if_ae.c revision 1.10 1 /* $Id: if_ae.c,v 1.10 2008/01/19 22:10:15 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. All advertising materials mentioning features or use of this software
59 * must display the following acknowledgement:
60 * This product includes software developed by the NetBSD
61 * Foundation, Inc. and its contributors.
62 * 4. Neither the name of The NetBSD Foundation nor the names of its
63 * contributors may be used to endorse or promote products derived
64 * from this software without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
67 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
68 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
69 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
70 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
71 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
72 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
73 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
74 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
75 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGE.
77 */
78
79 /*
80 * Device driver for the onboard ethernet MAC found on the AR5312
81 * chip's AHB bus.
82 *
83 * This device is very simliar to the tulip in most regards, and
84 * the code is directly derived from NetBSD's tulip.c. However, it
85 * is different enough that it did not seem to be a good idea to
86 * add further complexity to the tulip driver, so we have our own.
87 *
88 * Also tulip has a lot of complexity in it for various parts/options
89 * that we don't need, and on these little boxes with only ~8MB RAM, we
90 * don't want any extra bloat.
91 */
92
93 /*
94 * TODO:
95 *
96 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
97 * inbound packets on a half-word boundary, which would make life easier
98 * for TCP/IP. (Aligning IP headers on a word.)
99 *
100 * 2) There is stuff in original tulip to shut down the device when reacting
101 * to a a change in link status. Is that needed.
102 *
103 * 3) Test with variety of 10/100 HDX/FDX scenarios.
104 *
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.10 2008/01/19 22:10:15 dyoung Exp $");
109
110 #include "bpfilter.h"
111
112 #include <sys/param.h>
113 #include <sys/systm.h>
114 #include <sys/callout.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/ioctl.h>
120 #include <sys/errno.h>
121 #include <sys/device.h>
122
123 #include <machine/endian.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #include <net/if.h>
128 #include <net/if_dl.h>
129 #include <net/if_media.h>
130 #include <net/if_ether.h>
131
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141 #include <dev/mii/mii_bitbang.h>
142
143 #include <mips/atheros/include/arbusvar.h>
144 #include <mips/atheros/dev/aereg.h>
145 #include <mips/atheros/dev/aevar.h>
146
147 static const struct {
148 u_int32_t txth_opmode; /* OPMODE bits */
149 const char *txth_name; /* name of mode */
150 } ae_txthresh[] = {
151 { OPMODE_TR_32, "32 words" },
152 { OPMODE_TR_64, "64 words" },
153 { OPMODE_TR_128, "128 words" },
154 { OPMODE_TR_256, "256 words" },
155 { OPMODE_SF, "store and forward mode" },
156 { 0, NULL },
157 };
158
159 static int ae_match(struct device *, struct cfdata *, void *);
160 static void ae_attach(struct device *, struct device *, void *);
161 static int ae_detach(struct device *, int);
162 static int ae_activate(struct device *, enum devact);
163
164 static void ae_reset(struct ae_softc *);
165 static void ae_idle(struct ae_softc *, u_int32_t);
166
167 static void ae_start(struct ifnet *);
168 static void ae_watchdog(struct ifnet *);
169 static int ae_ioctl(struct ifnet *, u_long, void *);
170 static int ae_init(struct ifnet *);
171 static void ae_stop(struct ifnet *, int);
172
173 static void ae_shutdown(void *);
174
175 static void ae_rxdrain(struct ae_softc *);
176 static int ae_add_rxbuf(struct ae_softc *, int);
177
178 static int ae_enable(struct ae_softc *);
179 static void ae_disable(struct ae_softc *);
180 static void ae_power(int, void *);
181
182 static void ae_filter_setup(struct ae_softc *);
183
184 static int ae_intr(void *);
185 static void ae_rxintr(struct ae_softc *);
186 static void ae_txintr(struct ae_softc *);
187
188 static void ae_mii_tick(void *);
189 static void ae_mii_statchg(struct device *);
190
191 static int ae_mii_readreg(struct device *, int, int);
192 static void ae_mii_writereg(struct device *, int, int, int);
193
194 #ifdef AE_DEBUG
195 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
196 printf x
197 #else
198 #define DPRINTF(sc, x) /* nothing */
199 #endif
200
201 #ifdef AE_STATS
202 static void ae_print_stats(struct ae_softc *);
203 #endif
204
205 CFATTACH_DECL(ae, sizeof(struct ae_softc),
206 ae_match, ae_attach, ae_detach, ae_activate);
207
208 /*
209 * ae_match:
210 *
211 * Check for a device match.
212 */
213 int
214 ae_match(struct device *parent, struct cfdata *cf, void *aux)
215 {
216 struct arbus_attach_args *aa = aux;
217
218 if (strcmp(aa->aa_name, cf->cf_name) == 0)
219 return 1;
220
221 return 0;
222
223 }
224
225 /*
226 * ae_attach:
227 *
228 * Attach an ae interface to the system.
229 */
230 void
231 ae_attach(struct device *parent, struct device *self, void *aux)
232 {
233 const uint8_t *enaddr;
234 prop_data_t ea;
235 struct ae_softc *sc = (void *)self;
236 struct arbus_attach_args *aa = aux;
237 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
238 int i, error;
239
240 callout_init(&sc->sc_tick_callout, 0);
241
242 printf(": Atheros AR531X 10/100 Ethernet\n");
243
244 /*
245 * Try to get MAC address.
246 */
247 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
248 if (ea == NULL) {
249 printf("%s: unable to get mac-addr property\n",
250 sc->sc_dev.dv_xname);
251 return;
252 }
253 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
254 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
255 enaddr = prop_data_data_nocopy(ea);
256
257 /* Announce ourselves. */
258 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
259 ether_sprintf(enaddr));
260
261 sc->sc_cirq = aa->aa_cirq;
262 sc->sc_mirq = aa->aa_mirq;
263 sc->sc_st = aa->aa_bst;
264 sc->sc_dmat = aa->aa_dmat;
265
266 SIMPLEQ_INIT(&sc->sc_txfreeq);
267 SIMPLEQ_INIT(&sc->sc_txdirtyq);
268
269 /*
270 * Map registers.
271 */
272 sc->sc_size = aa->aa_size;
273 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
274 &sc->sc_sh)) != 0) {
275 printf("%s: unable to map registers, error = %d\n",
276 sc->sc_dev.dv_xname, error);
277 goto fail_0;
278 }
279
280 /*
281 * Allocate the control data structures, and create and load the
282 * DMA map for it.
