if_ae.c revision 1.13 1 /* $Id: if_ae.c,v 1.13 2008/03/11 23:58:06 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. All advertising materials mentioning features or use of this software
59 * must display the following acknowledgement:
60 * This product includes software developed by the NetBSD
61 * Foundation, Inc. and its contributors.
62 * 4. Neither the name of The NetBSD Foundation nor the names of its
63 * contributors may be used to endorse or promote products derived
64 * from this software without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
67 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
68 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
69 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
70 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
71 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
72 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
73 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
74 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
75 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGE.
77 */
78
79 /*
80 * Device driver for the onboard ethernet MAC found on the AR5312
81 * chip's AHB bus.
82 *
83 * This device is very simliar to the tulip in most regards, and
84 * the code is directly derived from NetBSD's tulip.c. However, it
85 * is different enough that it did not seem to be a good idea to
86 * add further complexity to the tulip driver, so we have our own.
87 *
88 * Also tulip has a lot of complexity in it for various parts/options
89 * that we don't need, and on these little boxes with only ~8MB RAM, we
90 * don't want any extra bloat.
91 */
92
93 /*
94 * TODO:
95 *
96 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
97 * inbound packets on a half-word boundary, which would make life easier
98 * for TCP/IP. (Aligning IP headers on a word.)
99 *
100 * 2) There is stuff in original tulip to shut down the device when reacting
101 * to a a change in link status. Is that needed.
102 *
103 * 3) Test with variety of 10/100 HDX/FDX scenarios.
104 *
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.13 2008/03/11 23:58:06 dyoung Exp $");
109
110 #include "bpfilter.h"
111
112 #include <sys/param.h>
113 #include <sys/systm.h>
114 #include <sys/callout.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/ioctl.h>
120 #include <sys/errno.h>
121 #include <sys/device.h>
122
123 #include <machine/endian.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #include <net/if.h>
128 #include <net/if_dl.h>
129 #include <net/if_media.h>
130 #include <net/if_ether.h>
131
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141 #include <dev/mii/mii_bitbang.h>
142
143 #include <mips/atheros/include/arbusvar.h>
144 #include <mips/atheros/dev/aereg.h>
145 #include <mips/atheros/dev/aevar.h>
146
147 static const struct {
148 u_int32_t txth_opmode; /* OPMODE bits */
149 const char *txth_name; /* name of mode */
150 } ae_txthresh[] = {
151 { OPMODE_TR_32, "32 words" },
152 { OPMODE_TR_64, "64 words" },
153 { OPMODE_TR_128, "128 words" },
154 { OPMODE_TR_256, "256 words" },
155 { OPMODE_SF, "store and forward mode" },
156 { 0, NULL },
157 };
158
159 static int ae_match(device_t, struct cfdata *, void *);
160 static void ae_attach(device_t, device_t, void *);
161 static int ae_detach(device_t, int);
162 static int ae_activate(device_t, enum devact);
163
164 static void ae_reset(struct ae_softc *);
165 static void ae_idle(struct ae_softc *, u_int32_t);
166
167 static void ae_start(struct ifnet *);
168 static void ae_watchdog(struct ifnet *);
169 static int ae_ioctl(struct ifnet *, u_long, void *);
170 static int ae_init(struct ifnet *);
171 static void ae_stop(struct ifnet *, int);
172
173 static void ae_shutdown(void *);
174
175 static void ae_rxdrain(struct ae_softc *);
176 static int ae_add_rxbuf(struct ae_softc *, int);
177
178 static int ae_enable(struct ae_softc *);
179 static void ae_disable(struct ae_softc *);
180 static void ae_power(int, void *);
181
182 static void ae_filter_setup(struct ae_softc *);
183
184 static int ae_intr(void *);
185 static void ae_rxintr(struct ae_softc *);
186 static void ae_txintr(struct ae_softc *);
187
188 static void ae_mii_tick(void *);
189 static void ae_mii_statchg(device_t);
190
191 static int ae_mii_readreg(device_t, int, int);
192 static void ae_mii_writereg(device_t, int, int, int);
193
194 #ifdef AE_DEBUG
195 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
196 printf x
197 #else
198 #define DPRINTF(sc, x) /* nothing */
199 #endif
200
201 #ifdef AE_STATS
202 static void ae_print_stats(struct ae_softc *);
203 #endif
204
205 CFATTACH_DECL(ae, sizeof(struct ae_softc),
206 ae_match, ae_attach, ae_detach, ae_activate);
207
208 /*
209 * ae_match:
210 *
211 * Check for a device match.
212 */
213 int
214 ae_match(device_t parent, struct cfdata *cf, void *aux)
215 {
216 struct arbus_attach_args *aa = aux;
217
218 if (strcmp(aa->aa_name, cf->cf_name) == 0)
219 return 1;
220
221 return 0;
222
223 }
224
225 /*
226 * ae_attach:
227 *
228 * Attach an ae interface to the system.
229 */
230 void
231 ae_attach(device_t parent, device_t self, void *aux)
232 {
233 const uint8_t *enaddr;
234 prop_data_t ea;
235 struct ae_softc *sc = device_private(self);
236 struct arbus_attach_args *aa = aux;
237 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
238 int i, error;
239
240 callout_init(&sc->sc_tick_callout, 0);
241
242 printf(": Atheros AR531X 10/100 Ethernet\n");
243
244 /*
245 * Try to get MAC address.
246 */
247 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
248 if (ea == NULL) {
249 printf("%s: unable to get mac-addr property\n",
250 sc->sc_dev.dv_xname);
251 return;
252 }
253 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
254 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
255 enaddr = prop_data_data_nocopy(ea);
256
257 /* Announce ourselves. */
258 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
259 ether_sprintf(enaddr));
260
261 sc->sc_cirq = aa->aa_cirq;
262 sc->sc_mirq = aa->aa_mirq;
263 sc->sc_st = aa->aa_bst;
264 sc->sc_dmat = aa->aa_dmat;
265
266 SIMPLEQ_INIT(&sc->sc_txfreeq);
267 SIMPLEQ_INIT(&sc->sc_txdirtyq);
268
269 /*
270 * Map registers.
271 */
272 sc->sc_size = aa->aa_size;
273 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
274 &sc->sc_sh)) != 0) {
275 printf("%s: unable to map registers, error = %d\n",
276 sc->sc_dev.dv_xname, error);
277 goto fail_0;
278 }
279
280 /*
281 * Allocate the control data structures, and create and load the
282 * DMA map for it.
