < job->job_addrcnt; i++) {
538 1.1 gdamore if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
539 1.1 gdamore return rv;
540 1.1 gdamore job->job_addr <<= 8;
541 1.1 gdamore job->job_addr |= byte;
542 1.1 gdamore }
543 1.1 gdamore
544 1.1 gdamore
545 1.1 gdamore if (job->job_opcode == SPIFLASH_CMD_READFAST) {
546 1.1 gdamore /* eat the dummy timing byte */
547 1.1 gdamore if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
548 1.1 gdamore return rv;
549 1.1 gdamore /* rewrite this as a read */
550 1.1 gdamore job->job_opcode = SPIFLASH_CMD_READ;
551 1.1 gdamore }
552 1.1 gdamore
553 1.1 gdamore job->job_chunk = chunk;
554 1.1 gdamore
555 1.1 gdamore /*
556 1.1 gdamore * Now quickly check a few other things. Namely, we are not
557 1.1 gdamore * allowed to have both READ and WRITE.
558 1.1 gdamore */
559 1.1 gdamore for (chunk = job->job_chunk; chunk; chunk = chunk->chunk_next) {
560 1.1 gdamore if (chunk->chunk_wptr) {
561 1.1 gdamore job->job_wresid += chunk->chunk_wresid;
562 1.1 gdamore }
563 1.1 gdamore if (chunk->chunk_rptr) {
564 1.1 gdamore job->job_rresid += chunk->chunk_rresid;
565 1.1 gdamore }
566 1.1 gdamore }
567 1.1 gdamore
568 1.1 gdamore if (job->job_rresid && job->job_wresid) {
569 1.1 gdamore return EINVAL;
570 1.1 gdamore }
571 1.1 gdamore
572 1.1 gdamore return 0;
573 1.1 gdamore }
574 1.1 gdamore
575 1.2 gdamore /*
576 1.2 gdamore * NB: The Atheros SPI controller runs in little endian mode. So all
577 1.2 gdamore * data accesses must be swapped appropriately.
578 1.2 gdamore *
579 1.2 gdamore * The controller auto-swaps read accesses done through the mapped memory
580 1.2 gdamore * region, but when using SPI directly, we have to do the right thing to
581 1.2 gdamore * swap to or from little endian.
582 1.2 gdamore */
583 1.2 gdamore
584 1.1 gdamore void
585 1.1 gdamore arspi_update_job(struct spi_transfer *st)
586 1.1 gdamore {
587 1.1 gdamore struct arspi_job *job = st->st_busprivate;
588 1.1 gdamore uint8_t byte;
589 1.1 gdamore int i;
590 1.1 gdamore
591 1.1 gdamore if (job->job_flags & (JOB_WAIT|JOB_WREN))
592 1.1 gdamore return;
593 1.1 gdamore
594 1.1 gdamore job->job_rxcnt = 0;
595 1.1 gdamore job->job_txcnt = 0;
596 1.1 gdamore job->job_data = 0;
597 1.1 gdamore
598 1.1 gdamore job->job_txcnt = min(job->job_wresid, 4);
599 1.1 gdamore job->job_rxcnt = min(job->job_rresid, 4);
600 1.1 gdamore
601 1.1 gdamore job->job_wresid -= job->job_txcnt;
602 1.1 gdamore job->job_rresid -= job->job_rxcnt;
603 1.1 gdamore
604 1.1 gdamore for (i = 0; i < job->job_txcnt; i++) {
605 1.1 gdamore arspi_get_byte(&job->job_chunk, &byte);
606 1.2 gdamore job->job_data |= (byte << (i * 8));
607 1.1 gdamore }
608 1.1 gdamore
609 1.1 gdamore if ((!job->job_wresid) && (!job->job_rresid)) {
610 1.1 gdamore job->job_flags |= JOB_LAST;
611 1.1 gdamore }
612 1.1 gdamore }
613 1.1 gdamore
614 1.1 gdamore void
615 1.1 gdamore arspi_finish_job(struct spi_transfer *st)
616 1.1 gdamore {
617 1.1 gdamore struct arspi_job *job = st->st_busprivate;
618 1.1 gdamore uint8_t byte;
619 1.1 gdamore int i;
620 1.1 gdamore
621 1.1 gdamore job->job_addr += job->job_rxcnt;
622 1.1 gdamore job->job_addr += job->job_txcnt;
623 1.1 gdamore for (i = 0; i < job->job_rxcnt; i++) {
624 1.1 gdamore byte = job->job_data & 0xff;
625 1.1 gdamore job->job_data >>= 8;
626 1.1 gdamore arspi_put_byte(&job->job_chunk, byte);
627 1.1 gdamore }
628 1.1 gdamore }
629 1.1 gdamore
630