283 */
284 if ((error = bus_dmamem_alloc(sc->sc_dmat,
285 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
286 1, &sc->sc_cdnseg, 0)) != 0) {
287 printf("%s: unable to allocate control data, error = %d\n",
288 sc->sc_dev.dv_xname, error);
289 goto fail_1;
290 }
291
292 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
293 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
294 BUS_DMA_COHERENT)) != 0) {
295 printf("%s: unable to map control data, error = %d\n",
296 sc->sc_dev.dv_xname, error);
297 goto fail_2;
298 }
299
300 if ((error = bus_dmamap_create(sc->sc_dmat,
301 sizeof(struct ae_control_data), 1,
302 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
303 printf("%s: unable to create control data DMA map, "
304 "error = %d\n", sc->sc_dev.dv_xname, error);
305 goto fail_3;
306 }
307
308 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
309 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
310 0)) != 0) {
311 printf("%s: unable to load control data DMA map, error = %d\n",
312 sc->sc_dev.dv_xname, error);
313 goto fail_4;
314 }
315
316 /*
317 * Create the transmit buffer DMA maps.
318 */
319 for (i = 0; i < AE_TXQUEUELEN; i++) {
320 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
321 AE_NTXSEGS, MCLBYTES, 0, 0,
322 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
323 printf("%s: unable to create tx DMA map %d, "
324 "error = %d\n", sc->sc_dev.dv_xname, i, error);
325 goto fail_5;
326 }
327 }
328
329 /*
330 * Create the receive buffer DMA maps.
331 */
332 for (i = 0; i < AE_NRXDESC; i++) {
333 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
334 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
335 printf("%s: unable to create rx DMA map %d, "
336 "error = %d\n", sc->sc_dev.dv_xname, i, error);
337 goto fail_6;
338 }
339 sc->sc_rxsoft[i].rxs_mbuf = NULL;
340 }
341
342 /*
343 * Reset the chip to a known state.
344 */
345 ae_reset(sc);
346
347 /*
348 * From this point forward, the attachment cannot fail. A failure
349 * before this point releases all resources that may have been
350 * allocated.
351 */
352 sc->sc_flags |= AE_ATTACHED;
353
354 /*
355 * Initialize our media structures. This may probe the MII, if
356 * present.
357 */
358 sc->sc_mii.mii_ifp = ifp;
359 sc->sc_mii.mii_readreg = ae_mii_readreg;
360 sc->sc_mii.mii_writereg = ae_mii_writereg;
361 sc->sc_mii.mii_statchg = ae_mii_statchg;
362 sc->sc_ethercom.ec_mii = &sc->sc_mii;
363 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
364 ether_mediastatus);
365 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
366 MII_OFFSET_ANY, 0);
367
368 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
369 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
370 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
371 } else
372 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
373
374 sc->sc_tick = ae_mii_tick;
375
376 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
377 ifp->if_softc = sc;
378 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
379 sc->sc_if_flags = ifp->if_flags;
380 ifp->if_ioctl = ae_ioctl;
381 ifp->if_start = ae_start;
382 ifp->if_watchdog = ae_watchdog;
383 ifp->if_init = ae_init;
384 ifp->if_stop = ae_stop;
385 IFQ_SET_READY(&ifp->if_snd);
386
387 /*
388 * We can support 802.1Q VLAN-sized frames.
389 */
390 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
391
392 /*
393 * Attach the interface.
394 */
395 if_attach(ifp);
396 ether_ifattach(ifp, enaddr);
397
398 #if NRND > 0
399 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
400 RND_TYPE_NET, 0);
401 #endif
402
403 /*
404 * Make sure the interface is shutdown during reboot.
405 */
406 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
407 if (sc->sc_sdhook == NULL)
408 printf("%s: WARNING: unable to establish shutdown hook\n",
409 sc->sc_dev.dv_xname);
410
411 /*
412 * Add a suspend hook to make sure we come back up after a
413 * resume.
414 */
415 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
416 ae_power, sc);
417 if (sc->sc_powerhook == NULL)
418 printf("%s: WARNING: unable to establish power hook\n",
419 sc->sc_dev.dv_xname);
420 return;
421
422 /*
423 * Free any resources we've allocated during the failed attach
424 * attempt. Do this in reverse order and fall through.
425 */
426 fail_6:
427 for (i = 0; i < AE_NRXDESC; i++) {
428 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
429 bus_dmamap_destroy(sc->sc_dmat,
430 sc->sc_rxsoft[i].rxs_dmamap);
431 }
432 fail_5:
433 for (i = 0; i < AE_TXQUEUELEN; i++) {
434 if (sc->sc_txsoft[i].txs_dmamap != NULL)
435 bus_dmamap_destroy(sc->sc_dmat,
436 sc->sc_txsoft[i].txs_dmamap);
437 }
438 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
439 fail_4:
440 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
441 fail_3:
442 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
443 sizeof(struct ae_control_data));
444 fail_2:
445 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
446 fail_1:
447 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
448 fail_0:
449 return;
450 }
451
452 /*
453 * ae_activate:
454 *
455 * Handle device activation/deactivation requests.
456 */
457 int
458 ae_activate(struct device *self, enum devact act)
459 {
460 struct ae_softc *sc = (void *) self;
461 int s, error = 0;
462
463 s = splnet();
464 switch (act) {
465 case DVACT_ACTIVATE:
466 error = EOPNOTSUPP;
467 break;
468
469 case DVACT_DEACTIVATE:
470 mii_activate(&sc->sc_mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
471 if_deactivate(&sc->sc_ethercom.ec_if);
472 break;
473 }
474 splx(s);
475
476 return (error);
477 }
478
479 /*
480 * ae_detach:
481 *
482 * Detach a device interface.
483 */
484 int
485 ae_detach(struct device *self, int flags)
486 {
487 struct ae_softc *sc = (void *)self;
488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
489 struct ae_rxsoft *rxs;
490 struct ae_txsoft *txs;
491 int i;
492
493 /*
494 * Succeed now if there isn't any work to do.
495 */
496 if ((sc->sc_flags & AE_ATTACHED) == 0)
497 return (0);
498
499 /* Unhook our tick handler. */
500 if (sc->sc_tick)
501 callout_stop(&sc->sc_tick_callout);
502
503 /* Detach all PHYs */
504 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
505
506 /* Delete all remaining media. */
507 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
508
509 #if NRND > 0
510 rnd_detach_source(&sc->sc_rnd_source);
511 #endif
512 ether_ifdetach(ifp);
513 if_detach(ifp);
514
515 for (i = 0; i < AE_NRXDESC; i++) {
516 rxs = &sc->sc_rxsoft[i];
517 if (rxs->rxs_mbuf != NULL) {
518 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
519 m_freem(rxs->rxs_mbuf);
520 rxs->rxs_mbuf = NULL;
521 }
522 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
523 }
524 for (i = 0; i < AE_TXQUEUELEN; i++) {
525 txs = &sc->sc_txsoft[i];
526 if (txs->txs_mbuf != NULL) {
527 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
528 m_freem(txs->txs_mbuf);
529 txs->txs_mbuf = NULL;
530 }
531 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
532 }
533 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
534 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
535 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
536 sizeof(struct ae_control_data));
537 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
538
539 shutdownhook_disestablish(sc->sc_sdhook);
540 powerhook_disestablish(sc->sc_powerhook);
541
542 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
543
544
545 return (0);
546 }
547
548 /*
549 * ae_shutdown:
550 *
551 * Make sure the interface is stopped at reboot time.