283 */
284 if ((error = bus_dmamem_alloc(sc->sc_dmat,
285 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
286 1, &sc->sc_cdnseg, 0)) != 0) {
287 printf("%s: unable to allocate control data, error = %d\n",
288 sc->sc_dev.dv_xname, error);
289 goto fail_1;
290 }
291
292 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
293 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
294 BUS_DMA_COHERENT)) != 0) {
295 printf("%s: unable to map control data, error = %d\n",
296 sc->sc_dev.dv_xname, error);
297 goto fail_2;
298 }
299
300 if ((error = bus_dmamap_create(sc->sc_dmat,
301 sizeof(struct ae_control_data), 1,
302 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
303 printf("%s: unable to create control data DMA map, "
304 "error = %d\n", sc->sc_dev.dv_xname, error);
305 goto fail_3;
306 }
307
308 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
309 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
310 0)) != 0) {
311 printf("%s: unable to load control data DMA map, error = %d\n",
312 sc->sc_dev.dv_xname, error);
313 goto fail_4;
314 }
315
316 /*
317 * Create the transmit buffer DMA maps.
318 */
319 for (i = 0; i < AE_TXQUEUELEN; i++) {
320 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
321 AE_NTXSEGS, MCLBYTES, 0, 0,
322 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
323 printf("%s: unable to create tx DMA map %d, "
324 "error = %d\n", sc->sc_dev.dv_xname, i, error);
325 goto fail_5;
326 }
327 }
328
329 /*
330 * Create the receive buffer DMA maps.
331 */
332 for (i = 0; i < AE_NRXDESC; i++) {
333 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
334 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
335 printf("%s: unable to create rx DMA map %d, "
336 "error = %d\n", sc->sc_dev.dv_xname, i, error);
337 goto fail_6;
338 }
339 sc->sc_rxsoft[i].rxs_mbuf = NULL;
340 }
341
342 /*
343 * Reset the chip to a known state.
344 */
345 ae_reset(sc);
346
347 /*
348 * From this point forward, the attachment cannot fail. A failure
349 * before this point releases all resources that may have been
350 * allocated.
351 */
352 sc->sc_flags |= AE_ATTACHED;
353
354 /*
355 * Initialize our media structures. This may probe the MII, if
356 * present.
357 */
358 sc->sc_mii.mii_ifp = ifp;
359 sc->sc_mii.mii_readreg = ae_mii_readreg;
360 sc->sc_mii.mii_writereg = ae_mii_writereg;
361 sc->sc_mii.mii_statchg = ae_mii_statchg;
362 sc->sc_ethercom.ec_mii = &sc->sc_mii;
363 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
364 ether_mediastatus);
365 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
366 MII_OFFSET_ANY, 0);
367
368 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
369 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
370 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
371 } else
372 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
373
374 sc->sc_tick = ae_mii_tick;
375
376 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
377 ifp->if_softc = sc;
378 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
379 sc->sc_if_flags = ifp->if_flags;
380 ifp->if_ioctl = ae_ioctl;
381 ifp->if_start = ae_start;
382 ifp->if_watchdog = ae_watchdog;
383 ifp->if_init = ae_init;
384 ifp->if_stop = ae_stop;
385 IFQ_SET_READY(&ifp->if_snd);
386
387 /*
388 * We can support 802.1Q VLAN-sized frames.
389 */
390 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
391
392 /*
393 * Attach the interface.
394 */
395 if_attach(ifp);
396 ether_ifattach(ifp, enaddr);
397
398 #if NRND > 0
399 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
400 RND_TYPE_NET, 0);
401 #endif
402
403 /*
404 * Make sure the interface is shutdown during reboot.
405 */
406 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
407 if (sc->sc_sdhook == NULL)
408 printf("%s: WARNING: unable to establish shutdown hook\n",
409 sc->sc_dev.dv_xname);
410
411 /*
412 * Add a suspend hook to make sure we come back up after a
413 * resume.
414 */
415 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
416 ae_power, sc);
417 if (sc->sc_powerhook == NULL)
418 printf("%s: WARNING: unable to establish power hook\n",
419 sc->sc_dev.dv_xname);
420 return;
421
422 /*
423 * Free any resources we've allocated during the failed attach
424 * attempt. Do this in reverse order and fall through.
425 */
426 fail_6:
427 for (i = 0; i < AE_NRXDESC; i++) {
428 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
429 bus_dmamap_destroy(sc->sc_dmat,
430 sc->sc_rxsoft[i].rxs_dmamap);
431 }
432 fail_5:
433 for (i = 0; i < AE_TXQUEUELEN; i++) {
434 if (sc->sc_txsoft[i].txs_dmamap != NULL)
435 bus_dmamap_destroy(sc->sc_dmat,
436 sc->sc_txsoft[i].txs_dmamap);
437 }
438 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
439 fail_4:
440 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
441 fail_3:
442 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
443 sizeof(struct ae_control_data));
444 fail_2:
445 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
446 fail_1:
447 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
448 fail_0:
449 return;
450 }
451
452 /*
453 * ae_activate:
454 *
455 * Handle device activation/deactivation requests.
456 */
457 int
458 ae_activate(device_t self, enum devact act)
459 {
460 struct ae_softc *sc = device_private(self);
461 int s, error = 0;
462
463 s = splnet();
464 switch (act) {
465 case DVACT_ACTIVATE:
466 error = EOPNOTSUPP;
467 break;
468
469 case DVACT_DEACTIVATE:
470 mii_activate(&sc->sc_mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
471 if_deactivate(&sc->sc_ethercom.ec_if);
472 break;
473 }
474 splx(s);
475
476 return (error);
477 }
478
479 /*
480 * ae_detach:
481 *
482 * Detach a device interface.
483 */
484 int
485 ae_detach(device_t self, int flags)
486 {
487 struct ae_softc *sc = device_private(self);
488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
489 struct ae_rxsoft *rxs;
490 struct ae_txsoft *txs;
491 int i;
492
493 /*
494 * Succeed now if there isn't any work to do.
495 */
496 if ((sc->sc_flags & AE_ATTACHED) == 0)
497 return (0);
498
499 /* Unhook our tick handler. */
500 if (sc->sc_tick)
501 callout_stop(&sc->sc_tick_callout);
502
503 /* Detach all PHYs */
504 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
505
506 /* Delete all remaining media. */
507 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
508
509 #if NRND > 0
510 rnd_detach_source(&sc->sc_rnd_source);
511 #endif
512 ether_ifdetach(ifp);
513 if_detach(ifp);
514
515 for (i = 0; i < AE_NRXDESC; i++) {
516 rxs = &sc->sc_rxsoft[i];
517 if (rxs->rxs_mbuf != NULL) {
518 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
519 m_freem(rxs->rxs_mbuf);
520 rxs->rxs_mbuf = NULL;
521 }
522 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
523 }
524 for (i = 0; i < AE_TXQUEUELEN; i++) {
525 txs = &sc->sc_txsoft[i];
526 if (txs->txs_mbuf != NULL) {
527 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
528 m_freem(txs->txs_mbuf);
529 txs->txs_mbuf = NULL;
530 }
531 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
532 }
533 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
534 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
535 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
536 sizeof(struct ae_control_data));
537 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
538
539 shutdownhook_disestablish(sc->sc_sdhook);
540 powerhook_disestablish(sc->sc_powerhook);
541
542 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
543
544
545 return (0);
546 }
547
548 /*
549 * ae_shutdown:
550 *
551 * Make sure the interface is stopped at reboot time.
