if_ae.c revision 1.13.4.2 1 /* $Id: if_ae.c,v 1.13.4.2 2009/05/04 08:11:31 yamt Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the onboard ethernet MAC found on the AR5312
74 * chip's AHB bus.
75 *
76 * This device is very simliar to the tulip in most regards, and
77 * the code is directly derived from NetBSD's tulip.c. However, it
78 * is different enough that it did not seem to be a good idea to
79 * add further complexity to the tulip driver, so we have our own.
80 *
81 * Also tulip has a lot of complexity in it for various parts/options
82 * that we don't need, and on these little boxes with only ~8MB RAM, we
83 * don't want any extra bloat.
84 */
85
86 /*
87 * TODO:
88 *
89 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
90 * inbound packets on a half-word boundary, which would make life easier
91 * for TCP/IP. (Aligning IP headers on a word.)
92 *
93 * 2) There is stuff in original tulip to shut down the device when reacting
94 * to a a change in link status. Is that needed.
95 *
96 * 3) Test with variety of 10/100 HDX/FDX scenarios.
97 *
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.13.4.2 2009/05/04 08:11:31 yamt Exp $");
102
103 #include "bpfilter.h"
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/ioctl.h>
113 #include <sys/errno.h>
114 #include <sys/device.h>
115
116 #include <machine/endian.h>
117
118 #include <uvm/uvm_extern.h>
119
120 #include <net/if.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_ether.h>
124
125 #if NBPFILTER > 0
126 #include <net/bpf.h>
127 #endif
128
129 #include <machine/bus.h>
130 #include <machine/intr.h>
131
132 #include <dev/mii/mii.h>
133 #include <dev/mii/miivar.h>
134 #include <dev/mii/mii_bitbang.h>
135
136 #include <mips/atheros/include/arbusvar.h>
137 #include <mips/atheros/dev/aereg.h>
138 #include <mips/atheros/dev/aevar.h>
139
140 static const struct {
141 u_int32_t txth_opmode; /* OPMODE bits */
142 const char *txth_name; /* name of mode */
143 } ae_txthresh[] = {
144 { OPMODE_TR_32, "32 words" },
145 { OPMODE_TR_64, "64 words" },
146 { OPMODE_TR_128, "128 words" },
147 { OPMODE_TR_256, "256 words" },
148 { OPMODE_SF, "store and forward mode" },
149 { 0, NULL },
150 };
151
152 static int ae_match(device_t, struct cfdata *, void *);
153 static void ae_attach(device_t, device_t, void *);
154 static int ae_detach(device_t, int);
155 static int ae_activate(device_t, enum devact);
156
157 static int ae_ifflags_cb(struct ethercom *);
158 static void ae_reset(struct ae_softc *);
159 static void ae_idle(struct ae_softc *, u_int32_t);
160
161 static void ae_start(struct ifnet *);
162 static void ae_watchdog(struct ifnet *);
163 static int ae_ioctl(struct ifnet *, u_long, void *);
164 static int ae_init(struct ifnet *);
165 static void ae_stop(struct ifnet *, int);
166
167 static void ae_shutdown(void *);
168
169 static void ae_rxdrain(struct ae_softc *);
170 static int ae_add_rxbuf(struct ae_softc *, int);
171
172 static int ae_enable(struct ae_softc *);
173 static void ae_disable(struct ae_softc *);
174 static void ae_power(int, void *);
175
176 static void ae_filter_setup(struct ae_softc *);
177
178 static int ae_intr(void *);
179 static void ae_rxintr(struct ae_softc *);
180 static void ae_txintr(struct ae_softc *);
181
182 static void ae_mii_tick(void *);
183 static void ae_mii_statchg(device_t);
184
185 static int ae_mii_readreg(device_t, int, int);
186 static void ae_mii_writereg(device_t, int, int, int);
187
188 #ifdef AE_DEBUG
189 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
190 printf x
191 #else
192 #define DPRINTF(sc, x) /* nothing */
193 #endif
194
195 #ifdef AE_STATS
196 static void ae_print_stats(struct ae_softc *);
197 #endif
198
199 CFATTACH_DECL(ae, sizeof(struct ae_softc),
200 ae_match, ae_attach, ae_detach, ae_activate);
201
202 /*
203 * ae_match:
204 *
205 * Check for a device match.
206 */
207 int
208 ae_match(device_t parent, struct cfdata *cf, void *aux)
209 {
210 struct arbus_attach_args *aa = aux;
211
212 if (strcmp(aa->aa_name, cf->cf_name) == 0)
213 return 1;
214
215 return 0;
216
217 }
218
219 /*
220 * ae_attach:
221 *
222 * Attach an ae interface to the system.
223 */
224 void
225 ae_attach(device_t parent, device_t self, void *aux)
226 {
227 const uint8_t *enaddr;
228 prop_data_t ea;
229 struct ae_softc *sc = device_private(self);
230 struct arbus_attach_args *aa = aux;
231 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
232 int i, error;
233
234 callout_init(&sc->sc_tick_callout, 0);
235
236 printf(": Atheros AR531X 10/100 Ethernet\n");
237
238 /*
239 * Try to get MAC address.
240 */
241 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
242 if (ea == NULL) {
243 printf("%s: unable to get mac-addr property\n",
244 sc->sc_dev.dv_xname);
245 return;
246 }
247 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
248 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
249 enaddr = prop_data_data_nocopy(ea);
250
251 /* Announce ourselves. */
252 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
253 ether_sprintf(enaddr));
254
255 sc->sc_cirq = aa->aa_cirq;
256 sc->sc_mirq = aa->aa_mirq;
257 sc->sc_st = aa->aa_bst;
258 sc->sc_dmat = aa->aa_dmat;
259
260 SIMPLEQ_INIT(&sc->sc_txfreeq);
261 SIMPLEQ_INIT(&sc->sc_txdirtyq);
262
263 /*
264 * Map registers.
265 */
266 sc->sc_size = aa->aa_size;
267 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
268 &sc->sc_sh)) != 0) {
269 printf("%s: unable to map registers, error = %d\n",
270 sc->sc_dev.dv_xname, error);
271 goto fail_0;
272 }
273
274 /*
275 * Allocate the control data structures, and create and load the
276 * DMA map for it.
277 */
278 if ((error = bus_dmamem_alloc(sc->sc_dmat,
279 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
280 1, &sc->sc_cdnseg, 0)) != 0) {
281 printf("%s: unable to allocate control data, error = %d\n",
282 sc->sc_dev.dv_xname, error);
283 goto fail_1;
284 }
285
286 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
287 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
288 BUS_DMA_COHERENT)) != 0) {
289 printf("%s: unable to map control data, error = %d\n",
290 sc->sc_dev.dv_xname, error);
291 goto fail_2;
292 }
293
294 if ((error = bus_dmamap_create(sc->sc_dmat,
295 sizeof(struct ae_control_data), 1,
296 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
297 printf("%s: unable to create control data DMA map, "
298 "error = %d\n", sc->sc_dev.dv_xname, error);
299 goto fail_3;
300 }
301
302 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
303 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
304 0)) != 0) {
305 printf("%s: unable to load control data DMA map, error = %d\n",
306 sc->sc_dev.dv_xname, error);
307 goto fail_4;
308 }
309
310 /*
311 * Create the transmit buffer DMA maps.