552 */
553 static void
554 ae_shutdown(void *arg)
555 {
556 struct ae_softc *sc = arg;
557
558 ae_stop(&sc->sc_ethercom.ec_if, 1);
559 }
560
561 /*
562 * ae_start: [ifnet interface function]
563 *
564 * Start packet transmission on the interface.
565 */
566 static void
567 ae_start(struct ifnet *ifp)
568 {
569 struct ae_softc *sc = ifp->if_softc;
570 struct mbuf *m0, *m;
571 struct ae_txsoft *txs, *last_txs = NULL;
572 bus_dmamap_t dmamap;
573 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
574
575 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
576 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
577
578
579 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
580 return;
581
582 /*
583 * Remember the previous number of free descriptors and
584 * the first descriptor we'll use.
585 */
586 ofree = sc->sc_txfree;
587 firsttx = sc->sc_txnext;
588
589 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
590 sc->sc_dev.dv_xname, ofree, firsttx));
591
592 /*
593 * Loop through the send queue, setting up transmit descriptors
594 * until we drain the queue, or use up all available transmit
595 * descriptors.
596 */
597 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
598 sc->sc_txfree != 0) {
599 /*
600 * Grab a packet off the queue.
601 */
602 IFQ_POLL(&ifp->if_snd, m0);
603 if (m0 == NULL)
604 break;
605 m = NULL;
606
607 dmamap = txs->txs_dmamap;
608
609 /*
610 * Load the DMA map. If this fails, the packet either
611 * didn't fit in the alloted number of segments, or we were
612 * short on resources. In this case, we'll copy and try
613 * again.
614 */
615 if (((mtod(m0, uintptr_t) & 3) != 0) ||
616 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
617 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
618 MGETHDR(m, M_DONTWAIT, MT_DATA);
619 if (m == NULL) {
620 printf("%s: unable to allocate Tx mbuf\n",
621 sc->sc_dev.dv_xname);
622 break;
623 }
624 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
625 if (m0->m_pkthdr.len > MHLEN) {
626 MCLGET(m, M_DONTWAIT);
627 if ((m->m_flags & M_EXT) == 0) {
628 printf("%s: unable to allocate Tx "
629 "cluster\n", sc->sc_dev.dv_xname);
630 m_freem(m);
631 break;
632 }
633 }
634 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
635 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
636 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
637 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
638 if (error) {
639 printf("%s: unable to load Tx buffer, "
640 "error = %d\n", sc->sc_dev.dv_xname,
641 error);
642 break;
643 }
644 }
645
646 /*
647 * Ensure we have enough descriptors free to describe
648 * the packet.
649 */
650 if (dmamap->dm_nsegs > sc->sc_txfree) {
651 /*
652 * Not enough free descriptors to transmit this
653 * packet. We haven't committed to anything yet,
654 * so just unload the DMA map, put the packet
655 * back on the queue, and punt. Notify the upper
656 * layer that there are no more slots left.
657 *
658 * XXX We could allocate an mbuf and copy, but
659 * XXX it is worth it?
660 */
661 ifp->if_flags |= IFF_OACTIVE;
662 bus_dmamap_unload(sc->sc_dmat, dmamap);
663 if (m != NULL)
664 m_freem(m);
665 break;
666 }
667
668 IFQ_DEQUEUE(&ifp->if_snd, m0);
669 if (m != NULL) {
670 m_freem(m0);
671 m0 = m;
672 }
673
674 /*
675 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
676 */
677
678 /* Sync the DMA map. */
679 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
680 BUS_DMASYNC_PREWRITE);
681
682 /*
683 * Initialize the transmit descriptors.
684 */
685 for (nexttx = sc->sc_txnext, seg = 0;
686 seg < dmamap->dm_nsegs;
687 seg++, nexttx = AE_NEXTTX(nexttx)) {
688 /*
689 * If this is the first descriptor we're
690 * enqueueing, don't set the OWN bit just
691 * yet. That could cause a race condition.
692 * We'll do it below.
693 */
694 sc->sc_txdescs[nexttx].ad_status =
695 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
696 sc->sc_txdescs[nexttx].ad_bufaddr1 =
697 dmamap->dm_segs[seg].ds_addr;
698 sc->sc_txdescs[nexttx].ad_ctl =
699 (dmamap->dm_segs[seg].ds_len <<
700 ADCTL_SIZE1_SHIFT) |
701 (nexttx == (AE_NTXDESC - 1) ?
702 ADCTL_ER : 0);
703 lasttx = nexttx;
704 }
705
706 KASSERT(lasttx != -1);
707
708 /* Set `first segment' and `last segment' appropriately. */
709 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
710 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
711
712 #ifdef AE_DEBUG
713 if (ifp->if_flags & IFF_DEBUG) {
714 printf(" txsoft %p transmit chain:\n", txs);
715 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
716 printf(" descriptor %d:\n", seg);
717 printf(" ad_status: 0x%08x\n",
718 sc->sc_txdescs[seg].ad_status);
719 printf(" ad_ctl: 0x%08x\n",
720 sc->sc_txdescs[seg].ad_ctl);
721 printf(" ad_bufaddr1: 0x%08x\n",
722 sc->sc_txdescs[seg].ad_bufaddr1);
723 printf(" ad_bufaddr2: 0x%08x\n",
724 sc->sc_txdescs[seg].ad_bufaddr2);
725 if (seg == lasttx)
726 break;
727 }
728 }
729 #endif
730
731 /* Sync the descriptors we're using. */
732 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
733 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
734
735 /*
736 * Store a pointer to the packet so we can free it later,
737 * and remember what txdirty will be once the packet is
738 * done.
739 */
740 txs->txs_mbuf = m0;
741 txs->txs_firstdesc = sc->sc_txnext;
742 txs->txs_lastdesc = lasttx;
743 txs->txs_ndescs = dmamap->dm_nsegs;
744
745 /* Advance the tx pointer. */
746 sc->sc_txfree -= dmamap->dm_nsegs;
747 sc->sc_txnext = nexttx;
748
749 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
750 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
751
752 last_txs = txs;
753
754 #if NBPFILTER > 0
755 /*
756 * Pass the packet to any BPF listeners.
757 */
758 if (ifp->if_bpf)
759 bpf_mtap(ifp->if_bpf, m0);
760 #endif /* NBPFILTER > 0 */
761 }
762
763 if (txs == NULL || sc->sc_txfree == 0) {
764 /* No more slots left; notify upper layer. */
765 ifp->if_flags |= IFF_OACTIVE;
766 }
767
768 if (sc->sc_txfree != ofree) {
769 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
770 sc->sc_dev.dv_xname, lasttx, firsttx));
771 /*
772 * Cause a transmit interrupt to happen on the
773 * last packet we enqueued.