552 */
553 static void
554 ae_shutdown(void *arg)
555 {
556 struct ae_softc *sc = arg;
557
558 ae_stop(&sc->sc_ethercom.ec_if, 1);
559 }
560
561 /*
562 * ae_start: [ifnet interface function]
563 *
564 * Start packet transmission on the interface.
565 */
566 static void
567 ae_start(struct ifnet *ifp)
568 {
569 struct ae_softc *sc = ifp->if_softc;
570 struct mbuf *m0, *m;
571 struct ae_txsoft *txs, *last_txs = NULL;
572 bus_dmamap_t dmamap;
573 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
574
575 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
576 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
577
578
579 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
580 return;
581
582 /*
583 * Remember the previous number of free descriptors and
584 * the first descriptor we'll use.
585 */
586 ofree = sc->sc_txfree;
587 firsttx = sc->sc_txnext;
588
589 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
590 sc->sc_dev.dv_xname, ofree, firsttx));
591
592 /*
593 * Loop through the send queue, setting up transmit descriptors
594 * until we drain the queue, or use up all available transmit
595 * descriptors.
596 */
597 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
598 sc->sc_txfree != 0) {
599 /*
600 * Grab a packet off the queue.
601 */
602 IFQ_POLL(&ifp->if_snd, m0);
603 if (m0 == NULL)
604 break;
605 m = NULL;
606
607 dmamap = txs->txs_dmamap;
608
609 /*
610 * Load the DMA map. If this fails, the packet either
611 * didn't fit in the alloted number of segments, or we were
612 * short on resources. In this case, we'll copy and try
613 * again.
614 */
615 if (((mtod(m0, uintptr_t) & 3) != 0) ||
616 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
617 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
618 MGETHDR(m, M_DONTWAIT, MT_DATA);
619 if (m == NULL) {
620 printf("%s: unable to allocate Tx mbuf\n",
621 sc->sc_dev.dv_xname);
622 break;
623 }
624 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
625 if (m0->m_pkthdr.len > MHLEN) {
626 MCLGET(m, M_DONTWAIT);
627 if ((m->m_flags & M_EXT) == 0) {
628 printf("%s: unable to allocate Tx "
629 "cluster\n", sc->sc_dev.dv_xname);
630 m_freem(m);
631 break;
632 }
633 }
634 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
635 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
636 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
637 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
638 if (error) {
639 printf("%s: unable to load Tx buffer, "
640 "error = %d\n", sc->sc_dev.dv_xname,
641 error);
642 break;
643 }
644 }
645
646 /*
647 * Ensure we have enough descriptors free to describe
648 * the packet.
649 */
650 if (dmamap->dm_nsegs > sc->sc_txfree) {
651 /*
652 * Not enough free descriptors to transmit this
653 * packet. We haven't committed to anything yet,
654 * so just unload the DMA map, put the packet
655 * back on the queue, and punt. Notify the upper
656 * layer that there are no more slots left.
657 *
658 * XXX We could allocate an mbuf and copy, but
659 * XXX it is worth it?
660 */
661 ifp->if_flags |= IFF_OACTIVE;
662 bus_dmamap_unload(sc->sc_dmat, dmamap);
663 if (m != NULL)
664 m_freem(m);
665 break;
666 }
667
668 IFQ_DEQUEUE(&ifp->if_snd, m0);
669 if (m != NULL) {
670 m_freem(m0);
671 m0 = m;
672 }
673
674 /*
675 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
676 */
677
678 /* Sync the DMA map. */
679 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
680 BUS_DMASYNC_PREWRITE);
681
682 /*
683 * Initialize the transmit descriptors.
684 */
685 for (nexttx = sc->sc_txnext, seg = 0;
686 seg < dmamap->dm_nsegs;
687 seg++, nexttx = AE_NEXTTX(nexttx)) {
688 /*
689 * If this is the first descriptor we're
690 * enqueueing, don't set the OWN bit just
691 * yet. That could cause a race condition.
692 * We'll do it below.
693 */
694 sc->sc_txdescs[nexttx].ad_status =
695 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
696 sc->sc_txdescs[nexttx].ad_bufaddr1 =
697 dmamap->dm_segs[seg].ds_addr;
698 sc->sc_txdescs[nexttx].ad_ctl =
699 (dmamap->dm_segs[seg].ds_len <<
700 ADCTL_SIZE1_SHIFT) |
701 (nexttx == (AE_NTXDESC - 1) ?
702 ADCTL_ER : 0);
703 lasttx = nexttx;
704 }
705
706 KASSERT(lasttx != -1);
707
708 /* Set `first segment' and `last segment' appropriately. */
709 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
710 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
711
712 #ifdef AE_DEBUG
713 if (ifp->if_flags & IFF_DEBUG) {
714 printf(" txsoft %p transmit chain:\n", txs);
715 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
716 printf(" descriptor %d:\n", seg);
717 printf(" ad_status: 0x%08x\n",
718 sc->sc_txdescs[seg].ad_status);
719 printf(" ad_ctl: 0x%08x\n",
720 sc->sc_txdescs[seg].ad_ctl);
721 printf(" ad_bufaddr1: 0x%08x\n",
722 sc->sc_txdescs[seg].ad_bufaddr1);
723 printf(" ad_bufaddr2: 0x%08x\n",
724 sc->sc_txdescs[seg].ad_bufaddr2);
725 if (seg == lasttx)
726 break;
727 }
728 }
729 #endif
730
731 /* Sync the descriptors we're using. */
732 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
733 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
734
735 /*
736 * Store a pointer to the packet so we can free it later,
737 * and remember what txdirty will be once the packet is
738 * done.
739 */
740 txs->txs_mbuf = m0;
741 txs->txs_firstdesc = sc->sc_txnext;
742 txs->txs_lastdesc = lasttx;
743 txs->txs_ndescs = dmamap->dm_nsegs;
744
745 /* Advance the tx pointer. */
746 sc->sc_txfree -= dmamap->dm_nsegs;
747 sc->sc_txnext = nexttx;
748
749 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
750 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
751
752 last_txs = txs;
753
754 #if NBPFILTER > 0
755 /*
756 * Pass the packet to any BPF listeners.
757 */
758 if (ifp->if_bpf)
759 bpf_mtap(ifp->if_bpf, m0);
760 #endif /* NBPFILTER > 0 */
761 }
762
763 if (txs == NULL || sc->sc_txfree == 0) {
764 /* No more slots left; notify upper layer. */
765 ifp->if_flags |= IFF_OACTIVE;
766 }
767
768 if (sc->sc_txfree != ofree) {
769 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
770 sc->sc_dev.dv_xname, lasttx, firsttx));
771 /*
772 * Cause a transmit interrupt to happen on the
773 * last packet we enqueued.