312 */
313 for (i = 0; i < AE_TXQUEUELEN; i++) {
314 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
315 AE_NTXSEGS, MCLBYTES, 0, 0,
316 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
317 printf("%s: unable to create tx DMA map %d, "
318 "error = %d\n", sc->sc_dev.dv_xname, i, error);
319 goto fail_5;
320 }
321 }
322
323 /*
324 * Create the receive buffer DMA maps.
325 */
326 for (i = 0; i < AE_NRXDESC; i++) {
327 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
328 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
329 printf("%s: unable to create rx DMA map %d, "
330 "error = %d\n", sc->sc_dev.dv_xname, i, error);
331 goto fail_6;
332 }
333 sc->sc_rxsoft[i].rxs_mbuf = NULL;
334 }
335
336 /*
337 * Reset the chip to a known state.
338 */
339 ae_reset(sc);
340
341 /*
342 * From this point forward, the attachment cannot fail. A failure
343 * before this point releases all resources that may have been
344 * allocated.
345 */
346 sc->sc_flags |= AE_ATTACHED;
347
348 /*
349 * Initialize our media structures. This may probe the MII, if
350 * present.
351 */
352 sc->sc_mii.mii_ifp = ifp;
353 sc->sc_mii.mii_readreg = ae_mii_readreg;
354 sc->sc_mii.mii_writereg = ae_mii_writereg;
355 sc->sc_mii.mii_statchg = ae_mii_statchg;
356 sc->sc_ethercom.ec_mii = &sc->sc_mii;
357 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
358 ether_mediastatus);
359 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
360 MII_OFFSET_ANY, 0);
361
362 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
363 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
364 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
365 } else
366 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
367
368 sc->sc_tick = ae_mii_tick;
369
370 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
371 ifp->if_softc = sc;
372 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 sc->sc_if_flags = ifp->if_flags;
374 ifp->if_ioctl = ae_ioctl;
375 ifp->if_start = ae_start;
376 ifp->if_watchdog = ae_watchdog;
377 ifp->if_init = ae_init;
378 ifp->if_stop = ae_stop;
379 IFQ_SET_READY(&ifp->if_snd);
380
381 /*
382 * We can support 802.1Q VLAN-sized frames.
383 */
384 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
385
386 /*
387 * Attach the interface.
388 */
389 if_attach(ifp);
390 ether_ifattach(ifp, enaddr);
391 ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
392
393 #if NRND > 0
394 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
395 RND_TYPE_NET, 0);
396 #endif
397
398 /*
399 * Make sure the interface is shutdown during reboot.
400 */
401 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
402 if (sc->sc_sdhook == NULL)
403 printf("%s: WARNING: unable to establish shutdown hook\n",
404 sc->sc_dev.dv_xname);
405
406 /*
407 * Add a suspend hook to make sure we come back up after a
408 * resume.
409 */
410 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
411 ae_power, sc);
412 if (sc->sc_powerhook == NULL)
413 printf("%s: WARNING: unable to establish power hook\n",
414 sc->sc_dev.dv_xname);
415 return;
416
417 /*
418 * Free any resources we've allocated during the failed attach
419 * attempt. Do this in reverse order and fall through.
420 */
421 fail_6:
422 for (i = 0; i < AE_NRXDESC; i++) {
423 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
424 bus_dmamap_destroy(sc->sc_dmat,
425 sc->sc_rxsoft[i].rxs_dmamap);
426 }
427 fail_5:
428 for (i = 0; i < AE_TXQUEUELEN; i++) {
429 if (sc->sc_txsoft[i].txs_dmamap != NULL)
430 bus_dmamap_destroy(sc->sc_dmat,
431 sc->sc_txsoft[i].txs_dmamap);
432 }
433 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
434 fail_4:
435 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
436 fail_3:
437 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
438 sizeof(struct ae_control_data));
439 fail_2:
440 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
441 fail_1:
442 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
443 fail_0:
444 return;
445 }
446
447 /*
448 * ae_activate:
449 *
450 * Handle device activation/deactivation requests.
451 */
452 int
453 ae_activate(device_t self, enum devact act)
454 {
455 struct ae_softc *sc = device_private(self);
456 int s, error = 0;
457
458 s = splnet();
459 switch (act) {
460 case DVACT_ACTIVATE:
461 error = EOPNOTSUPP;
462 break;
463
464 case DVACT_DEACTIVATE:
465 mii_activate(&sc->sc_mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
466 if_deactivate(&sc->sc_ethercom.ec_if);
467 break;
468 }
469 splx(s);
470
471 return (error);
472 }
473
474 /*
475 * ae_detach:
476 *
477 * Detach a device interface.
478 */
479 int
480 ae_detach(device_t self, int flags)
481 {
482 struct ae_softc *sc = device_private(self);
483 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
484 struct ae_rxsoft *rxs;
485 struct ae_txsoft *txs;
486 int i;
487
488 /*
489 * Succeed now if there isn't any work to do.
490 */
491 if ((sc->sc_flags & AE_ATTACHED) == 0)
492 return (0);
493
494 /* Unhook our tick handler. */
495 if (sc->sc_tick)
496 callout_stop(&sc->sc_tick_callout);
497
498 /* Detach all PHYs */
499 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
500
501 /* Delete all remaining media. */
502 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
503
504 #if NRND > 0
505 rnd_detach_source(&sc->sc_rnd_source);
506 #endif
507 ether_ifdetach(ifp);
508 if_detach(ifp);
509
510 for (i = 0; i < AE_NRXDESC; i++) {
511 rxs = &sc->sc_rxsoft[i];
512 if (rxs->rxs_mbuf != NULL) {
513 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
514 m_freem(rxs->rxs_mbuf);
515 rxs->rxs_mbuf = NULL;
516 }
517 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
518 }
519 for (i = 0; i < AE_TXQUEUELEN; i++) {
520 txs = &sc->sc_txsoft[i];
521 if (txs->txs_mbuf != NULL) {
522 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
523 m_freem(txs->txs_mbuf);
524 txs->txs_mbuf = NULL;
525 }
526 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
527 }
528 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
529 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
530 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
531 sizeof(struct ae_control_data));
532 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
533
534 shutdownhook_disestablish(sc->sc_sdhook);
535 powerhook_disestablish(sc->sc_powerhook);
536
537 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
538
539
540 return (0);
541 }
542
543 /*
544 * ae_shutdown:
545 *
546 * Make sure the interface is stopped at reboot time.