774 */
775 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
776 AE_CDTXSYNC(sc, lasttx, 1,
777 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
778
779 /*
780 * The entire packet chain is set up. Give the
781 * first descriptor to the chip now.
782 */
783 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
784 AE_CDTXSYNC(sc, firsttx, 1,
785 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
786
787 /* Wake up the transmitter. */
788 /* XXX USE AUTOPOLLING? */
789 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
790 AE_BARRIER(sc);
791
792 /* Set a watchdog timer in case the chip flakes out. */
793 ifp->if_timer = 5;
794 }
795 }
796
797 /*
798 * ae_watchdog: [ifnet interface function]
799 *
800 * Watchdog timer handler.
801 */
802 static void
803 ae_watchdog(struct ifnet *ifp)
804 {
805 struct ae_softc *sc = ifp->if_softc;
806 int doing_transmit;
807
808 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
809
810 if (doing_transmit) {
811 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
812 ifp->if_oerrors++;
813 }
814 else
815 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
816
817 (void) ae_init(ifp);
818
819 /* Try to get more packets going. */
820 ae_start(ifp);
821 }
822
823 /*
824 * ae_ioctl: [ifnet interface function]
825 *
826 * Handle control requests from the operator.
827 */
828 static int
829 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
830 {
831 struct ae_softc *sc = ifp->if_softc;
832 struct ifreq *ifr = (struct ifreq *)data;
833 int s, error;
834
835 s = splnet();
836
837 switch (cmd) {
838 case SIOCSIFFLAGS:
839 /* If the interface is up and running, only modify the receive
840 * filter when setting promiscuous or debug mode. Otherwise
841 * fall through to ether_ioctl, which will reset the chip.
842 */
843 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
844 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
845 == (IFF_UP|IFF_RUNNING))
846 && ((ifp->if_flags & (~RESETIGN))
847 == (sc->sc_if_flags & (~RESETIGN)))) {
848 /* Set up the receive filter. */
849 ae_filter_setup(sc);
850 error = 0;
851 break;
852 #undef RESETIGN
853 }
854 /* FALLTHROUGH */
855 default:
856 error = ether_ioctl(ifp, cmd, data);
857 if (error == ENETRESET) {
858 if (ifp->if_flags & IFF_RUNNING) {
859 /*
860 * Multicast list has changed. Set the
861 * hardware filter accordingly.
862 */
863 ae_filter_setup(sc);
864 }
865 error = 0;
866 }
867 break;
868 }
869
870 /* Try to get more packets going. */
871 if (AE_IS_ENABLED(sc))
872 ae_start(ifp);
873
874 sc->sc_if_flags = ifp->if_flags;
875 splx(s);
876 return (error);
877 }
878
879 /*
880 * ae_intr:
881 *
882 * Interrupt service routine.
883 */
884 int
885 ae_intr(void *arg)
886 {
887 struct ae_softc *sc = arg;
888 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
889 u_int32_t status, rxstatus, txstatus;
890 int handled = 0, txthresh;
891
892 DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
893
894 #ifdef DEBUG
895 if (AE_IS_ENABLED(sc) == 0)
896 panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
897 #endif
898
899 /*
900 * If the interface isn't running, the interrupt couldn't
901 * possibly have come from us.
902 */
903 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
904 !device_is_active(&sc->sc_dev)) {
905 printf("spurious?!?\n");
906 return (0);
907 }
908
909 for (;;) {
910 status = AE_READ(sc, CSR_STATUS);
911 if (status) {
912 AE_WRITE(sc, CSR_STATUS, status);
913 AE_BARRIER(sc);
914 }
915
916 if ((status & sc->sc_inten) == 0)
917 break;
918
919 handled = 1;
920
921 rxstatus = status & sc->sc_rxint_mask;
922 txstatus = status & sc->sc_txint_mask;
923
924 if (rxstatus) {
925 /* Grab new any new packets. */
926 ae_rxintr(sc);
927
928 if (rxstatus & STATUS_RU) {
929 printf("%s: receive ring overrun\n",
930 sc->sc_dev.dv_xname);
931 /* Get the receive process going again. */
932 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
933 AE_BARRIER(sc);
934 break;
935 }
936 }
937
938 if (txstatus) {
939 /* Sweep up transmit descriptors. */
940 ae_txintr(sc);
941
942 if (txstatus & STATUS_TJT)
943 printf("%s: transmit jabber timeout\n",
944 sc->sc_dev.dv_xname);
945
946 if (txstatus & STATUS_UNF) {
947 /*
948 * Increase our transmit threshold if
949 * another is available.
950 */
951 txthresh = sc->sc_txthresh + 1;
952 if (ae_txthresh[txthresh].txth_name != NULL) {
953 uint32_t opmode;
954 /* Idle the transmit process. */
955 opmode = AE_READ(sc, CSR_OPMODE);
956 ae_idle(sc, OPMODE_ST);
957
958 sc->sc_txthresh = txthresh;
959 opmode &=
960 ~(OPMODE_TR|OPMODE_SF);
961 opmode |=
962 ae_txthresh[txthresh].txth_opmode;
963 printf("%s: transmit underrun; new "
964 "threshold: %s\n",
965 sc->sc_dev.dv_xname,
966 ae_txthresh[txthresh].txth_name);
967
968 /*
969 * Set the new threshold and restart
970 * the transmit process.
971 */
972 AE_WRITE(sc, CSR_OPMODE, opmode);
973 AE_BARRIER(sc);
974 }
975 /*
976 * XXX Log every Nth underrun from
977 * XXX now on?
978 */
979 }
980 }
981
982 if (status & (STATUS_TPS|STATUS_RPS)) {
983 if (status & STATUS_TPS)
984 printf("%s: transmit process stopped\n",
985 sc->sc_dev.dv_xname);
986 if (status & STATUS_RPS)
987 printf("%s: receive process stopped\n",
988 sc->sc_dev.dv_xname);
989 (void) ae_init(ifp);
990 break;
991 }
992
993 if (status & STATUS_SE) {
994 const char *str;
995
996 if (status & STATUS_TX_ABORT)
997 str = "tx abort";
998 else if (status & STATUS_RX_ABORT)
999 str = "rx abort";
1000 else
1001 str = "unknown error";
1002
1003 printf("%s: fatal system error: %s\n",
1004 sc->sc_dev.dv_xname, str);
1005 (void) ae_init(ifp);
1006 break;
1007 }
1008
1009 /*
1010 * Not handled:
1011 *
1012 * Transmit buffer unavailable -- normal
1013 * condition, nothing to do, really.
