Home | History | Annotate | Line # | Download | only in dev
arspi.c revision 1.10.36.1
      1 /* $NetBSD: arspi.c,v 1.10.36.1 2018/09/06 06:55:37 pgoyette Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
      5  * Copyright (c) 2006 Garrett D'Amore.
      6  * All rights reserved.
      7  *
      8  * Portions of this code were written by Garrett D'Amore for the
      9  * Champaign-Urbana Community Wireless Network Project.
     10  *
     11  * Redistribution and use in source and binary forms, with or
     12  * without modification, are permitted provided that the following
     13  * conditions are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above
     17  *    copyright notice, this list of conditions and the following
     18  *    disclaimer in the documentation and/or other materials provided
     19  *    with the distribution.
     20  * 3. All advertising materials mentioning features or use of this
     21  *    software must display the following acknowledgements:
     22  *      This product includes software developed by the Urbana-Champaign
     23  *      Independent Media Center.
     24  *	This product includes software developed by Garrett D'Amore.
     25  * 4. Urbana-Champaign Independent Media Center's name and Garrett
     26  *    D'Amore's name may not be used to endorse or promote products
     27  *    derived from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
     30  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
     31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     32  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
     34  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     38  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     40  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     41  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: arspi.c,v 1.10.36.1 2018/09/06 06:55:37 pgoyette Exp $");
     46 
     47 #include "locators.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/bus.h>
     51 #include <sys/cpu.h>
     52 #include <sys/device.h>
     53 #include <sys/errno.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/proc.h>
     57 #include <sys/systm.h>
     58 
     59 #include <mips/atheros/include/ar5315reg.h>
     60 #include <mips/atheros/include/arbusvar.h>
     61 
     62 #include <mips/atheros/dev/arspireg.h>
     63 
     64 #include <dev/spi/spiflash.h>
     65 #include <dev/spi/spivar.h>
     66 
     67 /*
     68  * This device is intended only to operate with specific SPI flash
     69  * parts, and is not a general purpose SPI host.  (Or at least if it
     70  * is, the Linux and eCos sources do not show how to use it as such.)
     71  * And lack of documentation on the Atheros SoCs is less than helpful.
     72  *
     73  * So for now we just "emulate" enough of the host bus framework to
     74  * make the SPI flash drivers happy.
     75  */
     76 
     77 struct arspi_job {
     78 	uint8_t			job_opcode;
     79 	struct spi_chunk	*job_chunk;
     80 	uint32_t		job_flags;
     81 	uint32_t		job_addr;
     82 	uint32_t		job_data;
     83 	int			job_rxcnt;
     84 	int			job_txcnt;
     85 	int			job_addrcnt;
     86 	int			job_rresid;
     87 	int			job_wresid;
     88 };
     89 
     90 #define	JOB_READ		0x1
     91 #define	JOB_WRITE		0x2
     92 #define	JOB_LAST		0x4
     93 #define	JOB_WAIT		0x8	/* job must wait for WIP bits */
     94 #define	JOB_WREN		0x10	/* WREN needed */
     95 
     96 struct arspi_softc {
     97 	struct spi_controller	sc_spi;
     98 	void			*sc_ih;
     99 	bool			sc_interrupts;
    100 
    101 	struct spi_transfer	*sc_transfer;
    102 	struct spi_chunk	*sc_wchunk;	/* for partial writes */
    103 	struct spi_transq	sc_transq;
    104 	bus_space_tag_t		sc_st;
    105 	bus_space_handle_t	sc_sh;
    106 	bus_size_t		sc_size;
    107 };
    108 
    109 #define	STATIC
    110 
    111 STATIC int arspi_match(device_t, cfdata_t, void *);
    112 STATIC void arspi_attach(device_t, device_t, void *);
    113 STATIC void arspi_interrupts(device_t);
    114 STATIC int arspi_intr(void *);
    115 /* SPI service routines */
    116 STATIC int arspi_configure(void *, int, int, int);
    117 STATIC int arspi_transfer(void *, struct spi_transfer *);
    118 /* internal support */
    119 STATIC void arspi_poll(struct arspi_softc *);
    120 STATIC void arspi_done(struct arspi_softc *, int);
    121 STATIC void arspi_sched(struct arspi_softc *);
    122 STATIC int arspi_get_byte(struct spi_chunk **, uint8_t *);
    123 STATIC int arspi_put_byte(struct spi_chunk **, uint8_t);
    124 STATIC int arspi_make_job(struct spi_transfer *);
    125 STATIC void arspi_update_job(struct spi_transfer *);
    126 STATIC void arspi_finish_job(struct spi_transfer *);
    127 
    128 
    129 CFATTACH_DECL_NEW(arspi, sizeof(struct arspi_softc),
    130     arspi_match, arspi_attach, NULL, NULL);
    131 
    132 #define	GETREG(sc, o)		bus_space_read_4(sc->sc_st, sc->sc_sh, o)
    133 #define	PUTREG(sc, o, v)	bus_space_write_4(sc->sc_st, sc->sc_sh, o, v)
    134 
    135 int
    136 arspi_match(device_t parent, cfdata_t cf, void *aux)
    137 {
    138 	struct arbus_attach_args *aa = aux;
    139 
    140 	if (strcmp(aa->aa_name, cf->cf_name) != 0)
    141 		return 0;
    142 	return 1;
    143 }
    144 
    145 void
    146 arspi_attach(device_t parent, device_t self, void *aux)
    147 {
    148 	struct arspi_softc *sc = device_private(self);
    149 	struct spibus_attach_args sba;
    150 	struct arbus_attach_args *aa = aux;
    151 
    152 	/*
    153 	 * Map registers.