547 */
548 static void
549 ae_shutdown(void *arg)
550 {
551 struct ae_softc *sc = arg;
552
553 ae_stop(&sc->sc_ethercom.ec_if, 1);
554 }
555
556 /*
557 * ae_start: [ifnet interface function]
558 *
559 * Start packet transmission on the interface.
560 */
561 static void
562 ae_start(struct ifnet *ifp)
563 {
564 struct ae_softc *sc = ifp->if_softc;
565 struct mbuf *m0, *m;
566 struct ae_txsoft *txs, *last_txs = NULL;
567 bus_dmamap_t dmamap;
568 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
569
570 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
571 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
572
573
574 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
575 return;
576
577 /*
578 * Remember the previous number of free descriptors and
579 * the first descriptor we'll use.
580 */
581 ofree = sc->sc_txfree;
582 firsttx = sc->sc_txnext;
583
584 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
585 sc->sc_dev.dv_xname, ofree, firsttx));
586
587 /*
588 * Loop through the send queue, setting up transmit descriptors
589 * until we drain the queue, or use up all available transmit
590 * descriptors.
591 */
592 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
593 sc->sc_txfree != 0) {
594 /*
595 * Grab a packet off the queue.
596 */
597 IFQ_POLL(&ifp->if_snd, m0);
598 if (m0 == NULL)
599 break;
600 m = NULL;
601
602 dmamap = txs->txs_dmamap;
603
604 /*
605 * Load the DMA map. If this fails, the packet either
606 * didn't fit in the alloted number of segments, or we were
607 * short on resources. In this case, we'll copy and try
608 * again.
609 */
610 if (((mtod(m0, uintptr_t) & 3) != 0) ||
611 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
612 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
613 MGETHDR(m, M_DONTWAIT, MT_DATA);
614 if (m == NULL) {
615 printf("%s: unable to allocate Tx mbuf\n",
616 sc->sc_dev.dv_xname);
617 break;
618 }
619 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
620 if (m0->m_pkthdr.len > MHLEN) {
621 MCLGET(m, M_DONTWAIT);
622 if ((m->m_flags & M_EXT) == 0) {
623 printf("%s: unable to allocate Tx "
624 "cluster\n", sc->sc_dev.dv_xname);
625 m_freem(m);
626 break;
627 }
628 }
629 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
630 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
631 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
632 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
633 if (error) {
634 printf("%s: unable to load Tx buffer, "
635 "error = %d\n", sc->sc_dev.dv_xname,
636 error);
637 break;
638 }
639 }
640
641 /*
642 * Ensure we have enough descriptors free to describe
643 * the packet.
644 */
645 if (dmamap->dm_nsegs > sc->sc_txfree) {
646 /*
647 * Not enough free descriptors to transmit this
648 * packet. We haven't committed to anything yet,
649 * so just unload the DMA map, put the packet
650 * back on the queue, and punt. Notify the upper
651 * layer that there are no more slots left.
652 *
653 * XXX We could allocate an mbuf and copy, but
654 * XXX it is worth it?
655 */
656 ifp->if_flags |= IFF_OACTIVE;
657 bus_dmamap_unload(sc->sc_dmat, dmamap);
658 if (m != NULL)
659 m_freem(m);
660 break;
661 }
662
663 IFQ_DEQUEUE(&ifp->if_snd, m0);
664 if (m != NULL) {
665 m_freem(m0);
666 m0 = m;
667 }
668
669 /*
670 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
671 */
672
673 /* Sync the DMA map. */
674 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
675 BUS_DMASYNC_PREWRITE);
676
677 /*
678 * Initialize the transmit descriptors.
679 */
680 for (nexttx = sc->sc_txnext, seg = 0;
681 seg < dmamap->dm_nsegs;
682 seg++, nexttx = AE_NEXTTX(nexttx)) {
683 /*
684 * If this is the first descriptor we're
685 * enqueueing, don't set the OWN bit just
686 * yet. That could cause a race condition.
687 * We'll do it below.
688 */
689 sc->sc_txdescs[nexttx].ad_status =
690 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
691 sc->sc_txdescs[nexttx].ad_bufaddr1 =
692 dmamap->dm_segs[seg].ds_addr;
693 sc->sc_txdescs[nexttx].ad_ctl =
694 (dmamap->dm_segs[seg].ds_len <<
695 ADCTL_SIZE1_SHIFT) |
696 (nexttx == (AE_NTXDESC - 1) ?
697 ADCTL_ER : 0);
698 lasttx = nexttx;
699 }
700
701 KASSERT(lasttx != -1);
702
703 /* Set `first segment' and `last segment' appropriately. */
704 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
705 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
706
707 #ifdef AE_DEBUG
708 if (ifp->if_flags & IFF_DEBUG) {
709 printf(" txsoft %p transmit chain:\n", txs);
710 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
711 printf(" descriptor %d:\n", seg);
712 printf(" ad_status: 0x%08x\n",
713 sc->sc_txdescs[seg].ad_status);
714 printf(" ad_ctl: 0x%08x\n",
715 sc->sc_txdescs[seg].ad_ctl);
716 printf(" ad_bufaddr1: 0x%08x\n",
717 sc->sc_txdescs[seg].ad_bufaddr1);
718 printf(" ad_bufaddr2: 0x%08x\n",
719 sc->sc_txdescs[seg].ad_bufaddr2);
720 if (seg == lasttx)
721 break;
722 }
723 }
724 #endif
725
726 /* Sync the descriptors we're using. */
727 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
728 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
729
730 /*
731 * Store a pointer to the packet so we can free it later,
732 * and remember what txdirty will be once the packet is
733 * done.
734 */
735 txs->txs_mbuf = m0;
736 txs->txs_firstdesc = sc->sc_txnext;
737 txs->txs_lastdesc = lasttx;
738 txs->txs_ndescs = dmamap->dm_nsegs;
739
740 /* Advance the tx pointer. */
741 sc->sc_txfree -= dmamap->dm_nsegs;
742 sc->sc_txnext = nexttx;
743
744 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
745 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
746
747 last_txs = txs;
748
749 #if NBPFILTER > 0
750 /*
751 * Pass the packet to any BPF listeners.
752 */
753 if (ifp->if_bpf)
754 bpf_mtap(ifp->if_bpf, m0);
755 #endif /* NBPFILTER > 0 */
756 }
757
758 if (txs == NULL || sc->sc_txfree == 0) {
759 /* No more slots left; notify upper layer. */
760 ifp->if_flags |= IFF_OACTIVE;
761 }
762
763 if (sc->sc_txfree != ofree) {
764 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
765 sc->sc_dev.dv_xname, lasttx, firsttx));
766 /*
767 * Cause a transmit interrupt to happen on the
768 * last packet we enqueued.