1014 *
1015 * General purpose timer experied -- we don't
1016 * use the general purpose timer.
1017 *
1018 * Early receive interrupt -- not available on
1019 * all chips, we just use RI. We also only
1020 * use single-segment receive DMA, so this
1021 * is mostly useless.
1022 */
1023 }
1024
1025 /* Try to get more packets going. */
1026 ae_start(ifp);
1027
1028 #if NRND > 0
1029 if (handled)
1030 rnd_add_uint32(&sc->sc_rnd_source, status);
1031 #endif
1032 return (handled);
1033 }
1034
1035 /*
1036 * ae_rxintr:
1037 *
1038 * Helper; handle receive interrupts.
1039 */
1040 static void
1041 ae_rxintr(struct ae_softc *sc)
1042 {
1043 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1044 struct ether_header *eh;
1045 struct ae_rxsoft *rxs;
1046 struct mbuf *m;
1047 u_int32_t rxstat;
1048 int i, len;
1049
1050 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1051 rxs = &sc->sc_rxsoft[i];
1052
1053 AE_CDRXSYNC(sc, i,
1054 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1055
1056 rxstat = sc->sc_rxdescs[i].ad_status;
1057
1058 if (rxstat & ADSTAT_OWN) {
1059 /*
1060 * We have processed all of the receive buffers.
1061 */
1062 break;
1063 }
1064
1065 /*
1066 * If any collisions were seen on the wire, count one.
1067 */
1068 if (rxstat & ADSTAT_Rx_CS)
1069 ifp->if_collisions++;
1070
1071 /*
1072 * If an error occurred, update stats, clear the status
1073 * word, and leave the packet buffer in place. It will
1074 * simply be reused the next time the ring comes around.
1075 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1076 * error.
1077 */
1078 if (rxstat & ADSTAT_ES &&
1079 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1080 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1081 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1082 #define PRINTERR(bit, str) \
1083 if (rxstat & (bit)) \
1084 printf("%s: receive error: %s\n", \
1085 sc->sc_dev.dv_xname, str)
1086 ifp->if_ierrors++;
1087 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1088 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1089 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1090 PRINTERR(ADSTAT_Rx_RE, "MII error");
1091 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1092 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1093 #undef PRINTERR
1094 AE_INIT_RXDESC(sc, i);
1095 continue;
1096 }
1097
1098 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1099 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1100
1101 /*
1102 * No errors; receive the packet. Note the chip
1103 * includes the CRC with every packet.
1104 */
1105 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1106
1107 /*
1108 * XXX: the Atheros part can align on half words. what
1109 * is the performance implication of this? Probably
1110 * minimal, and we should use it...
1111 */
1112 #ifdef __NO_STRICT_ALIGNMENT
1113 /*
1114 * Allocate a new mbuf cluster. If that fails, we are
1115 * out of memory, and must drop the packet and recycle
1116 * the buffer that's already attached to this descriptor.
1117 */
1118 m = rxs->rxs_mbuf;
1119 if (ae_add_rxbuf(sc, i) != 0) {
1120 ifp->if_ierrors++;
1121 AE_INIT_RXDESC(sc, i);
1122 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1123 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1124 continue;
1125 }
1126 #else
1127 /*
1128 * The chip's receive buffers must be 4-byte aligned.
1129 * But this means that the data after the Ethernet header
1130 * is misaligned. We must allocate a new buffer and
1131 * copy the data, shifted forward 2 bytes.
1132 */
1133 MGETHDR(m, M_DONTWAIT, MT_DATA);
1134 if (m == NULL) {
1135 dropit:
1136 ifp->if_ierrors++;
1137 AE_INIT_RXDESC(sc, i);
1138 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1139 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1140 continue;
1141 }
1142 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1143 if (len > (MHLEN - 2)) {
1144 MCLGET(m, M_DONTWAIT);
1145 if ((m->m_flags & M_EXT) == 0) {
1146 m_freem(m);
1147 goto dropit;
1148 }
1149 }
1150 m->m_data += 2;
1151
1152 /*
1153 * Note that we use clusters for incoming frames, so the
1154 * buffer is virtually contiguous.
1155 */
1156 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1157
1158 /* Allow the receive descriptor to continue using its mbuf. */
1159 AE_INIT_RXDESC(sc, i);
1160 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1161 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1162 #endif /* __NO_STRICT_ALIGNMENT */
1163
1164 ifp->if_ipackets++;
1165 eh = mtod(m, struct ether_header *);
1166 m->m_pkthdr.rcvif = ifp;
1167 m->m_pkthdr.len = m->m_len = len;
1168
1169 #if NBPFILTER > 0
1170 /*
1171 * Pass this up to any BPF listeners, but only
1172 * pass it up the stack if its for us.
1173 */
1174 if (ifp->if_bpf)
1175 bpf_mtap(ifp->if_bpf, m);
1176 #endif /* NBPFILTER > 0 */
1177
1178 /* Pass it on. */
1179 (*ifp->if_input)(ifp, m);
1180 }
1181
1182 /* Update the receive pointer. */
1183 sc->sc_rxptr = i;
1184 }
1185
1186 /*
1187 * ae_txintr:
1188 *
1189 * Helper; handle transmit interrupts.
1190 */
1191 static void
1192 ae_txintr(struct ae_softc *sc)
1193 {
1194 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1195 struct ae_txsoft *txs;
1196 u_int32_t txstat;
1197
1198 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1199 sc->sc_dev.dv_xname, sc->sc_flags));
1200
1201 ifp->if_flags &= ~IFF_OACTIVE;
1202
1203 /*
1204 * Go through our Tx list and free mbufs for those
1205 * frames that have been transmitted.
1206 */
1207 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1208 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1209 txs->txs_ndescs,
1210 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1211
1212 #ifdef AE_DEBUG
1213 if (ifp->if_flags & IFF_DEBUG) {
1214 int i;
1215 printf(" txsoft %p transmit chain:\n", txs);
1216 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1217 printf(" descriptor %d:\n", i);
1218 printf(" ad_status: 0x%08x\n",
1219 sc->sc_txdescs[i].ad_status);
1220 printf(" ad_ctl: 0x%08x\n",
1221 sc->sc_txdescs[i].ad_ctl);
1222 printf(" ad_bufaddr1: 0x%08x\n",
1223 sc->sc_txdescs[i].ad_bufaddr1);
1224 printf(" ad_bufaddr2: 0x%08x\n",
1225 sc->sc_txdescs[i].ad_bufaddr2);
1226 if (i == txs->txs_lastdesc)
1227 break;
1228 }
1229 }
1230 #endif
1231
1232 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1233 if (txstat & ADSTAT_OWN)
1234 break;
1235
1236 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1237
1238 sc->sc_txfree += txs->txs_ndescs;
1239
1240 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1241 0, txs->txs_dmamap->dm_mapsize,
1242 BUS_DMASYNC_POSTWRITE);
1243 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1244 m_freem(txs->txs_mbuf);
1245 txs->txs_mbuf = NULL;
1246
1247 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1248
1249 /*
1250 * Check for errors and collisions.