    154 	 */
    155 	sc->sc_st = aa->aa_bst;
    156 	sc->sc_size = aa->aa_size;
    157 	if (bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
    158 		&sc->sc_sh) != 0) {
    159 		printf(": unable to map registers!\n");
    160 		return;
    161 	}
    162 
    163 	aprint_normal(": Atheros SPI controller\n");
    164 
    165 	/*
    166 	 * Initialize SPI controller.
    167 	 */
    168 	sc->sc_spi.sct_cookie = sc;
    169 	sc->sc_spi.sct_configure = arspi_configure;
    170 	sc->sc_spi.sct_transfer = arspi_transfer;
    171 	sc->sc_spi.sct_nslaves = 1;
    172 
    173 
    174 	/*
    175 	 * Initialize the queue.
    176 	 */
    177 	spi_transq_init(&sc->sc_transq);
    178 
    179 	/*
    180 	 * Enable device interrupts.
    181 	 */
    182 	sc->sc_ih = arbus_intr_establish(aa->aa_cirq, aa->aa_mirq,
    183 	    arspi_intr, sc);
    184 	if (sc->sc_ih == NULL) {
    185 		aprint_error("%s: couldn't establish interrupt\n",
    186 		    device_xname(self));
    187 		/* just leave it in polled mode */
    188 	} else
    189 		config_interrupts(self, arspi_interrupts);
    190 
    191 	/*
    192 	 * Initialize and attach bus attach.
    193 	 */
    194 	sba.sba_controller = &sc->sc_spi;
    195 	(void) config_found_ia(self, "spibus", &sba, spibus_print);
    196 }
    197 
    198 void
    199 arspi_interrupts(device_t self)
    200 {
    201 	/*
    202 	 * we never leave polling mode, because, apparently, we
    203 	 * are missing some data about how to drive the SPI in interrupt
    204 	 * mode.
    205 	 */
    206 #if 0
    207 	struct arspi_softc *sc = device_private(self);
    208 	int	s;
    209 
    210 	s = splbio();
    211 	sc->sc_interrupts = true;
    212 	splx(s);
    213 #endif
    214 }
    215 
    216 int
    217 arspi_intr(void *arg)
    218 {
    219 	struct arspi_softc *sc = arg;
    220 
    221 	while (GETREG(sc, ARSPI_REG_CTL) & ARSPI_CTL_BUSY);
    222 
    223 	arspi_done(sc, 0);
    224 
    225 	return 1;
    226 }
    227 
    228 void
    229 arspi_poll(struct arspi_softc *sc)
    230 {
    231 
    232 	while (sc->sc_transfer) {
    233 		arspi_intr(sc);
    234 	}
    235 }
    236 
    237 int
    238 arspi_configure(void *cookie, int slave, int mode, int speed)
    239 {
    240 
    241 	/*
    242 	 * We don't support the full SPI protocol, and hopefully the
    243 	 * firmware has programmed a reasonable mode already.  So
    244 	 * just a couple of quick sanity checks, then bail.