769 */
770 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
771 AE_CDTXSYNC(sc, lasttx, 1,
772 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
773
774 /*
775 * The entire packet chain is set up. Give the
776 * first descriptor to the chip now.
777 */
778 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
779 AE_CDTXSYNC(sc, firsttx, 1,
780 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
781
782 /* Wake up the transmitter. */
783 /* XXX USE AUTOPOLLING? */
784 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
785 AE_BARRIER(sc);
786
787 /* Set a watchdog timer in case the chip flakes out. */
788 ifp->if_timer = 5;
789 }
790 }
791
792 /*
793 * ae_watchdog: [ifnet interface function]
794 *
795 * Watchdog timer handler.
796 */
797 static void
798 ae_watchdog(struct ifnet *ifp)
799 {
800 struct ae_softc *sc = ifp->if_softc;
801 int doing_transmit;
802
803 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
804
805 if (doing_transmit) {
806 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
807 ifp->if_oerrors++;
808 }
809 else
810 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
811
812 (void) ae_init(ifp);
813
814 /* Try to get more packets going. */
815 ae_start(ifp);
816 }
817
818 /* If the interface is up and running, only modify the receive
819 * filter when changing to/from promiscuous mode. Otherwise return
820 * ENETRESET so that ether_ioctl will reset the chip.
821 */
822 static int
823 ae_ifflags_cb(struct ethercom *ec)
824 {
825 struct ifnet *ifp = &ec->ec_if;
826 struct ae_softc *sc = ifp->if_softc;
827 int change = ifp->if_flags ^ sc->sc_if_flags;
828
829 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
830 return ENETRESET;
831 else if ((change & IFF_PROMISC) != 0)
832 ae_filter_setup(sc);
833 return 0;
834 }
835
836 /*
837 * ae_ioctl: [ifnet interface function]
838 *
839 * Handle control requests from the operator.
840 */
841 static int
842 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
843 {
844 struct ae_softc *sc = ifp->if_softc;
845 int s, error;
846
847 s = splnet();
848
849 error = ether_ioctl(ifp, cmd, data);
850 if (error == ENETRESET) {
851 if (ifp->if_flags & IFF_RUNNING) {
852 /*
853 * Multicast list has changed. Set the
854 * hardware filter accordingly.
855 */
856 ae_filter_setup(sc);
857 }
858 error = 0;
859 }
860
861 /* Try to get more packets going. */
862 if (AE_IS_ENABLED(sc))
863 ae_start(ifp);
864
865 sc->sc_if_flags = ifp->if_flags;
866 splx(s);
867 return (error);
868 }
869
870 /*
871 * ae_intr:
872 *
873 * Interrupt service routine.
874 */
875 int
876 ae_intr(void *arg)
877 {
878 struct ae_softc *sc = arg;
879 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
880 u_int32_t status, rxstatus, txstatus;
881 int handled = 0, txthresh;
882
883 DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
884
885 #ifdef DEBUG
886 if (AE_IS_ENABLED(sc) == 0)
887 panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
888 #endif
889
890 /*
891 * If the interface isn't running, the interrupt couldn't
892 * possibly have come from us.
893 */
894 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
895 !device_is_active(&sc->sc_dev)) {
896 printf("spurious?!?\n");
897 return (0);
898 }
899
900 for (;;) {
901 status = AE_READ(sc, CSR_STATUS);
902 if (status) {
903 AE_WRITE(sc, CSR_STATUS, status);
904 AE_BARRIER(sc);
905 }
906
907 if ((status & sc->sc_inten) == 0)
908 break;
909
910 handled = 1;
911
912 rxstatus = status & sc->sc_rxint_mask;
913 txstatus = status & sc->sc_txint_mask;
914
915 if (rxstatus) {
916 /* Grab new any new packets. */
917 ae_rxintr(sc);
918
919 if (rxstatus & STATUS_RU) {
920 printf("%s: receive ring overrun\n",
921 sc->sc_dev.dv_xname);
922 /* Get the receive process going again. */
923 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
924 AE_BARRIER(sc);
925 break;
926 }
927 }
928
929 if (txstatus) {
930 /* Sweep up transmit descriptors. */
931 ae_txintr(sc);
932
933 if (txstatus & STATUS_TJT)
934 printf("%s: transmit jabber timeout\n",
935 sc->sc_dev.dv_xname);
936
937 if (txstatus & STATUS_UNF) {
938 /*
939 * Increase our transmit threshold if
940 * another is available.
941 */
942 txthresh = sc->sc_txthresh + 1;
943 if (ae_txthresh[txthresh].txth_name != NULL) {
944 uint32_t opmode;
945 /* Idle the transmit process. */
946 opmode = AE_READ(sc, CSR_OPMODE);
947 ae_idle(sc, OPMODE_ST);
948
949 sc->sc_txthresh = txthresh;
950 opmode &=
951 ~(OPMODE_TR|OPMODE_SF);
952 opmode |=
953 ae_txthresh[txthresh].txth_opmode;
954 printf("%s: transmit underrun; new "
955 "threshold: %s\n",
956 sc->sc_dev.dv_xname,
957 ae_txthresh[txthresh].txth_name);
958
959 /*
960 * Set the new threshold and restart
961 * the transmit process.
962 */
963 AE_WRITE(sc, CSR_OPMODE, opmode);
964 AE_BARRIER(sc);
965 }
966 /*
967 * XXX Log every Nth underrun from
968 * XXX now on?
969 */
970 }
971 }
972
973 if (status & (STATUS_TPS|STATUS_RPS)) {
974 if (status & STATUS_TPS)
975 printf("%s: transmit process stopped\n",
976 sc->sc_dev.dv_xname);
977 if (status & STATUS_RPS)
978 printf("%s: receive process stopped\n",
979 sc->sc_dev.dv_xname);
980 (void) ae_init(ifp);
981 break;
982 }
983
984 if (status & STATUS_SE) {
985 const char *str;
986
987 if (status & STATUS_TX_ABORT)
988 str = "tx abort";
989 else if (status & STATUS_RX_ABORT)
990 str = "rx abort";
991 else
992 str = "unknown error";
993
994 printf("%s: fatal system error: %s\n",
995 sc->sc_dev.dv_xname, str);
996 (void) ae_init(ifp);
997 break;
998 }
999
1000 /*
1001 * Not handled:
1002 *
1003 * Transmit buffer unavailable -- normal
1004 * condition, nothing to do, really.
1005 *
1006 * General purpose timer experied -- we don't
1007 * use the general purpose timer.
1008 *
1009 * Early receive interrupt -- not available on
1010 * all chips, we just use RI. We also only
1011 * use single-segment receive DMA, so this
1012 * is mostly useless.