774 */
775 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
776 AE_CDTXSYNC(sc, lasttx, 1,
777 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
778
779 /*
780 * The entire packet chain is set up. Give the
781 * first descriptor to the chip now.
782 */
783 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
784 AE_CDTXSYNC(sc, firsttx, 1,
785 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
786
787 /* Wake up the transmitter. */
788 /* XXX USE AUTOPOLLING? */
789 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
790 AE_BARRIER(sc);
791
792 /* Set a watchdog timer in case the chip flakes out. */
793 ifp->if_timer = 5;
794 }
795 }
796
797 /*
798 * ae_watchdog: [ifnet interface function]
799 *
800 * Watchdog timer handler.
801 */
802 static void
803 ae_watchdog(struct ifnet *ifp)
804 {
805 struct ae_softc *sc = ifp->if_softc;
806 int doing_transmit;
807
808 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
809
810 if (doing_transmit) {
811 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
812 ifp->if_oerrors++;
813 }
814 else
815 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
816
817 (void) ae_init(ifp);
818
819 /* Try to get more packets going. */
820 ae_start(ifp);
821 }
822
823 /*
824 * ae_ioctl: [ifnet interface function]
825 *
826 * Handle control requests from the operator.
827 */
828 static int
829 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
830 {
831 struct ae_softc *sc = ifp->if_softc;
832 int s, error;
833
834 s = splnet();
835
836 switch (cmd) {
837 case SIOCSIFFLAGS:
838 /* If the interface is up and running, only modify the receive
839 * filter when setting promiscuous or debug mode. Otherwise
840 * fall through to ether_ioctl, which will reset the chip.
841 */
842 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
843 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
844 == (IFF_UP|IFF_RUNNING))
845 && ((ifp->if_flags & (~RESETIGN))
846 == (sc->sc_if_flags & (~RESETIGN)))) {
847 /* Set up the receive filter. */
848 ae_filter_setup(sc);
849 error = 0;
850 break;
851 #undef RESETIGN
852 }
853 /* FALLTHROUGH */
854 default:
855 error = ether_ioctl(ifp, cmd, data);
856 if (error == ENETRESET) {
857 if (ifp->if_flags & IFF_RUNNING) {
858 /*
859 * Multicast list has changed. Set the
860 * hardware filter accordingly.
861 */
862 ae_filter_setup(sc);
863 }
864 error = 0;
865 }
866 break;
867 }
868
869 /* Try to get more packets going. */
870 if (AE_IS_ENABLED(sc))
871 ae_start(ifp);
872
873 sc->sc_if_flags = ifp->if_flags;
874 splx(s);
875 return (error);
876 }
877
878 /*
879 * ae_intr:
880 *
881 * Interrupt service routine.
882 */
883 int
884 ae_intr(void *arg)
885 {
886 struct ae_softc *sc = arg;
887 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
888 u_int32_t status, rxstatus, txstatus;
889 int handled = 0, txthresh;
890
891 DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
892
893 #ifdef DEBUG
894 if (AE_IS_ENABLED(sc) == 0)
895 panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
896 #endif
897
898 /*
899 * If the interface isn't running, the interrupt couldn't
900 * possibly have come from us.
901 */
902 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
903 !device_is_active(&sc->sc_dev)) {
904 printf("spurious?!?\n");
905 return (0);
906 }
907
908 for (;;) {
909 status = AE_READ(sc, CSR_STATUS);
910 if (status) {
911 AE_WRITE(sc, CSR_STATUS, status);
912 AE_BARRIER(sc);
913 }
914
915 if ((status & sc->sc_inten) == 0)
916 break;
917
918 handled = 1;
919
920 rxstatus = status & sc->sc_rxint_mask;
921 txstatus = status & sc->sc_txint_mask;
922
923 if (rxstatus) {
924 /* Grab new any new packets. */
925 ae_rxintr(sc);
926
927 if (rxstatus & STATUS_RU) {
928 printf("%s: receive ring overrun\n",
929 sc->sc_dev.dv_xname);
930 /* Get the receive process going again. */
931 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
932 AE_BARRIER(sc);
933 break;
934 }
935 }
936
937 if (txstatus) {
938 /* Sweep up transmit descriptors. */
939 ae_txintr(sc);
940
941 if (txstatus & STATUS_TJT)
942 printf("%s: transmit jabber timeout\n",
943 sc->sc_dev.dv_xname);
944
945 if (txstatus & STATUS_UNF) {
946 /*
947 * Increase our transmit threshold if
948 * another is available.
949 */
950 txthresh = sc->sc_txthresh + 1;
951 if (ae_txthresh[txthresh].txth_name != NULL) {
952 uint32_t opmode;
953 /* Idle the transmit process. */
954 opmode = AE_READ(sc, CSR_OPMODE);
955 ae_idle(sc, OPMODE_ST);
956
957 sc->sc_txthresh = txthresh;
958 opmode &=
959 ~(OPMODE_TR|OPMODE_SF);
960 opmode |=
961 ae_txthresh[txthresh].txth_opmode;
962 printf("%s: transmit underrun; new "
963 "threshold: %s\n",
964 sc->sc_dev.dv_xname,
965 ae_txthresh[txthresh].txth_name);
966
967 /*
968 * Set the new threshold and restart
969 * the transmit process.
970 */
971 AE_WRITE(sc, CSR_OPMODE, opmode);
972 AE_BARRIER(sc);
973 }
974 /*
975 * XXX Log every Nth underrun from
976 * XXX now on?
977 */
978 }
979 }
980
981 if (status & (STATUS_TPS|STATUS_RPS)) {
982 if (status & STATUS_TPS)
983 printf("%s: transmit process stopped\n",
984 sc->sc_dev.dv_xname);
985 if (status & STATUS_RPS)
986 printf("%s: receive process stopped\n",
987 sc->sc_dev.dv_xname);
988 (void) ae_init(ifp);
989 break;
990 }
991
992 if (status & STATUS_SE) {
993 const char *str;
994
995 if (status & STATUS_TX_ABORT)
996 str = "tx abort";
997 else if (status & STATUS_RX_ABORT)
998 str = "rx abort";
999 else
1000 str = "unknown error";
1001
1002 printf("%s: fatal system error: %s\n",
1003 sc->sc_dev.dv_xname, str);
1004 (void) ae_init(ifp);
1005 break;
1006 }
1007
1008 /*
1009 * Not handled:
1010 *
1011 * Transmit buffer unavailable -- normal
1012 * condition, nothing to do, really.
1013 *
1014 * General purpose timer experied -- we don't
1015 * use the general purpose timer.