1251 */
1252 #ifdef AE_STATS
1253 if (txstat & ADSTAT_Tx_UF)
1254 sc->sc_stats.ts_tx_uf++;
1255 if (txstat & ADSTAT_Tx_TO)
1256 sc->sc_stats.ts_tx_to++;
1257 if (txstat & ADSTAT_Tx_EC)
1258 sc->sc_stats.ts_tx_ec++;
1259 if (txstat & ADSTAT_Tx_LC)
1260 sc->sc_stats.ts_tx_lc++;
1261 #endif
1262
1263 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1264 ifp->if_oerrors++;
1265
1266 if (txstat & ADSTAT_Tx_EC)
1267 ifp->if_collisions += 16;
1268 else
1269 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1270 if (txstat & ADSTAT_Tx_LC)
1271 ifp->if_collisions++;
1272
1273 ifp->if_opackets++;
1274 }
1275
1276 /*
1277 * If there are no more pending transmissions, cancel the watchdog
1278 * timer.
1279 */
1280 if (txs == NULL)
1281 ifp->if_timer = 0;
1282 }
1283
1284 #ifdef AE_STATS
1285 void
1286 ae_print_stats(struct ae_softc *sc)
1287 {
1288
1289 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1290 sc->sc_dev.dv_xname,
1291 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1292 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1293 }
1294 #endif
1295
1296 /*
1297 * ae_reset:
1298 *
1299 * Perform a soft reset on the chip.
1300 */
1301 void
1302 ae_reset(struct ae_softc *sc)
1303 {
1304 int i;
1305
1306 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1307 AE_BARRIER(sc);
1308
1309 /*
1310 * The chip doesn't take itself out of reset automatically.
1311 * We need to do so after 2us.
1312 */
1313 delay(10);
1314 AE_WRITE(sc, CSR_BUSMODE, 0);
1315 AE_BARRIER(sc);
1316
1317 for (i = 0; i < 1000; i++) {
1318 /*
1319 * Wait a bit for the reset to complete before peeking
1320 * at the chip again.
1321 */
1322 delay(10);
1323 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1324 break;
1325 }
1326
1327 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1328 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1329
1330 delay(1000);
1331 }
1332
1333 /*
1334 * ae_init: [ ifnet interface function ]
1335 *
1336 * Initialize the interface. Must be called at splnet().
1337 */
1338 static int
1339 ae_init(struct ifnet *ifp)
1340 {
1341 struct ae_softc *sc = ifp->if_softc;
1342 struct ae_txsoft *txs;
1343 struct ae_rxsoft *rxs;
1344 const uint8_t *enaddr;
1345 int i, error = 0;
1346
1347 if ((error = ae_enable(sc)) != 0)
1348 goto out;
1349
1350 /*
1351 * Cancel any pending I/O.
1352 */
1353 ae_stop(ifp, 0);
1354
1355 /*
1356 * Reset the chip to a known state.
1357 */
1358 ae_reset(sc);
1359
1360 /*
1361 * Initialize the BUSMODE register.
1362 */
1363 AE_WRITE(sc, CSR_BUSMODE,
1364 /* XXX: not sure if this is a good thing or not... */
1365 //BUSMODE_ALIGN_16B |
1366 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1367 AE_BARRIER(sc);
1368
1369 /*
1370 * Initialize the transmit descriptor ring.
1371 */
1372 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1373 for (i = 0; i < AE_NTXDESC; i++) {
1374 sc->sc_txdescs[i].ad_ctl = 0;
1375 sc->sc_txdescs[i].ad_bufaddr2 =
1376 AE_CDTXADDR(sc, AE_NEXTTX(i));
1377 }
1378 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1379 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1380 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1381 sc->sc_txfree = AE_NTXDESC;
1382 sc->sc_txnext = 0;
1383
1384 /*
1385 * Initialize the transmit job descriptors.
1386 */
1387 SIMPLEQ_INIT(&sc->sc_txfreeq);
1388 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1389 for (i = 0; i < AE_TXQUEUELEN; i++) {
1390 txs = &sc->sc_txsoft[i];
1391 txs->txs_mbuf = NULL;
1392 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1393 }
1394
1395 /*
1396 * Initialize the receive descriptor and receive job
1397 * descriptor rings.
1398 */
1399 for (i = 0; i < AE_NRXDESC; i++) {
1400 rxs = &sc->sc_rxsoft[i];
1401 if (rxs->rxs_mbuf == NULL) {
1402 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1403 printf("%s: unable to allocate or map rx "
1404 "buffer %d, error = %d\n",
1405 sc->sc_dev.dv_xname, i, error);
1406 /*
1407 * XXX Should attempt to run with fewer receive
1408 * XXX buffers instead of just failing.
1409 */
1410 ae_rxdrain(sc);
1411 goto out;
1412 }
1413 } else
1414 AE_INIT_RXDESC(sc, i);
1415 }
1416 sc->sc_rxptr = 0;
1417
1418 /*
1419 * Initialize the interrupt mask and enable interrupts.
1420 */
1421 /* normal interrupts */
1422 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1423
1424 /* abnormal interrupts */
1425 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1426 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1427
1428 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1429 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1430
1431 sc->sc_rxint_mask &= sc->sc_inten;
1432 sc->sc_txint_mask &= sc->sc_inten;
1433
1434 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1435 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1436
1437 /*
1438 * Give the transmit and receive rings to the chip.
1439 */
1440 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1441 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1442 AE_BARRIER(sc);
1443
1444 /*
1445 * Set the station address.
1446 */
1447 enaddr = CLLADDR(ifp->if_sadl);
1448 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1449 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1450 enaddr[1] << 8 | enaddr[0]);
1451 AE_BARRIER(sc);
1452
1453 /*
1454 * Set the receive filter. This will start the transmit and
1455 * receive processes.
1456 */
1457 ae_filter_setup(sc);
1458
1459 /*
1460 * Set the current media.
1461 */
1462 if ((error = ether_mediachange(ifp)) != 0)
1463 goto out;
1464
1465 /*
1466 * Start the mac.
1467 */
1468 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1469 AE_BARRIER(sc);
1470
1471 /*
1472 * Write out the opmode.
1473 */
1474 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1475 ae_txthresh[sc->sc_txthresh].txth_opmode);
1476 /*
1477 * Start the receive process.
1478 */
1479 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1480 AE_BARRIER(sc);
1481
1482 if (sc->sc_tick != NULL) {
1483 /* Start the one second clock. */
1484 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1485 }
1486
1487 /*
1488 * Note that the interface is now running.