    245 	 */
    246 	if ((mode != 0) || (slave != 0))
    247 		return EINVAL;
    248 
    249 	return 0;
    250 }
    251 
    252 int
    253 arspi_transfer(void *cookie, struct spi_transfer *st)
    254 {
    255 	struct arspi_softc *sc = cookie;
    256 	int rv;
    257 	int s;
    258 
    259 	st->st_busprivate = NULL;
    260 	if ((rv = arspi_make_job(st)) != 0) {
    261 		if (st->st_busprivate) {
    262 			free(st->st_busprivate, M_DEVBUF);
    263 			st->st_busprivate = NULL;
    264 		}
    265 		spi_done(st, rv);
    266 		return rv;
    267 	}
    268 
    269 	s = splbio();
    270 	spi_transq_enqueue(&sc->sc_transq, st);
    271 	if (sc->sc_transfer == NULL) {
    272 		arspi_sched(sc);
    273 		if (!sc->sc_interrupts)
    274 			arspi_poll(sc);
    275 	}
    276 	splx(s);
    277 	return 0;
    278 }
    279 
    280 void
    281 arspi_sched(struct arspi_softc *sc)
    282 {
    283 	struct spi_transfer *st;
    284 	struct arspi_job *job;
    285 	uint32_t ctl, cnt;
    286 
    287 	for (;;) {
    288 		if ((st = sc->sc_transfer) == NULL) {
    289 			if ((st = spi_transq_first(&sc->sc_transq)) == NULL) {
    290 				/* no work left to do */
    291 				break;
    292 			}
    293 			spi_transq_dequeue(&sc->sc_transq);
    294 			sc->sc_transfer = st;
    295 		}
    296 
    297 		arspi_update_job(st);
    298 		job = st->st_busprivate;
    299 
    300 		/* there shouldn't be anything running, but ensure it */
    301 		do {
    302 			ctl = GETREG(sc, ARSPI_REG_CTL);
    303 		}  while (ctl & ARSPI_CTL_BUSY);
    304 		/* clear all of the tx and rx bits */
    305 		ctl &= ~(ARSPI_CTL_TXCNT_MASK | ARSPI_CTL_RXCNT_MASK);
    306 
    307 		if (job->job_flags & JOB_WAIT) {
    308 			PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_RDSR);
    309 			/* only the opcode for tx */
    310 			ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
    311 			/* and one rx byte */
    312 			ctl |= (1 << ARSPI_CTL_RXCNT_SHIFT);
    313 		} else if (job->job_flags & JOB_WREN) {
    314 			PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_WREN);
    315 			/* just the opcode */
    316 			ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
    317 			/* no rx bytes */
    318 		} else {
    319 			/* set the data */
    320 			PUTREG(sc, ARSPI_REG_DATA, job->job_data);
    321 
    322 			/* set the opcode and the address */
    323 			PUTREG(sc, ARSPI_REG_OPCODE, job->job_opcode |
    324 			    (job->job_addr << 8));
    325 
    326 			/* now set txcnt */
    327 			cnt = 1;	/* opcode */
    328 			cnt += job->job_addrcnt + job->job_txcnt;
    329 			ctl |= (cnt << ARSPI_CTL_TXCNT_SHIFT);
    330 
    331 			/* now set rxcnt */
    332 			cnt = job->job_rxcnt;
    333 			ctl |= (cnt << ARSPI_CTL_RXCNT_SHIFT);
    334 		}
    335 
    336 		/* set the start bit */
    337 		ctl |= ARSPI_CTL_START;
    338 
    339 		PUTREG(sc, ARSPI_REG_CTL, ctl);
    340 		break;
    341 	}
    342 }
    343 
    344 void
    345 arspi_done(struct arspi_softc *sc, int err)
    346 {
    347 	struct spi_transfer *st;
    348 	struct arspi_job *job;
    349 
    350 	if ((st = sc->sc_transfer) != NULL) {
    351 		job = st->st_busprivate;
    352 
    353 		if (job->job_flags & JOB_WAIT) {
    354 			if (err == 0) {
    355 				if ((GETREG(sc, ARSPI_REG_DATA) &
    356 				    SPIFLASH_SR_BUSY) == 0) {
    357 					/* intermediate wait done */
    358 					job->job_flags &= ~JOB_WAIT;
    359 					goto done;
    360 				}
    361 			}
    362 		} else if (job->job_flags & JOB_WREN) {
    363 			if (err == 0) {
    364 				job->job_flags &= ~JOB_WREN;
    365 				goto done;
    366 			}
    367 		} else if (err == 0) {
    368 			/*
    369 			 * When breaking up write jobs, we have to wait until
    370 			 * the WIP bit is clear, and we have to separately
    371 			 * send WREN for each chunk.  These flags facilitate
    372 			 * that.