1016 *
1017 * Early receive interrupt -- not available on
1018 * all chips, we just use RI. We also only
1019 * use single-segment receive DMA, so this
1020 * is mostly useless.
1021 */
1022 }
1023
1024 /* Try to get more packets going. */
1025 ae_start(ifp);
1026
1027 #if NRND > 0
1028 if (handled)
1029 rnd_add_uint32(&sc->sc_rnd_source, status);
1030 #endif
1031 return (handled);
1032 }
1033
1034 /*
1035 * ae_rxintr:
1036 *
1037 * Helper; handle receive interrupts.
1038 */
1039 static void
1040 ae_rxintr(struct ae_softc *sc)
1041 {
1042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1043 struct ether_header *eh;
1044 struct ae_rxsoft *rxs;
1045 struct mbuf *m;
1046 u_int32_t rxstat;
1047 int i, len;
1048
1049 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1050 rxs = &sc->sc_rxsoft[i];
1051
1052 AE_CDRXSYNC(sc, i,
1053 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1054
1055 rxstat = sc->sc_rxdescs[i].ad_status;
1056
1057 if (rxstat & ADSTAT_OWN) {
1058 /*
1059 * We have processed all of the receive buffers.
1060 */
1061 break;
1062 }
1063
1064 /*
1065 * If any collisions were seen on the wire, count one.
1066 */
1067 if (rxstat & ADSTAT_Rx_CS)
1068 ifp->if_collisions++;
1069
1070 /*
1071 * If an error occurred, update stats, clear the status
1072 * word, and leave the packet buffer in place. It will
1073 * simply be reused the next time the ring comes around.
1074 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1075 * error.
1076 */
1077 if (rxstat & ADSTAT_ES &&
1078 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1079 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1080 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1081 #define PRINTERR(bit, str) \
1082 if (rxstat & (bit)) \
1083 printf("%s: receive error: %s\n", \
1084 sc->sc_dev.dv_xname, str)
1085 ifp->if_ierrors++;
1086 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1087 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1088 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1089 PRINTERR(ADSTAT_Rx_RE, "MII error");
1090 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1091 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1092 #undef PRINTERR
1093 AE_INIT_RXDESC(sc, i);
1094 continue;
1095 }
1096
1097 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1098 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1099
1100 /*
1101 * No errors; receive the packet. Note the chip
1102 * includes the CRC with every packet.
1103 */
1104 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1105
1106 /*
1107 * XXX: the Atheros part can align on half words. what
1108 * is the performance implication of this? Probably
1109 * minimal, and we should use it...
1110 */
1111 #ifdef __NO_STRICT_ALIGNMENT
1112 /*
1113 * Allocate a new mbuf cluster. If that fails, we are
1114 * out of memory, and must drop the packet and recycle
1115 * the buffer that's already attached to this descriptor.
1116 */
1117 m = rxs->rxs_mbuf;
1118 if (ae_add_rxbuf(sc, i) != 0) {
1119 ifp->if_ierrors++;
1120 AE_INIT_RXDESC(sc, i);
1121 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1122 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1123 continue;
1124 }
1125 #else
1126 /*
1127 * The chip's receive buffers must be 4-byte aligned.
1128 * But this means that the data after the Ethernet header
1129 * is misaligned. We must allocate a new buffer and
1130 * copy the data, shifted forward 2 bytes.
1131 */
1132 MGETHDR(m, M_DONTWAIT, MT_DATA);
1133 if (m == NULL) {
1134 dropit:
1135 ifp->if_ierrors++;
1136 AE_INIT_RXDESC(sc, i);
1137 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1138 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1139 continue;
1140 }
1141 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1142 if (len > (MHLEN - 2)) {
1143 MCLGET(m, M_DONTWAIT);
1144 if ((m->m_flags & M_EXT) == 0) {
1145 m_freem(m);
1146 goto dropit;
1147 }
1148 }
1149 m->m_data += 2;
1150
1151 /*
1152 * Note that we use clusters for incoming frames, so the
1153 * buffer is virtually contiguous.
1154 */
1155 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1156
1157 /* Allow the receive descriptor to continue using its mbuf. */
1158 AE_INIT_RXDESC(sc, i);
1159 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1160 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1161 #endif /* __NO_STRICT_ALIGNMENT */
1162
1163 ifp->if_ipackets++;
1164 eh = mtod(m, struct ether_header *);
1165 m->m_pkthdr.rcvif = ifp;
1166 m->m_pkthdr.len = m->m_len = len;
1167
1168 #if NBPFILTER > 0
1169 /*
1170 * Pass this up to any BPF listeners, but only
1171 * pass it up the stack if its for us.
1172 */
1173 if (ifp->if_bpf)
1174 bpf_mtap(ifp->if_bpf, m);
1175 #endif /* NBPFILTER > 0 */
1176
1177 /* Pass it on. */
1178 (*ifp->if_input)(ifp, m);
1179 }
1180
1181 /* Update the receive pointer. */
1182 sc->sc_rxptr = i;
1183 }
1184
1185 /*
1186 * ae_txintr:
1187 *
1188 * Helper; handle transmit interrupts.
1189 */
1190 static void
1191 ae_txintr(struct ae_softc *sc)
1192 {
1193 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1194 struct ae_txsoft *txs;
1195 u_int32_t txstat;
1196
1197 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1198 sc->sc_dev.dv_xname, sc->sc_flags));
1199
1200 ifp->if_flags &= ~IFF_OACTIVE;
1201
1202 /*
1203 * Go through our Tx list and free mbufs for those
1204 * frames that have been transmitted.
1205 */
1206 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1207 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1208 txs->txs_ndescs,
1209 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1210
1211 #ifdef AE_DEBUG
1212 if (ifp->if_flags & IFF_DEBUG) {
1213 int i;
1214 printf(" txsoft %p transmit chain:\n", txs);
1215 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1216 printf(" descriptor %d:\n", i);
1217 printf(" ad_status: 0x%08x\n",
1218 sc->sc_txdescs[i].ad_status);
1219 printf(" ad_ctl: 0x%08x\n",
1220 sc->sc_txdescs[i].ad_ctl);
1221 printf(" ad_bufaddr1: 0x%08x\n",
1222 sc->sc_txdescs[i].ad_bufaddr1);
1223 printf(" ad_bufaddr2: 0x%08x\n",
1224 sc->sc_txdescs[i].ad_bufaddr2);
1225 if (i == txs->txs_lastdesc)
1226 break;
1227 }
1228 }
1229 #endif
1230
1231 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1232 if (txstat & ADSTAT_OWN)
1233 break;
1234
1235 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1236
1237 sc->sc_txfree += txs->txs_ndescs;
1238
1239 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1240 0, txs->txs_dmamap->dm_mapsize,
1241 BUS_DMASYNC_POSTWRITE);
1242 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1243 m_freem(txs->txs_mbuf);
1244 txs->txs_mbuf = NULL;
1245
1246 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1247
1248 /*
1249 * Check for errors and collisions.