1489 */
1490 ifp->if_flags |= IFF_RUNNING;
1491 ifp->if_flags &= ~IFF_OACTIVE;
1492 sc->sc_if_flags = ifp->if_flags;
1493
1494 out:
1495 if (error) {
1496 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1497 ifp->if_timer = 0;
1498 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1499 }
1500 return (error);
1501 }
1502
1503 /*
1504 * ae_enable:
1505 *
1506 * Enable the chip.
1507 */
1508 static int
1509 ae_enable(struct ae_softc *sc)
1510 {
1511
1512 if (AE_IS_ENABLED(sc) == 0) {
1513 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1514 ae_intr, sc);
1515 if (sc->sc_ih == NULL) {
1516 printf("%s: unable to establish interrupt\n",
1517 sc->sc_dev.dv_xname);
1518 return (EIO);
1519 }
1520 sc->sc_flags |= AE_ENABLED;
1521 }
1522 return (0);
1523 }
1524
1525 /*
1526 * ae_disable:
1527 *
1528 * Disable the chip.
1529 */
1530 static void
1531 ae_disable(struct ae_softc *sc)
1532 {
1533
1534 if (AE_IS_ENABLED(sc)) {
1535 arbus_intr_disestablish(sc->sc_ih);
1536 sc->sc_flags &= ~AE_ENABLED;
1537 }
1538 }
1539
1540 /*
1541 * ae_power:
1542 *
1543 * Power management (suspend/resume) hook.
1544 */
1545 static void
1546 ae_power(int why, void *arg)
1547 {
1548 struct ae_softc *sc = arg;
1549 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1550 int s;
1551
1552 printf("power called: %d, %x\n", why, (uint32_t)arg);
1553 s = splnet();
1554 switch (why) {
1555 case PWR_STANDBY:
1556 /* do nothing! */
1557 break;
1558 case PWR_SUSPEND:
1559 ae_stop(ifp, 0);
1560 ae_disable(sc);
1561 break;
1562 case PWR_RESUME:
1563 if (ifp->if_flags & IFF_UP) {
1564 ae_enable(sc);
1565 ae_init(ifp);
1566 }
1567 break;
1568 case PWR_SOFTSUSPEND:
1569 case PWR_SOFTSTANDBY:
1570 case PWR_SOFTRESUME:
1571 break;
1572 }
1573 splx(s);
1574 }
1575
1576 /*
1577 * ae_rxdrain:
1578 *
1579 * Drain the receive queue.
1580 */
1581 static void
1582 ae_rxdrain(struct ae_softc *sc)
1583 {
1584 struct ae_rxsoft *rxs;
1585 int i;
1586
1587 for (i = 0; i < AE_NRXDESC; i++) {
1588 rxs = &sc->sc_rxsoft[i];
1589 if (rxs->rxs_mbuf != NULL) {
1590 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1591 m_freem(rxs->rxs_mbuf);
1592 rxs->rxs_mbuf = NULL;
1593 }
1594 }
1595 }
1596
1597 /*
1598 * ae_stop: [ ifnet interface function ]
1599 *
1600 * Stop transmission on the interface.
1601 */
1602 static void
1603 ae_stop(struct ifnet *ifp, int disable)
1604 {
1605 struct ae_softc *sc = ifp->if_softc;
1606 struct ae_txsoft *txs;
1607
1608 if (sc->sc_tick != NULL) {
1609 /* Stop the one second clock. */
1610 callout_stop(&sc->sc_tick_callout);
1611 }
1612
1613 /* Down the MII. */
1614 mii_down(&sc->sc_mii);
1615
1616 /* Disable interrupts. */
1617 AE_WRITE(sc, CSR_INTEN, 0);
1618
1619 /* Stop the transmit and receive processes. */
1620 AE_WRITE(sc, CSR_OPMODE, 0);
1621 AE_WRITE(sc, CSR_RXLIST, 0);
1622 AE_WRITE(sc, CSR_TXLIST, 0);
1623 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1624 AE_BARRIER(sc);
1625
1626 /*
1627 * Release any queued transmit buffers.
1628 */
1629 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1630 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1631 if (txs->txs_mbuf != NULL) {
1632 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1633 m_freem(txs->txs_mbuf);
1634 txs->txs_mbuf = NULL;
1635 }
1636 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1637 }
1638
1639 if (disable) {
1640 ae_rxdrain(sc);
1641 ae_disable(sc);
1642 }
1643
1644 /*
1645 * Mark the interface down and cancel the watchdog timer.
1646 */
1647 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1648 sc->sc_if_flags = ifp->if_flags;
1649 ifp->if_timer = 0;
1650
1651 /*
1652 * Reset the chip (needed on some flavors to actually disable it).
1653 */
1654 ae_reset(sc);
1655 }
1656
1657 /*
1658 * ae_add_rxbuf:
1659 *
1660 * Add a receive buffer to the indicated descriptor.
1661 */
1662 static int
1663 ae_add_rxbuf(struct ae_softc *sc, int idx)
1664 {
1665 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1666 struct mbuf *m;
1667 int error;
1668
1669 MGETHDR(m, M_DONTWAIT, MT_DATA);
1670 if (m == NULL)
1671 return (ENOBUFS);
1672
1673 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1674 MCLGET(m, M_DONTWAIT);
1675 if ((m->m_flags & M_EXT) == 0) {
1676 m_freem(m);
1677 return (ENOBUFS);
1678 }
1679
1680 if (rxs->rxs_mbuf != NULL)
1681 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1682
1683 rxs->rxs_mbuf = m;
1684
1685 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1686 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1687 BUS_DMA_READ|BUS_DMA_NOWAIT);
1688 if (error) {
1689 printf("%s: can't load rx DMA map %d, error = %d\n",
1690 sc->sc_dev.dv_xname, idx, error);
1691 panic("ae_add_rxbuf"); /* XXX */
1692 }
1693
1694 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1695 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1696
1697 AE_INIT_RXDESC(sc, idx);
1698
1699 return (0);
1700 }
1701
1702 /*
1703 * ae_filter_setup:
1704 *
1705 * Set the chip's receive filter.
1706 */
1707 static void
1708 ae_filter_setup(struct ae_softc *sc)
1709 {
1710 struct ethercom *ec = &sc->sc_ethercom;
1711 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1712 struct ether_multi *enm;
1713 struct ether_multistep step;
1714 uint32_t hash, mchash[2];
1715 uint32_t macctl = 0;
1716
1717 /*
1718 * If the chip is running, we need to reset the interface,
1719 * and will revisit here (with IFF_RUNNING) clear. The
1720 * chip seems to really not like to have its multicast
1721 * filter programmed without a reset.