    373 			 */
    374 			if (job->job_flags & JOB_WRITE)
    375 				job->job_flags |= (JOB_WAIT | JOB_WREN);
    376 			job->job_data = GETREG(sc, ARSPI_REG_DATA);
    377 			arspi_finish_job(st);
    378 		}
    379 
    380 		if (err || (job->job_flags & JOB_LAST)) {
    381 			sc->sc_transfer = NULL;
    382 			st->st_busprivate = NULL;
    383 			spi_done(st, err);
    384 			free(job, M_DEVBUF);
    385 		}
    386 	}
    387 done:
    388 	arspi_sched(sc);
    389 }
    390 
    391 int
    392 arspi_get_byte(struct spi_chunk **chunkp, uint8_t *bytep)
    393 {
    394 	struct spi_chunk *chunk;
    395 
    396 	chunk = *chunkp;
    397 
    398 	/* skip leading empty (or already consumed) chunks */
    399 	while (chunk && chunk->chunk_wresid == 0)
    400 		chunk = chunk->chunk_next;
    401 
    402 	if (chunk == NULL) {
    403 		return ENODATA;
    404 	}
    405 
    406 	/*
    407 	 * chunk must be write only.  SPI flash doesn't support
    408 	 * any full duplex operations.
    409 	 */
    410 	if ((chunk->chunk_rptr) || !(chunk->chunk_wptr)) {
    411 		return EINVAL;
    412 	}
    413 
    414 	*bytep = *chunk->chunk_wptr;
    415 	chunk->chunk_wptr++;
    416 	chunk->chunk_wresid--;
    417 	chunk->chunk_rresid--;
    418 	/* clearing wptr and rptr makes sanity checks later easier */
    419 	if (chunk->chunk_wresid == 0)
    420 		chunk->chunk_wptr = NULL;
    421 	if (chunk->chunk_rresid == 0)
    422 		chunk->chunk_rptr = NULL;
    423 	while (chunk && chunk->chunk_wresid == 0)
    424 		chunk = chunk->chunk_next;
    425 
    426 	*chunkp = chunk;
    427 	return 0;
    428 }
    429 
    430 int
    431 arspi_put_byte(struct spi_chunk **chunkp, uint8_t byte)
    432 {
    433 	struct spi_chunk *chunk;
    434 
    435 	chunk = *chunkp;
    436 
    437 	/* skip leading empty (or already consumed) chunks */
    438 	while (chunk && chunk->chunk_rresid == 0)
    439 		chunk = chunk->chunk_next;
    440 
    441 	if (chunk == NULL) {
    442 		return EOVERFLOW;
    443 	}
    444 
    445 	/*
    446 	 * chunk must be read only.  SPI flash doesn't support
    447 	 * any full duplex operations.
    448 	 */
    449 	if ((chunk->chunk_wptr) || !(chunk->chunk_rptr)) {
    450 		return EINVAL;
    451 	}
    452 
    453 	*chunk->chunk_rptr = byte;
    454 	chunk->chunk_rptr++;
    455 	chunk->chunk_wresid--;	/* technically this was done at send time */
    456 	chunk->chunk_rresid--;
    457 	while (chunk && chunk->chunk_rresid == 0)
    458 		chunk = chunk->chunk_next;
    459 
    460 	*chunkp = chunk;
    461 	return 0;
    462 }
    463 
    464 int
    465 arspi_make_job(struct spi_transfer *st)
    466 {
    467 	struct arspi_job *job;
    468 	struct spi_chunk *chunk;
    469 	uint8_t byte;
    470 	int i, rv;
    471 
    472 	job = malloc(sizeof (struct arspi_job), M_DEVBUF, M_ZERO);
    473 	if (job == NULL) {
    474 		return ENOMEM;
    475 	}
    476 
    477 	st->st_busprivate = job;
    478 
    479 	/* skip any leading empty chunks (should not be any!) */
    480 	chunk = st->st_chunks;
    481 
    482 	/* get transfer opcode */
    483 	if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
    484 		return rv;
    485 
    486 	job->job_opcode = byte;
    487 	switch (job->job_opcode) {
    488 	case SPIFLASH_CMD_WREN:
    489 	case SPIFLASH_CMD_WRDI:
    490 	case SPIFLASH_CMD_CHIPERASE:
    491 		break;
    492 	case SPIFLASH_CMD_RDJI:
    493 		job->job_rxcnt = 3;
    494 		break;
    495 	case SPIFLASH_CMD_RDSR:
    496 		job->job_rxcnt = 1;
    497 		break;
    498 	case SPIFLASH_CMD_WRSR:
    499 		/*
    500 		 * is this in data, or in address?  stick it in data
    501 		 * for now.