1250 */
1251 #ifdef AE_STATS
1252 if (txstat & ADSTAT_Tx_UF)
1253 sc->sc_stats.ts_tx_uf++;
1254 if (txstat & ADSTAT_Tx_TO)
1255 sc->sc_stats.ts_tx_to++;
1256 if (txstat & ADSTAT_Tx_EC)
1257 sc->sc_stats.ts_tx_ec++;
1258 if (txstat & ADSTAT_Tx_LC)
1259 sc->sc_stats.ts_tx_lc++;
1260 #endif
1261
1262 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1263 ifp->if_oerrors++;
1264
1265 if (txstat & ADSTAT_Tx_EC)
1266 ifp->if_collisions += 16;
1267 else
1268 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1269 if (txstat & ADSTAT_Tx_LC)
1270 ifp->if_collisions++;
1271
1272 ifp->if_opackets++;
1273 }
1274
1275 /*
1276 * If there are no more pending transmissions, cancel the watchdog
1277 * timer.
1278 */
1279 if (txs == NULL)
1280 ifp->if_timer = 0;
1281 }
1282
1283 #ifdef AE_STATS
1284 void
1285 ae_print_stats(struct ae_softc *sc)
1286 {
1287
1288 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1289 sc->sc_dev.dv_xname,
1290 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1291 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1292 }
1293 #endif
1294
1295 /*
1296 * ae_reset:
1297 *
1298 * Perform a soft reset on the chip.
1299 */
1300 void
1301 ae_reset(struct ae_softc *sc)
1302 {
1303 int i;
1304
1305 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1306 AE_BARRIER(sc);
1307
1308 /*
1309 * The chip doesn't take itself out of reset automatically.
1310 * We need to do so after 2us.
1311 */
1312 delay(10);
1313 AE_WRITE(sc, CSR_BUSMODE, 0);
1314 AE_BARRIER(sc);
1315
1316 for (i = 0; i < 1000; i++) {
1317 /*
1318 * Wait a bit for the reset to complete before peeking
1319 * at the chip again.
1320 */
1321 delay(10);
1322 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1323 break;
1324 }
1325
1326 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1327 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1328
1329 delay(1000);
1330 }
1331
1332 /*
1333 * ae_init: [ ifnet interface function ]
1334 *
1335 * Initialize the interface. Must be called at splnet().
1336 */
1337 static int
1338 ae_init(struct ifnet *ifp)
1339 {
1340 struct ae_softc *sc = ifp->if_softc;
1341 struct ae_txsoft *txs;
1342 struct ae_rxsoft *rxs;
1343 const uint8_t *enaddr;
1344 int i, error = 0;
1345
1346 if ((error = ae_enable(sc)) != 0)
1347 goto out;
1348
1349 /*
1350 * Cancel any pending I/O.
1351 */
1352 ae_stop(ifp, 0);
1353
1354 /*
1355 * Reset the chip to a known state.
1356 */
1357 ae_reset(sc);
1358
1359 /*
1360 * Initialize the BUSMODE register.
1361 */
1362 AE_WRITE(sc, CSR_BUSMODE,
1363 /* XXX: not sure if this is a good thing or not... */
1364 //BUSMODE_ALIGN_16B |
1365 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1366 AE_BARRIER(sc);
1367
1368 /*
1369 * Initialize the transmit descriptor ring.
1370 */
1371 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1372 for (i = 0; i < AE_NTXDESC; i++) {
1373 sc->sc_txdescs[i].ad_ctl = 0;
1374 sc->sc_txdescs[i].ad_bufaddr2 =
1375 AE_CDTXADDR(sc, AE_NEXTTX(i));
1376 }
1377 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1378 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1379 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1380 sc->sc_txfree = AE_NTXDESC;
1381 sc->sc_txnext = 0;
1382
1383 /*
1384 * Initialize the transmit job descriptors.
1385 */
1386 SIMPLEQ_INIT(&sc->sc_txfreeq);
1387 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1388 for (i = 0; i < AE_TXQUEUELEN; i++) {
1389 txs = &sc->sc_txsoft[i];
1390 txs->txs_mbuf = NULL;
1391 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1392 }
1393
1394 /*
1395 * Initialize the receive descriptor and receive job
1396 * descriptor rings.
1397 */
1398 for (i = 0; i < AE_NRXDESC; i++) {
1399 rxs = &sc->sc_rxsoft[i];
1400 if (rxs->rxs_mbuf == NULL) {
1401 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1402 printf("%s: unable to allocate or map rx "
1403 "buffer %d, error = %d\n",
1404 sc->sc_dev.dv_xname, i, error);
1405 /*
1406 * XXX Should attempt to run with fewer receive
1407 * XXX buffers instead of just failing.
1408 */
1409 ae_rxdrain(sc);
1410 goto out;
1411 }
1412 } else
1413 AE_INIT_RXDESC(sc, i);
1414 }
1415 sc->sc_rxptr = 0;
1416
1417 /*
1418 * Initialize the interrupt mask and enable interrupts.
1419 */
1420 /* normal interrupts */
1421 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1422
1423 /* abnormal interrupts */
1424 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1425 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1426
1427 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1428 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1429
1430 sc->sc_rxint_mask &= sc->sc_inten;
1431 sc->sc_txint_mask &= sc->sc_inten;
1432
1433 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1434 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1435
1436 /*
1437 * Give the transmit and receive rings to the chip.
1438 */
1439 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1440 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1441 AE_BARRIER(sc);
1442
1443 /*
1444 * Set the station address.
1445 */
1446 enaddr = CLLADDR(ifp->if_sadl);
1447 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1448 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1449 enaddr[1] << 8 | enaddr[0]);
1450 AE_BARRIER(sc);
1451
1452 /*
1453 * Set the receive filter. This will start the transmit and
1454 * receive processes.
1455 */
1456 ae_filter_setup(sc);
1457
1458 /*
1459 * Set the current media.
1460 */
1461 if ((error = ether_mediachange(ifp)) != 0)
1462 goto out;
1463
1464 /*
1465 * Start the mac.
1466 */
1467 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1468 AE_BARRIER(sc);
1469
1470 /*
1471 * Write out the opmode.
1472 */
1473 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1474 ae_txthresh[sc->sc_txthresh].txth_opmode);
1475 /*
1476 * Start the receive process.
1477 */
1478 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1479 AE_BARRIER(sc);
1480
1481 if (sc->sc_tick != NULL) {
1482 /* Start the one second clock. */
1483 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1484 }
1485
1486 /*
1487 * Note that the interface is now running.