1013 */
1014 }
1015
1016 /* Try to get more packets going. */
1017 ae_start(ifp);
1018
1019 #if NRND > 0
1020 if (handled)
1021 rnd_add_uint32(&sc->sc_rnd_source, status);
1022 #endif
1023 return (handled);
1024 }
1025
1026 /*
1027 * ae_rxintr:
1028 *
1029 * Helper; handle receive interrupts.
1030 */
1031 static void
1032 ae_rxintr(struct ae_softc *sc)
1033 {
1034 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1035 struct ether_header *eh;
1036 struct ae_rxsoft *rxs;
1037 struct mbuf *m;
1038 u_int32_t rxstat;
1039 int i, len;
1040
1041 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1042 rxs = &sc->sc_rxsoft[i];
1043
1044 AE_CDRXSYNC(sc, i,
1045 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1046
1047 rxstat = sc->sc_rxdescs[i].ad_status;
1048
1049 if (rxstat & ADSTAT_OWN) {
1050 /*
1051 * We have processed all of the receive buffers.
1052 */
1053 break;
1054 }
1055
1056 /*
1057 * If any collisions were seen on the wire, count one.
1058 */
1059 if (rxstat & ADSTAT_Rx_CS)
1060 ifp->if_collisions++;
1061
1062 /*
1063 * If an error occurred, update stats, clear the status
1064 * word, and leave the packet buffer in place. It will
1065 * simply be reused the next time the ring comes around.
1066 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1067 * error.
1068 */
1069 if (rxstat & ADSTAT_ES &&
1070 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1071 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1072 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1073 #define PRINTERR(bit, str) \
1074 if (rxstat & (bit)) \
1075 printf("%s: receive error: %s\n", \
1076 sc->sc_dev.dv_xname, str)
1077 ifp->if_ierrors++;
1078 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1079 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1080 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1081 PRINTERR(ADSTAT_Rx_RE, "MII error");
1082 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1083 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1084 #undef PRINTERR
1085 AE_INIT_RXDESC(sc, i);
1086 continue;
1087 }
1088
1089 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1090 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1091
1092 /*
1093 * No errors; receive the packet. Note the chip
1094 * includes the CRC with every packet.
1095 */
1096 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1097
1098 /*
1099 * XXX: the Atheros part can align on half words. what
1100 * is the performance implication of this? Probably
1101 * minimal, and we should use it...
1102 */
1103 #ifdef __NO_STRICT_ALIGNMENT
1104 /*
1105 * Allocate a new mbuf cluster. If that fails, we are
1106 * out of memory, and must drop the packet and recycle
1107 * the buffer that's already attached to this descriptor.
1108 */
1109 m = rxs->rxs_mbuf;
1110 if (ae_add_rxbuf(sc, i) != 0) {
1111 ifp->if_ierrors++;
1112 AE_INIT_RXDESC(sc, i);
1113 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1114 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1115 continue;
1116 }
1117 #else
1118 /*
1119 * The chip's receive buffers must be 4-byte aligned.
1120 * But this means that the data after the Ethernet header
1121 * is misaligned. We must allocate a new buffer and
1122 * copy the data, shifted forward 2 bytes.
1123 */
1124 MGETHDR(m, M_DONTWAIT, MT_DATA);
1125 if (m == NULL) {
1126 dropit:
1127 ifp->if_ierrors++;
1128 AE_INIT_RXDESC(sc, i);
1129 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1130 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1131 continue;
1132 }
1133 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1134 if (len > (MHLEN - 2)) {
1135 MCLGET(m, M_DONTWAIT);
1136 if ((m->m_flags & M_EXT) == 0) {
1137 m_freem(m);
1138 goto dropit;
1139 }
1140 }
1141 m->m_data += 2;
1142
1143 /*
1144 * Note that we use clusters for incoming frames, so the
1145 * buffer is virtually contiguous.
1146 */
1147 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1148
1149 /* Allow the receive descriptor to continue using its mbuf. */
1150 AE_INIT_RXDESC(sc, i);
1151 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1152 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1153 #endif /* __NO_STRICT_ALIGNMENT */
1154
1155 ifp->if_ipackets++;
1156 eh = mtod(m, struct ether_header *);
1157 m->m_pkthdr.rcvif = ifp;
1158 m->m_pkthdr.len = m->m_len = len;
1159
1160 #if NBPFILTER > 0
1161 /*
1162 * Pass this up to any BPF listeners, but only
1163 * pass it up the stack if its for us.
1164 */
1165 if (ifp->if_bpf)
1166 bpf_mtap(ifp->if_bpf, m);
1167 #endif /* NBPFILTER > 0 */
1168
1169 /* Pass it on. */
1170 (*ifp->if_input)(ifp, m);
1171 }
1172
1173 /* Update the receive pointer. */
1174 sc->sc_rxptr = i;
1175 }
1176
1177 /*
1178 * ae_txintr:
1179 *
1180 * Helper; handle transmit interrupts.
1181 */
1182 static void
1183 ae_txintr(struct ae_softc *sc)
1184 {
1185 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1186 struct ae_txsoft *txs;
1187 u_int32_t txstat;
1188
1189 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1190 sc->sc_dev.dv_xname, sc->sc_flags));
1191
1192 ifp->if_flags &= ~IFF_OACTIVE;
1193
1194 /*
1195 * Go through our Tx list and free mbufs for those
1196 * frames that have been transmitted.
1197 */
1198 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1199 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1200 txs->txs_ndescs,
1201 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1202
1203 #ifdef AE_DEBUG
1204 if (ifp->if_flags & IFF_DEBUG) {
1205 int i;
1206 printf(" txsoft %p transmit chain:\n", txs);
1207 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1208 printf(" descriptor %d:\n", i);
1209 printf(" ad_status: 0x%08x\n",
1210 sc->sc_txdescs[i].ad_status);
1211 printf(" ad_ctl: 0x%08x\n",
1212 sc->sc_txdescs[i].ad_ctl);
1213 printf(" ad_bufaddr1: 0x%08x\n",
1214 sc->sc_txdescs[i].ad_bufaddr1);
1215 printf(" ad_bufaddr2: 0x%08x\n",
1216 sc->sc_txdescs[i].ad_bufaddr2);
1217 if (i == txs->txs_lastdesc)
1218 break;
1219 }
1220 }
1221 #endif
1222
1223 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1224 if (txstat & ADSTAT_OWN)
1225 break;
1226
1227 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1228
1229 sc->sc_txfree += txs->txs_ndescs;
1230
1231 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1232 0, txs->txs_dmamap->dm_mapsize,
1233 BUS_DMASYNC_POSTWRITE);
1234 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1235 m_freem(txs->txs_mbuf);
1236 txs->txs_mbuf = NULL;
1237
1238 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1239
1240 /*
1241 * Check for errors and collisions.