    502 		 */
    503 		job->job_txcnt = 1;
    504 		break;
    505 	case SPIFLASH_CMD_RDID:
    506 		job->job_addrcnt = 3;	/* 3 dummy bytes */
    507 		job->job_rxcnt = 1;
    508 		break;
    509 	case SPIFLASH_CMD_ERASE:
    510 		job->job_addrcnt = 3;
    511 		break;
    512 	case SPIFLASH_CMD_READ:
    513 		job->job_addrcnt = 3;
    514 		job->job_flags |= JOB_READ;
    515 		break;
    516 	case SPIFLASH_CMD_PROGRAM:
    517 		job->job_addrcnt = 3;
    518 		job->job_flags |= JOB_WRITE;
    519 		break;
    520 	case SPIFLASH_CMD_READFAST:
    521 		/*
    522 		 * This is a pain in the arse to support, so we will
    523 		 * rewrite as an ordinary read.  But later, after we
    524 		 * obtain the address.
    525 		 */
    526 		job->job_addrcnt = 3;	/* 3 address */
    527 		job->job_flags |= JOB_READ;
    528 		break;
    529 	default:
    530 		return EINVAL;
    531 	}
    532 
    533 	for (i = 0; i < job->job_addrcnt; i++) {
    534 		if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
    535 			return rv;
    536 		job->job_addr <<= 8;
    537 		job->job_addr |= byte;
    538 	}
    539 
    540 
    541 	if (job->job_opcode == SPIFLASH_CMD_READFAST) {
    542 		/* eat the dummy timing byte */
    543 		if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
    544 			return rv;
    545 		/* rewrite this as a read */
    546 		job->job_opcode = SPIFLASH_CMD_READ;
    547 	}
    548 
    549 	job->job_chunk = chunk;
    550 
    551 	/*
    552 	 * Now quickly check a few other things.   Namely, we are not
    553 	 * allowed to have both READ and WRITE.
    554 	 */
    555 	for (chunk = job->job_chunk; chunk; chunk = chunk->chunk_next) {
    556 		if (chunk->chunk_wptr) {
    557 			job->job_wresid += chunk->chunk_wresid;
    558 		}
    559 		if (chunk->chunk_rptr) {
    560 			job->job_rresid += chunk->chunk_rresid;
    561 		}
    562 	}
    563 
    564 	if (job->job_rresid && job->job_wresid) {
    565 		return EINVAL;
    566 	}
    567 
    568 	return 0;
    569 }
    570 
    571 /*
    572  * NB: The Atheros SPI controller runs in little endian mode. So all
    573  * data accesses must be swapped appropriately.
    574  *
    575  * The controller auto-swaps read accesses done through the mapped memory
    576  * region, but when using SPI directly, we have to do the right thing to
    577  * swap to or from little endian.
    578  */
    579 
    580 void
    581 arspi_update_job(struct spi_transfer *st)
    582 {
    583 	struct arspi_job *job = st->st_busprivate;
    584 	uint8_t byte;
    585 	int i;
    586 
    587 	if (job->job_flags & (JOB_WAIT|JOB_WREN))
    588 		return;
    589 
    590 	job->job_rxcnt = 0;
    591 	job->job_txcnt = 0;
    592 	job->job_data = 0;
    593 
    594 	job->job_txcnt = uimin(job->job_wresid, 4);
    595 	job->job_rxcnt = uimin(job->job_rresid, 4);
    596 
    597 	job->job_wresid -= job->job_txcnt;
    598 	job->job_rresid -= job->job_rxcnt;
    599 
    600 	for (i = 0; i < job->job_txcnt; i++) {
    601 		arspi_get_byte(&job->job_chunk, &byte);
    602 		job->job_data |= (byte << (i * 8));
    603 	}
    604 
    605 	if ((!job->job_wresid) && (!job->job_rresid)) {
    606 		job->job_flags |= JOB_LAST;
    607 	}
    608 }
    609 
    610 void
    611 arspi_finish_job(struct spi_transfer *st)
    612 {
    613 	struct arspi_job *job = st->st_busprivate;
    614 	uint8_t	byte;
    615 	int i;
    616 
    617 	job->job_addr += job->job_rxcnt;
    618 	job->job_addr += job->job_txcnt;
    619 	for (i = 0; i < job->job_rxcnt; i++) {
    620 		byte = job->job_data & 0xff;
    621 		job->job_data >>= 8;
    622 		arspi_put_byte(&job->job_chunk, byte);
    623 	}
    624 }
    625 
    626