1488 */
1489 ifp->if_flags |= IFF_RUNNING;
1490 ifp->if_flags &= ~IFF_OACTIVE;
1491 sc->sc_if_flags = ifp->if_flags;
1492
1493 out:
1494 if (error) {
1495 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1496 ifp->if_timer = 0;
1497 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1498 }
1499 return (error);
1500 }
1501
1502 /*
1503 * ae_enable:
1504 *
1505 * Enable the chip.
1506 */
1507 static int
1508 ae_enable(struct ae_softc *sc)
1509 {
1510
1511 if (AE_IS_ENABLED(sc) == 0) {
1512 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1513 ae_intr, sc);
1514 if (sc->sc_ih == NULL) {
1515 printf("%s: unable to establish interrupt\n",
1516 sc->sc_dev.dv_xname);
1517 return (EIO);
1518 }
1519 sc->sc_flags |= AE_ENABLED;
1520 }
1521 return (0);
1522 }
1523
1524 /*
1525 * ae_disable:
1526 *
1527 * Disable the chip.
1528 */
1529 static void
1530 ae_disable(struct ae_softc *sc)
1531 {
1532
1533 if (AE_IS_ENABLED(sc)) {
1534 arbus_intr_disestablish(sc->sc_ih);
1535 sc->sc_flags &= ~AE_ENABLED;
1536 }
1537 }
1538
1539 /*
1540 * ae_power:
1541 *
1542 * Power management (suspend/resume) hook.
1543 */
1544 static void
1545 ae_power(int why, void *arg)
1546 {
1547 struct ae_softc *sc = arg;
1548 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1549 int s;
1550
1551 printf("power called: %d, %x\n", why, (uint32_t)arg);
1552 s = splnet();
1553 switch (why) {
1554 case PWR_STANDBY:
1555 /* do nothing! */
1556 break;
1557 case PWR_SUSPEND:
1558 ae_stop(ifp, 0);
1559 ae_disable(sc);
1560 break;
1561 case PWR_RESUME:
1562 if (ifp->if_flags & IFF_UP) {
1563 ae_enable(sc);
1564 ae_init(ifp);
1565 }
1566 break;
1567 case PWR_SOFTSUSPEND:
1568 case PWR_SOFTSTANDBY:
1569 case PWR_SOFTRESUME:
1570 break;
1571 }
1572 splx(s);
1573 }
1574
1575 /*
1576 * ae_rxdrain:
1577 *
1578 * Drain the receive queue.
1579 */
1580 static void
1581 ae_rxdrain(struct ae_softc *sc)
1582 {
1583 struct ae_rxsoft *rxs;
1584 int i;
1585
1586 for (i = 0; i < AE_NRXDESC; i++) {
1587 rxs = &sc->sc_rxsoft[i];
1588 if (rxs->rxs_mbuf != NULL) {
1589 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1590 m_freem(rxs->rxs_mbuf);
1591 rxs->rxs_mbuf = NULL;
1592 }
1593 }
1594 }
1595
1596 /*
1597 * ae_stop: [ ifnet interface function ]
1598 *
1599 * Stop transmission on the interface.
1600 */
1601 static void
1602 ae_stop(struct ifnet *ifp, int disable)
1603 {
1604 struct ae_softc *sc = ifp->if_softc;
1605 struct ae_txsoft *txs;
1606
1607 if (sc->sc_tick != NULL) {
1608 /* Stop the one second clock. */
1609 callout_stop(&sc->sc_tick_callout);
1610 }
1611
1612 /* Down the MII. */
1613 mii_down(&sc->sc_mii);
1614
1615 /* Disable interrupts. */
1616 AE_WRITE(sc, CSR_INTEN, 0);
1617
1618 /* Stop the transmit and receive processes. */
1619 AE_WRITE(sc, CSR_OPMODE, 0);
1620 AE_WRITE(sc, CSR_RXLIST, 0);
1621 AE_WRITE(sc, CSR_TXLIST, 0);
1622 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1623 AE_BARRIER(sc);
1624
1625 /*
1626 * Release any queued transmit buffers.
1627 */
1628 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1629 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1630 if (txs->txs_mbuf != NULL) {
1631 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1632 m_freem(txs->txs_mbuf);
1633 txs->txs_mbuf = NULL;
1634 }
1635 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1636 }
1637
1638 /*
1639 * Mark the interface down and cancel the watchdog timer.
1640 */
1641 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1642 sc->sc_if_flags = ifp->if_flags;
1643 ifp->if_timer = 0;
1644
1645 if (disable) {
1646 ae_rxdrain(sc);
1647 ae_disable(sc);
1648 }
1649
1650 /*
1651 * Reset the chip (needed on some flavors to actually disable it).
1652 */
1653 ae_reset(sc);
1654 }
1655
1656 /*
1657 * ae_add_rxbuf:
1658 *
1659 * Add a receive buffer to the indicated descriptor.
1660 */
1661 static int
1662 ae_add_rxbuf(struct ae_softc *sc, int idx)
1663 {
1664 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1665 struct mbuf *m;
1666 int error;
1667
1668 MGETHDR(m, M_DONTWAIT, MT_DATA);
1669 if (m == NULL)
1670 return (ENOBUFS);
1671
1672 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1673 MCLGET(m, M_DONTWAIT);
1674 if ((m->m_flags & M_EXT) == 0) {
1675 m_freem(m);
1676 return (ENOBUFS);
1677 }
1678
1679 if (rxs->rxs_mbuf != NULL)
1680 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1681
1682 rxs->rxs_mbuf = m;
1683
1684 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1685 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1686 BUS_DMA_READ|BUS_DMA_NOWAIT);
1687 if (error) {
1688 printf("%s: can't load rx DMA map %d, error = %d\n",
1689 sc->sc_dev.dv_xname, idx, error);
1690 panic("ae_add_rxbuf"); /* XXX */
1691 }
1692
1693 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1694 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1695
1696 AE_INIT_RXDESC(sc, idx);
1697
1698 return (0);
1699 }
1700
1701 /*
1702 * ae_filter_setup:
1703 *
1704 * Set the chip's receive filter.
1705 */
1706 static void
1707 ae_filter_setup(struct ae_softc *sc)
1708 {
1709 struct ethercom *ec = &sc->sc_ethercom;
1710 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1711 struct ether_multi *enm;
1712 struct ether_multistep step;
1713 uint32_t hash, mchash[2];
1714 uint32_t macctl = 0;
1715
1716 /*
1717 * If the chip is running, we need to reset the interface,
1718 * and will revisit here (with IFF_RUNNING) clear. The
1719 * chip seems to really not like to have its multicast
1720 * filter programmed without a reset.