1242 */
1243 #ifdef AE_STATS
1244 if (txstat & ADSTAT_Tx_UF)
1245 sc->sc_stats.ts_tx_uf++;
1246 if (txstat & ADSTAT_Tx_TO)
1247 sc->sc_stats.ts_tx_to++;
1248 if (txstat & ADSTAT_Tx_EC)
1249 sc->sc_stats.ts_tx_ec++;
1250 if (txstat & ADSTAT_Tx_LC)
1251 sc->sc_stats.ts_tx_lc++;
1252 #endif
1253
1254 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1255 ifp->if_oerrors++;
1256
1257 if (txstat & ADSTAT_Tx_EC)
1258 ifp->if_collisions += 16;
1259 else
1260 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1261 if (txstat & ADSTAT_Tx_LC)
1262 ifp->if_collisions++;
1263
1264 ifp->if_opackets++;
1265 }
1266
1267 /*
1268 * If there are no more pending transmissions, cancel the watchdog
1269 * timer.
1270 */
1271 if (txs == NULL)
1272 ifp->if_timer = 0;
1273 }
1274
1275 #ifdef AE_STATS
1276 void
1277 ae_print_stats(struct ae_softc *sc)
1278 {
1279
1280 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1281 sc->sc_dev.dv_xname,
1282 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1283 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1284 }
1285 #endif
1286
1287 /*
1288 * ae_reset:
1289 *
1290 * Perform a soft reset on the chip.
1291 */
1292 void
1293 ae_reset(struct ae_softc *sc)
1294 {
1295 int i;
1296
1297 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1298 AE_BARRIER(sc);
1299
1300 /*
1301 * The chip doesn't take itself out of reset automatically.
1302 * We need to do so after 2us.
1303 */
1304 delay(10);
1305 AE_WRITE(sc, CSR_BUSMODE, 0);
1306 AE_BARRIER(sc);
1307
1308 for (i = 0; i < 1000; i++) {
1309 /*
1310 * Wait a bit for the reset to complete before peeking
1311 * at the chip again.
1312 */
1313 delay(10);
1314 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1315 break;
1316 }
1317
1318 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1319 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1320
1321 delay(1000);
1322 }
1323
1324 /*
1325 * ae_init: [ ifnet interface function ]
1326 *
1327 * Initialize the interface. Must be called at splnet().
1328 */
1329 static int
1330 ae_init(struct ifnet *ifp)
1331 {
1332 struct ae_softc *sc = ifp->if_softc;
1333 struct ae_txsoft *txs;
1334 struct ae_rxsoft *rxs;
1335 const uint8_t *enaddr;
1336 int i, error = 0;
1337
1338 if ((error = ae_enable(sc)) != 0)
1339 goto out;
1340
1341 /*
1342 * Cancel any pending I/O.
1343 */
1344 ae_stop(ifp, 0);
1345
1346 /*
1347 * Reset the chip to a known state.
1348 */
1349 ae_reset(sc);
1350
1351 /*
1352 * Initialize the BUSMODE register.
1353 */
1354 AE_WRITE(sc, CSR_BUSMODE,
1355 /* XXX: not sure if this is a good thing or not... */
1356 //BUSMODE_ALIGN_16B |
1357 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1358 AE_BARRIER(sc);
1359
1360 /*
1361 * Initialize the transmit descriptor ring.
1362 */
1363 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1364 for (i = 0; i < AE_NTXDESC; i++) {
1365 sc->sc_txdescs[i].ad_ctl = 0;
1366 sc->sc_txdescs[i].ad_bufaddr2 =
1367 AE_CDTXADDR(sc, AE_NEXTTX(i));
1368 }
1369 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1370 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1371 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1372 sc->sc_txfree = AE_NTXDESC;
1373 sc->sc_txnext = 0;
1374
1375 /*
1376 * Initialize the transmit job descriptors.
1377 */
1378 SIMPLEQ_INIT(&sc->sc_txfreeq);
1379 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1380 for (i = 0; i < AE_TXQUEUELEN; i++) {
1381 txs = &sc->sc_txsoft[i];
1382 txs->txs_mbuf = NULL;
1383 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1384 }
1385
1386 /*
1387 * Initialize the receive descriptor and receive job
1388 * descriptor rings.
1389 */
1390 for (i = 0; i < AE_NRXDESC; i++) {
1391 rxs = &sc->sc_rxsoft[i];
1392 if (rxs->rxs_mbuf == NULL) {
1393 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1394 printf("%s: unable to allocate or map rx "
1395 "buffer %d, error = %d\n",
1396 sc->sc_dev.dv_xname, i, error);
1397 /*
1398 * XXX Should attempt to run with fewer receive
1399 * XXX buffers instead of just failing.
1400 */
1401 ae_rxdrain(sc);
1402 goto out;
1403 }
1404 } else
1405 AE_INIT_RXDESC(sc, i);
1406 }
1407 sc->sc_rxptr = 0;
1408
1409 /*
1410 * Initialize the interrupt mask and enable interrupts.
1411 */
1412 /* normal interrupts */
1413 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1414
1415 /* abnormal interrupts */
1416 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1417 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1418
1419 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1420 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1421
1422 sc->sc_rxint_mask &= sc->sc_inten;
1423 sc->sc_txint_mask &= sc->sc_inten;
1424
1425 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1426 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1427
1428 /*
1429 * Give the transmit and receive rings to the chip.
1430 */
1431 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1432 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1433 AE_BARRIER(sc);
1434
1435 /*
1436 * Set the station address.
1437 */
1438 enaddr = CLLADDR(ifp->if_sadl);
1439 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1440 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1441 enaddr[1] << 8 | enaddr[0]);
1442 AE_BARRIER(sc);
1443
1444 /*
1445 * Set the receive filter. This will start the transmit and
1446 * receive processes.
1447 */
1448 ae_filter_setup(sc);
1449
1450 /*
1451 * Set the current media.
1452 */
1453 if ((error = ether_mediachange(ifp)) != 0)
1454 goto out;
1455
1456 /*
1457 * Start the mac.
1458 */
1459 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1460 AE_BARRIER(sc);
1461
1462 /*
1463 * Write out the opmode.
1464 */
1465 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1466 ae_txthresh[sc->sc_txthresh].txth_opmode);
1467 /*
1468 * Start the receive process.
1469 */
1470 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1471 AE_BARRIER(sc);
1472
1473 if (sc->sc_tick != NULL) {
1474 /* Start the one second clock. */
1475 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1476 }
1477
1478 /*
1479 * Note that the interface is now running.