1722 */
1723 if (ifp->if_flags & IFF_RUNNING) {
1724 (void) ae_init(ifp);
1725 return;
1726 }
1727
1728 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1729 sc->sc_dev.dv_xname, sc->sc_flags));
1730
1731 macctl = AE_READ(sc, CSR_MACCTL);
1732 macctl &= ~(MACCTL_PR | MACCTL_PM);
1733 macctl |= MACCTL_HASH;
1734 macctl |= MACCTL_HBD;
1735 macctl |= MACCTL_PR;
1736
1737 if (ifp->if_flags & IFF_PROMISC) {
1738 macctl |= MACCTL_PR;
1739 goto allmulti;
1740 }
1741
1742 mchash[0] = mchash[1] = 0;
1743
1744 ETHER_FIRST_MULTI(step, ec, enm);
1745 while (enm != NULL) {
1746 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1747 /*
1748 * We must listen to a range of multicast addresses.
1749 * For now, just accept all multicasts, rather than
1750 * trying to set only those filter bits needed to match
1751 * the range. (At this time, the only use of address
1752 * ranges is for IP multicast routing, for which the
1753 * range is big enough to require all bits set.)
1754 */
1755 goto allmulti;
1756 }
1757
1758 /* Verify whether we use big or little endian hashes */
1759 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1760 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1761 ETHER_NEXT_MULTI(step, enm);
1762 }
1763 ifp->if_flags &= ~IFF_ALLMULTI;
1764 goto setit;
1765
1766 allmulti:
1767 ifp->if_flags |= IFF_ALLMULTI;
1768 mchash[0] = mchash[1] = 0xffffffff;
1769 macctl |= MACCTL_PM;
1770
1771 setit:
1772 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1773 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1774
1775 AE_WRITE(sc, CSR_MACCTL, macctl);
1776 AE_BARRIER(sc);
1777
1778 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1779 sc->sc_dev.dv_xname, macctl));
1780 }
1781
1782 /*
1783 * ae_idle:
1784 *
1785 * Cause the transmit and/or receive processes to go idle.
1786 */
1787 void
1788 ae_idle(struct ae_softc *sc, u_int32_t bits)
1789 {
1790 static const char * const txstate_names[] = {
1791 "STOPPED",
1792 "RUNNING - FETCH",
1793 "RUNNING - WAIT",
1794 "RUNNING - READING",
1795 "-- RESERVED --",
1796 "RUNNING - SETUP",
1797 "SUSPENDED",
1798 "RUNNING - CLOSE",
1799 };
1800 static const char * const rxstate_names[] = {
1801 "STOPPED",
1802 "RUNNING - FETCH",
1803 "RUNNING - CHECK",
1804 "RUNNING - WAIT",
1805 "SUSPENDED",
1806 "RUNNING - CLOSE",
1807 "RUNNING - FLUSH",
1808 "RUNNING - QUEUE",
1809 };
1810
1811 u_int32_t csr, ackmask = 0;
1812 int i;
1813
1814 if (bits & OPMODE_ST)
1815 ackmask |= STATUS_TPS;
1816
1817 if (bits & OPMODE_SR)
1818 ackmask |= STATUS_RPS;
1819
1820 AE_CLR(sc, CSR_OPMODE, bits);
1821
1822 for (i = 0; i < 1000; i++) {
1823 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1824 break;
1825 delay(10);
1826 }
1827
1828 csr = AE_READ(sc, CSR_STATUS);
1829 if ((csr & ackmask) != ackmask) {
1830 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1831 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1832 printf("%s: transmit process failed to idle: "
1833 "state %s\n", sc->sc_dev.dv_xname,
1834 txstate_names[(csr & STATUS_TS) >> 20]);
1835 }
1836 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1837 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1838 printf("%s: receive process failed to idle: "
1839 "state %s\n", sc->sc_dev.dv_xname,
1840 rxstate_names[(csr & STATUS_RS) >> 17]);
1841 }
1842 }
1843 }
1844
1845 /*****************************************************************************
1846 * Support functions for MII-attached media.
1847 *****************************************************************************/
1848
1849 /*
1850 * ae_mii_tick:
1851 *
1852 * One second timer, used to tick the MII.
1853 */
1854 static void
1855 ae_mii_tick(void *arg)
1856 {
1857 struct ae_softc *sc = arg;
1858 int s;
1859
1860 if (!device_is_active(&sc->sc_dev))
1861 return;
1862
1863 s = splnet();
1864 mii_tick(&sc->sc_mii);
1865 splx(s);
1866
1867 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1868 }
1869
1870 /*
1871 * ae_mii_statchg: [mii interface function]
1872 *
1873 * Callback from PHY when media changes.
1874 */
1875 static void
1876 ae_mii_statchg(struct device *self)
1877 {
1878 struct ae_softc *sc = (struct ae_softc *)self;
1879 uint32_t macctl, flowc;
1880
1881 //opmode = AE_READ(sc, CSR_OPMODE);
1882 macctl = AE_READ(sc, CSR_MACCTL);
1883
1884 /* XXX: do we need to do this? */
1885 /* Idle the transmit and receive processes. */
1886 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1887
1888 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1889 flowc = FLOWC_FCE;
1890 macctl &= ~MACCTL_DRO;
1891 macctl |= MACCTL_FDX;
1892 } else {
1893 flowc = 0; /* cannot do flow control in HDX */
1894 macctl |= MACCTL_DRO;
1895 macctl &= ~MACCTL_FDX;
1896 }
1897
1898 AE_WRITE(sc, CSR_FLOWC, flowc);
1899 AE_WRITE(sc, CSR_MACCTL, macctl);
1900
1901 /* restore operational mode */
1902 //AE_WRITE(sc, CSR_OPMODE, opmode);
1903 AE_BARRIER(sc);
1904 }
1905
1906 /*
1907 * ae_mii_readreg:
1908 *
1909 * Read a PHY register.
1910 */
1911 static int
1912 ae_mii_readreg(struct device *self, int phy, int reg)
1913 {
1914 struct ae_softc *sc = (struct ae_softc *)self;
1915 uint32_t addr;
1916 int i;
1917
1918 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1919 AE_WRITE(sc, CSR_MIIADDR, addr);
1920 AE_BARRIER(sc);
1921 for (i = 0; i < 100000000; i++) {
1922 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1923 break;
1924 }
1925
1926 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1927 }
1928
1929 /*
1930 * ae_mii_writereg:
1931 *
1932 * Write a PHY register.
1933 */
1934 static void
1935 ae_mii_writereg(struct device *self, int phy, int reg, int val)
1936 {
1937 struct ae_softc *sc = (struct ae_softc *)self;
1938 uint32_t addr;
1939 int i;
1940
1941 /* write the data register */
1942 AE_WRITE(sc, CSR_MIIDATA, val);
1943
1944 /* write the address to latch it in */
1945 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1946 MIIADDR_WRITE;
1947 AE_WRITE(sc, CSR_MIIADDR, addr);
1948 AE_BARRIER(sc);
1949
1950 for (i = 0; i < 100000000; i++) {
1951 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1952 break;
1953 }
1954 }
1955