1721 */
1722 if (ifp->if_flags & IFF_RUNNING) {
1723 (void) ae_init(ifp);
1724 return;
1725 }
1726
1727 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1728 sc->sc_dev.dv_xname, sc->sc_flags));
1729
1730 macctl = AE_READ(sc, CSR_MACCTL);
1731 macctl &= ~(MACCTL_PR | MACCTL_PM);
1732 macctl |= MACCTL_HASH;
1733 macctl |= MACCTL_HBD;
1734 macctl |= MACCTL_PR;
1735
1736 if (ifp->if_flags & IFF_PROMISC) {
1737 macctl |= MACCTL_PR;
1738 goto allmulti;
1739 }
1740
1741 mchash[0] = mchash[1] = 0;
1742
1743 ETHER_FIRST_MULTI(step, ec, enm);
1744 while (enm != NULL) {
1745 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1746 /*
1747 * We must listen to a range of multicast addresses.
1748 * For now, just accept all multicasts, rather than
1749 * trying to set only those filter bits needed to match
1750 * the range. (At this time, the only use of address
1751 * ranges is for IP multicast routing, for which the
1752 * range is big enough to require all bits set.)
1753 */
1754 goto allmulti;
1755 }
1756
1757 /* Verify whether we use big or little endian hashes */
1758 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1759 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1760 ETHER_NEXT_MULTI(step, enm);
1761 }
1762 ifp->if_flags &= ~IFF_ALLMULTI;
1763 goto setit;
1764
1765 allmulti:
1766 ifp->if_flags |= IFF_ALLMULTI;
1767 mchash[0] = mchash[1] = 0xffffffff;
1768 macctl |= MACCTL_PM;
1769
1770 setit:
1771 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1772 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1773
1774 AE_WRITE(sc, CSR_MACCTL, macctl);
1775 AE_BARRIER(sc);
1776
1777 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1778 sc->sc_dev.dv_xname, macctl));
1779 }
1780
1781 /*
1782 * ae_idle:
1783 *
1784 * Cause the transmit and/or receive processes to go idle.
1785 */
1786 void
1787 ae_idle(struct ae_softc *sc, u_int32_t bits)
1788 {
1789 static const char * const txstate_names[] = {
1790 "STOPPED",
1791 "RUNNING - FETCH",
1792 "RUNNING - WAIT",
1793 "RUNNING - READING",
1794 "-- RESERVED --",
1795 "RUNNING - SETUP",
1796 "SUSPENDED",
1797 "RUNNING - CLOSE",
1798 };
1799 static const char * const rxstate_names[] = {
1800 "STOPPED",
1801 "RUNNING - FETCH",
1802 "RUNNING - CHECK",
1803 "RUNNING - WAIT",
1804 "SUSPENDED",
1805 "RUNNING - CLOSE",
1806 "RUNNING - FLUSH",
1807 "RUNNING - QUEUE",
1808 };
1809
1810 u_int32_t csr, ackmask = 0;
1811 int i;
1812
1813 if (bits & OPMODE_ST)
1814 ackmask |= STATUS_TPS;
1815
1816 if (bits & OPMODE_SR)
1817 ackmask |= STATUS_RPS;
1818
1819 AE_CLR(sc, CSR_OPMODE, bits);
1820
1821 for (i = 0; i < 1000; i++) {
1822 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1823 break;
1824 delay(10);
1825 }
1826
1827 csr = AE_READ(sc, CSR_STATUS);
1828 if ((csr & ackmask) != ackmask) {
1829 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1830 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1831 printf("%s: transmit process failed to idle: "
1832 "state %s\n", sc->sc_dev.dv_xname,
1833 txstate_names[(csr & STATUS_TS) >> 20]);
1834 }
1835 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1836 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1837 printf("%s: receive process failed to idle: "
1838 "state %s\n", sc->sc_dev.dv_xname,
1839 rxstate_names[(csr & STATUS_RS) >> 17]);
1840 }
1841 }
1842 }
1843
1844 /*****************************************************************************
1845 * Support functions for MII-attached media.
1846 *****************************************************************************/
1847
1848 /*
1849 * ae_mii_tick:
1850 *
1851 * One second timer, used to tick the MII.
1852 */
1853 static void
1854 ae_mii_tick(void *arg)
1855 {
1856 struct ae_softc *sc = arg;
1857 int s;
1858
1859 if (!device_is_active(&sc->sc_dev))
1860 return;
1861
1862 s = splnet();
1863 mii_tick(&sc->sc_mii);
1864 splx(s);
1865
1866 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1867 }
1868
1869 /*
1870 * ae_mii_statchg: [mii interface function]
1871 *
1872 * Callback from PHY when media changes.
1873 */
1874 static void
1875 ae_mii_statchg(device_t self)
1876 {
1877 struct ae_softc *sc = device_private(self);
1878 uint32_t macctl, flowc;
1879
1880 //opmode = AE_READ(sc, CSR_OPMODE);
1881 macctl = AE_READ(sc, CSR_MACCTL);
1882
1883 /* XXX: do we need to do this? */
1884 /* Idle the transmit and receive processes. */
1885 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1886
1887 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1888 flowc = FLOWC_FCE;
1889 macctl &= ~MACCTL_DRO;
1890 macctl |= MACCTL_FDX;
1891 } else {
1892 flowc = 0; /* cannot do flow control in HDX */
1893 macctl |= MACCTL_DRO;
1894 macctl &= ~MACCTL_FDX;
1895 }
1896
1897 AE_WRITE(sc, CSR_FLOWC, flowc);
1898 AE_WRITE(sc, CSR_MACCTL, macctl);
1899
1900 /* restore operational mode */
1901 //AE_WRITE(sc, CSR_OPMODE, opmode);
1902 AE_BARRIER(sc);
1903 }
1904
1905 /*
1906 * ae_mii_readreg:
1907 *
1908 * Read a PHY register.
1909 */
1910 static int
1911 ae_mii_readreg(device_t self, int phy, int reg)
1912 {
1913 struct ae_softc *sc = device_private(self);
1914 uint32_t addr;
1915 int i;
1916
1917 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1918 AE_WRITE(sc, CSR_MIIADDR, addr);
1919 AE_BARRIER(sc);
1920 for (i = 0; i < 100000000; i++) {
1921 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1922 break;
1923 }
1924
1925 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1926 }
1927
1928 /*
1929 * ae_mii_writereg:
1930 *
1931 * Write a PHY register.
1932 */
1933 static void
1934 ae_mii_writereg(device_t self, int phy, int reg, int val)
1935 {
1936 struct ae_softc *sc = device_private(self);
1937 uint32_t addr;
1938 int i;
1939
1940 /* write the data register */
1941 AE_WRITE(sc, CSR_MIIDATA, val);
1942
1943 /* write the address to latch it in */
1944 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1945 MIIADDR_WRITE;
1946 AE_WRITE(sc, CSR_MIIADDR, addr);
1947 AE_BARRIER(sc);
1948
1949 for (i = 0; i < 100000000; i++) {
1950 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1951 break;
1952 }
1953 }
1954