1480 */
1481 ifp->if_flags |= IFF_RUNNING;
1482 ifp->if_flags &= ~IFF_OACTIVE;
1483 sc->sc_if_flags = ifp->if_flags;
1484
1485 out:
1486 if (error) {
1487 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1488 ifp->if_timer = 0;
1489 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1490 }
1491 return (error);
1492 }
1493
1494 /*
1495 * ae_enable:
1496 *
1497 * Enable the chip.
1498 */
1499 static int
1500 ae_enable(struct ae_softc *sc)
1501 {
1502
1503 if (AE_IS_ENABLED(sc) == 0) {
1504 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1505 ae_intr, sc);
1506 if (sc->sc_ih == NULL) {
1507 printf("%s: unable to establish interrupt\n",
1508 sc->sc_dev.dv_xname);
1509 return (EIO);
1510 }
1511 sc->sc_flags |= AE_ENABLED;
1512 }
1513 return (0);
1514 }
1515
1516 /*
1517 * ae_disable:
1518 *
1519 * Disable the chip.
1520 */
1521 static void
1522 ae_disable(struct ae_softc *sc)
1523 {
1524
1525 if (AE_IS_ENABLED(sc)) {
1526 arbus_intr_disestablish(sc->sc_ih);
1527 sc->sc_flags &= ~AE_ENABLED;
1528 }
1529 }
1530
1531 /*
1532 * ae_power:
1533 *
1534 * Power management (suspend/resume) hook.
1535 */
1536 static void
1537 ae_power(int why, void *arg)
1538 {
1539 struct ae_softc *sc = arg;
1540 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1541 int s;
1542
1543 printf("power called: %d, %x\n", why, (uint32_t)arg);
1544 s = splnet();
1545 switch (why) {
1546 case PWR_STANDBY:
1547 /* do nothing! */
1548 break;
1549 case PWR_SUSPEND:
1550 ae_stop(ifp, 0);
1551 ae_disable(sc);
1552 break;
1553 case PWR_RESUME:
1554 if (ifp->if_flags & IFF_UP) {
1555 ae_enable(sc);
1556 ae_init(ifp);
1557 }
1558 break;
1559 case PWR_SOFTSUSPEND:
1560 case PWR_SOFTSTANDBY:
1561 case PWR_SOFTRESUME:
1562 break;
1563 }
1564 splx(s);
1565 }
1566
1567 /*
1568 * ae_rxdrain:
1569 *
1570 * Drain the receive queue.
1571 */
1572 static void
1573 ae_rxdrain(struct ae_softc *sc)
1574 {
1575 struct ae_rxsoft *rxs;
1576 int i;
1577
1578 for (i = 0; i < AE_NRXDESC; i++) {
1579 rxs = &sc->sc_rxsoft[i];
1580 if (rxs->rxs_mbuf != NULL) {
1581 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1582 m_freem(rxs->rxs_mbuf);
1583 rxs->rxs_mbuf = NULL;
1584 }
1585 }
1586 }
1587
1588 /*
1589 * ae_stop: [ ifnet interface function ]
1590 *
1591 * Stop transmission on the interface.
1592 */
1593 static void
1594 ae_stop(struct ifnet *ifp, int disable)
1595 {
1596 struct ae_softc *sc = ifp->if_softc;
1597 struct ae_txsoft *txs;
1598
1599 if (sc->sc_tick != NULL) {
1600 /* Stop the one second clock. */
1601 callout_stop(&sc->sc_tick_callout);
1602 }
1603
1604 /* Down the MII. */
1605 mii_down(&sc->sc_mii);
1606
1607 /* Disable interrupts. */
1608 AE_WRITE(sc, CSR_INTEN, 0);
1609
1610 /* Stop the transmit and receive processes. */
1611 AE_WRITE(sc, CSR_OPMODE, 0);
1612 AE_WRITE(sc, CSR_RXLIST, 0);
1613 AE_WRITE(sc, CSR_TXLIST, 0);
1614 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1615 AE_BARRIER(sc);
1616
1617 /*
1618 * Release any queued transmit buffers.
1619 */
1620 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1621 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1622 if (txs->txs_mbuf != NULL) {
1623 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1624 m_freem(txs->txs_mbuf);
1625 txs->txs_mbuf = NULL;
1626 }
1627 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1628 }
1629
1630 /*
1631 * Mark the interface down and cancel the watchdog timer.
1632 */
1633 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1634 sc->sc_if_flags = ifp->if_flags;
1635 ifp->if_timer = 0;
1636
1637 if (disable) {
1638 ae_rxdrain(sc);
1639 ae_disable(sc);
1640 }
1641
1642 /*
1643 * Reset the chip (needed on some flavors to actually disable it).
1644 */
1645 ae_reset(sc);
1646 }
1647
1648 /*
1649 * ae_add_rxbuf:
1650 *
1651 * Add a receive buffer to the indicated descriptor.
1652 */
1653 static int
1654 ae_add_rxbuf(struct ae_softc *sc, int idx)
1655 {
1656 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1657 struct mbuf *m;
1658 int error;
1659
1660 MGETHDR(m, M_DONTWAIT, MT_DATA);
1661 if (m == NULL)
1662 return (ENOBUFS);
1663
1664 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1665 MCLGET(m, M_DONTWAIT);
1666 if ((m->m_flags & M_EXT) == 0) {
1667 m_freem(m);
1668 return (ENOBUFS);
1669 }
1670
1671 if (rxs->rxs_mbuf != NULL)
1672 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1673
1674 rxs->rxs_mbuf = m;
1675
1676 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1677 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1678 BUS_DMA_READ|BUS_DMA_NOWAIT);
1679 if (error) {
1680 printf("%s: can't load rx DMA map %d, error = %d\n",
1681 sc->sc_dev.dv_xname, idx, error);
1682 panic("ae_add_rxbuf"); /* XXX */
1683 }
1684
1685 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1686 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1687
1688 AE_INIT_RXDESC(sc, idx);
1689
1690 return (0);
1691 }
1692
1693 /*
1694 * ae_filter_setup:
1695 *
1696 * Set the chip's receive filter.
1697 */
1698 static void
1699 ae_filter_setup(struct ae_softc *sc)
1700 {
1701 struct ethercom *ec = &sc->sc_ethercom;
1702 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1703 struct ether_multi *enm;
1704 struct ether_multistep step;
1705 uint32_t hash, mchash[2];
1706 uint32_t macctl = 0;
1707
1708 /*
1709 * If the chip is running, we need to reset the interface,
1710 * and will revisit here (with IFF_RUNNING) clear. The
1711 * chip seems to really not like to have its multicast
1712 * filter programmed without a reset.
1713 */
1714 if (ifp->if_flags & IFF_RUNNING) {
1715 (void) ae_init(ifp);
1716 return;
1717 }
1718
1719 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1720 sc->sc_dev.dv_xname, sc->sc_flags));
1721
1722 macctl = AE_READ(sc, CSR_MACCTL);
1723 macctl &= ~(MACCTL_PR | MACCTL_PM);
1724 macctl |= MACCTL_HASH;
1725 macctl |= MACCTL_HBD;
1726 macctl |= MACCTL_PR;
1727
1728 if (ifp->if_flags & IFF_PROMISC) {
1729 macctl |= MACCTL_PR;
1730 goto allmulti;
1731 }
1732
1733 mchash[0] = mchash[1] = 0;
1734
1735 ETHER_FIRST_MULTI(step, ec, enm);
1736 while (enm != NULL) {
1737 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1738 /*
1739 * We must listen to a range of multicast addresses.
1740 * For now, just accept all multicasts, rather than
1741 * trying to set only those filter bits needed to match
1742 * the range. (At this time, the only use of address
1743 * ranges is for IP multicast routing, for which the
1744 * range is big enough to require all bits set.)
1745 */
1746 goto allmulti;
1747 }
1748
1749 /* Verify whether we use big or little endian hashes */
1750 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1751 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1752 ETHER_NEXT_MULTI(step, enm);
1753 }
1754 ifp->if_flags &= ~IFF_ALLMULTI;
1755 goto setit;
1756
1757 allmulti:
1758 ifp->if_flags |= IFF_ALLMULTI;
1759 mchash[0] = mchash[1] = 0xffffffff;
1760 macctl |= MACCTL_PM;
1761
1762 setit:
1763 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1764 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1765
1766 AE_WRITE(sc, CSR_MACCTL, macctl);
1767 AE_BARRIER(sc);
1768
1769 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1770 sc->sc_dev.dv_xname, macctl));
1771 }
1772
1773 /*
1774 * ae_idle:
1775 *
1776 * Cause the transmit and/or receive processes to go idle.
1777 */
1778 void
1779 ae_idle(struct ae_softc *sc, u_int32_t bits)
1780 {
1781 static const char * const txstate_names[] = {
1782 "STOPPED",
1783 "RUNNING - FETCH",
1784 "RUNNING - WAIT",
1785 "RUNNING - READING",
1786 "-- RESERVED --",
1787 "RUNNING - SETUP",
1788 "SUSPENDED",
1789 "RUNNING - CLOSE",
1790 };
1791 static const char * const rxstate_names[] = {
1792 "STOPPED",
1793 "RUNNING - FETCH",
1794 "RUNNING - CHECK",
1795 "RUNNING - WAIT",
1796 "SUSPENDED",
1797 "RUNNING - CLOSE",
1798 "RUNNING - FLUSH",
1799 "RUNNING - QUEUE",
1800 };
1801
1802 u_int32_t csr, ackmask = 0;
1803 int i;
1804
1805 if (bits & OPMODE_ST)
1806 ackmask |= STATUS_TPS;
1807
1808 if (bits & OPMODE_SR)
1809 ackmask |= STATUS_RPS;
1810
1811 AE_CLR(sc, CSR_OPMODE, bits);
1812
1813 for (i = 0; i < 1000; i++) {
1814 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1815 break;
1816 delay(10);
1817 }
1818
1819 csr = AE_READ(sc, CSR_STATUS);
1820 if ((csr & ackmask) != ackmask) {
1821 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1822 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1823 printf("%s: transmit process failed to idle: "
1824 "state %s\n", sc->sc_dev.dv_xname,
1825 txstate_names[(csr & STATUS_TS) >> 20]);
1826 }
1827 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1828 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1829 printf("%s: receive process failed to idle: "
1830 "state %s\n", sc->sc_dev.dv_xname,
1831 rxstate_names[(csr & STATUS_RS) >> 17]);
1832 }
1833 }
1834 }
1835
1836 /*****************************************************************************
1837 * Support functions for MII-attached media.
1838 *****************************************************************************/
1839
1840 /*
1841 * ae_mii_tick:
1842 *
1843 * One second timer, used to tick the MII.
1844 */
1845 static void
1846 ae_mii_tick(void *arg)
1847 {
1848 struct ae_softc *sc = arg;
1849 int s;
1850
1851 if (!device_is_active(&sc->sc_dev))
1852 return;
1853
1854 s = splnet();
1855 mii_tick(&sc->sc_mii);
1856 splx(s);
1857
1858 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1859 }
1860
1861 /*
1862 * ae_mii_statchg: [mii interface function]
1863 *
1864 * Callback from PHY when media changes.
1865 */
1866 static void
1867 ae_mii_statchg(device_t self)
1868 {
1869 struct ae_softc *sc = device_private(self);
1870 uint32_t macctl, flowc;
1871
1872 //opmode = AE_READ(sc, CSR_OPMODE);
1873 macctl = AE_READ(sc, CSR_MACCTL);
1874
1875 /* XXX: do we need to do this? */
1876 /* Idle the transmit and receive processes. */
1877 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1878
1879 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1880 flowc = FLOWC_FCE;
1881 macctl &= ~MACCTL_DRO;
1882 macctl |= MACCTL_FDX;
1883 } else {
1884 flowc = 0; /* cannot do flow control in HDX */
1885 macctl |= MACCTL_DRO;
1886 macctl &= ~MACCTL_FDX;
1887 }
1888
1889 AE_WRITE(sc, CSR_FLOWC, flowc);
1890 AE_WRITE(sc, CSR_MACCTL, macctl);
1891
1892 /* restore operational mode */
1893 //AE_WRITE(sc, CSR_OPMODE, opmode);
1894 AE_BARRIER(sc);
1895 }
1896
1897 /*
1898 * ae_mii_readreg:
1899 *
1900 * Read a PHY register.
1901 */
1902 static int
1903 ae_mii_readreg(device_t self, int phy, int reg)
1904 {
1905 struct ae_softc *sc = device_private(self);
1906 uint32_t addr;
1907 int i;
1908
1909 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1910 AE_WRITE(sc, CSR_MIIADDR, addr);
1911 AE_BARRIER(sc);
1912 for (i = 0; i < 100000000; i++) {
1913 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1914 break;
1915 }
1916
1917 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1918 }
1919
1920 /*
1921 * ae_mii_writereg:
1922 *
1923 * Write a PHY register.
1924 */
1925 static void
1926 ae_mii_writereg(device_t self, int phy, int reg, int val)
1927 {
1928 struct ae_softc *sc = device_private(self);
1929 uint32_t addr;
1930 int i;
1931
1932 /* write the data register */
1933 AE_WRITE(sc, CSR_MIIDATA, val);
1934
1935 /* write the address to latch it in */
1936 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1937 MIIADDR_WRITE;
1938 AE_WRITE(sc, CSR_MIIADDR, addr);
1939 AE_BARRIER(sc);
1940
1941 for (i = 0; i < 100000000; i++) {
1942 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1943 break;
1944 }
1945 }
1946