if_ae.c revision 1.2 1 /* $Id: if_ae.c,v 1.2 2006/05/05 18:04:41 thorpej Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. All advertising materials mentioning features or use of this software
59 * must display the following acknowledgement:
60 * This product includes software developed by the NetBSD
61 * Foundation, Inc. and its contributors.
62 * 4. Neither the name of The NetBSD Foundation nor the names of its
63 * contributors may be used to endorse or promote products derived
64 * from this software without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
67 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
68 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
69 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
70 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
71 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
72 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
73 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
74 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
75 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGE.
77 */
78
79 /*
80 * Device driver for the onboard ethernet MAC found on the AR5312
81 * chip's AHB bus.
82 *
83 * This device is very simliar to the tulip in most regards, and
84 * the code is directly derived from NetBSD's tulip.c. However, it
85 * is different enough that it did not seem to be a good idea to
86 * add further complexity to the tulip driver, so we have our own.
87 *
88 * Also tulip has a lot of complexity in it for various parts/options
89 * that we don't need, and on these little boxes with only ~8MB RAM, we
90 * don't want any extra bloat.
91 */
92
93 /*
94 * TODO:
95 *
96 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
97 * inbound packets on a half-word boundary, which would make life easier
98 * for TCP/IP. (Aligning IP headers on a word.)
99 *
100 * 2) There is stuff in original tulip to shut down the device when reacting
101 * to a a change in link status. Is that needed.
102 *
103 * 3) Test with variety of 10/100 HDX/FDX scenarios.
104 *
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.2 2006/05/05 18:04:41 thorpej Exp $");
109
110 #include "bpfilter.h"
111
112 #include <sys/param.h>
113 #include <sys/systm.h>
114 #include <sys/callout.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/ioctl.h>
120 #include <sys/errno.h>
121 #include <sys/device.h>
122
123 #include <machine/endian.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #include <net/if.h>
128 #include <net/if_dl.h>
129 #include <net/if_media.h>
130 #include <net/if_ether.h>
131
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141 #include <dev/mii/mii_bitbang.h>
142
143 #include <mips/atheros/include/arbusvar.h>
144 #include <mips/atheros/dev/aereg.h>
145 #include <mips/atheros/dev/aevar.h>
146
147 static const struct {
148 u_int32_t txth_opmode; /* OPMODE bits */
149 const char *txth_name; /* name of mode */
150 } ae_txthresh[] = {
151 { OPMODE_TR_32, "32 words" },
152 { OPMODE_TR_64, "64 words" },
153 { OPMODE_TR_128, "128 words" },
154 { OPMODE_TR_256, "256 words" },
155 { OPMODE_SF, "store and forward mode" },
156 { 0, NULL },
157 };
158
159 static int ae_match(struct device *, struct cfdata *, void *);
160 static void ae_attach(struct device *, struct device *, void *);
161 static int ae_detach(struct device *, int);
162 static int ae_activate(struct device *, enum devact);
163
164 static void ae_reset(struct ae_softc *);
165 static void ae_idle(struct ae_softc *, u_int32_t);
166
167 static int ae_mediachange(struct ifnet *);
168 static void ae_mediastatus(struct ifnet *, struct ifmediareq *);
169
170 static void ae_start(struct ifnet *);
171 static void ae_watchdog(struct ifnet *);
172 static int ae_ioctl(struct ifnet *, u_long, caddr_t);
173 static int ae_init(struct ifnet *);
174 static void ae_stop(struct ifnet *, int);
175
176 static void ae_shutdown(void *);
177
178 static void ae_rxdrain(struct ae_softc *);
179 static int ae_add_rxbuf(struct ae_softc *, int);
180
181 static int ae_enable(struct ae_softc *);
182 static void ae_disable(struct ae_softc *);
183 static void ae_power(int, void *);
184
185 static void ae_filter_setup(struct ae_softc *);
186
187 static int ae_intr(void *);
188 static void ae_rxintr(struct ae_softc *);
189 static void ae_txintr(struct ae_softc *);
190
191 static void ae_mii_tick(void *);
192 static void ae_mii_statchg(struct device *);
193
194 static int ae_mii_readreg(struct device *, int, int);
195 static void ae_mii_writereg(struct device *, int, int, int);
196
197 #ifdef AE_DEBUG
198 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
199 printf x
200 #else
201 #define DPRINTF(sc, x) /* nothing */
202 #endif
203
204 #ifdef AE_STATS
205 static void ae_print_stats(struct ae_softc *);
206 #endif
207
208 CFATTACH_DECL(ae, sizeof(struct ae_softc),
209 ae_match, ae_attach, ae_detach, ae_activate);
210
211 /*
212 * ae_match:
213 *
214 * Check for a device match.
215 */
216 int
217 ae_match(struct device *parent, struct cfdata *cf, void *aux)
218 {
219 struct arbus_attach_args *aa = aux;
220
221 if (strcmp(aa->aa_name, cf->cf_name) == 0)
222 return 1;
223
224 return 0;
225
226 }
227
228 /*
229 * ae_attach:
230 *
231 * Attach an ae interface to the system.
232 */
233 void
234 ae_attach(struct device *parent, struct device *self, void *aux)
235 {
236 const uint8_t *enaddr;
237 prop_data_t ea;
238 struct ae_softc *sc = (void *)self;
239 struct arbus_attach_args *aa = aux;
240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
241 int i, error;
242
243 callout_init(&sc->sc_tick_callout);
244
245 printf(": Atheros AR531X 10/100 Ethernet\n");
246
247 /*
248 * Try to get MAC address.
249 */
250 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
251 if (ea == NULL) {
252 printf("%s: unable to get mac-addr property\n",
253 sc->sc_dev.dv_xname);
254 return;
255 }
256 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
257 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
258 enaddr = prop_data_data_nocopy(ea);
259
260 /* Announce ourselves. */
261 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
262 ether_sprintf(enaddr));
263
264 sc->sc_irq = aa->aa_irq;
265 sc->sc_st = aa->aa_bst;
266 sc->sc_dmat = aa->aa_dmat;
267
268 SIMPLEQ_INIT(&sc->sc_txfreeq);
269 SIMPLEQ_INIT(&sc->sc_txdirtyq);
270
271 /*
272 * Map registers.
273 */
274 sc->sc_size = aa->aa_size;
275 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
276 &sc->sc_sh)) != 0) {
277 printf("%s: unable to map registers, error = %d\n",
278 sc->sc_dev.dv_xname, error);
279 goto fail_0;
280 }
281
282 /*
283 * Allocate the control data structures, and create and load the
284 * DMA map for it.
285 */
286 if ((error = bus_dmamem_alloc(sc->sc_dmat,
287 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
288 1, &sc->sc_cdnseg, 0)) != 0) {
289 printf("%s: unable to allocate control data, error = %d\n",
290 sc->sc_dev.dv_xname, error);
291 goto fail_1;
292 }
293
294 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
295 sizeof(struct ae_control_data), (caddr_t *)&sc->sc_control_data,
296 BUS_DMA_COHERENT)) != 0) {
297 printf("%s: unable to map control data, error = %d\n",
298 sc->sc_dev.dv_xname, error);
299 goto fail_2;
300 }
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 sizeof(struct ae_control_data), 1,
304 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
305 printf("%s: unable to create control data DMA map, "
306 "error = %d\n", sc->sc_dev.dv_xname, error);
307 goto fail_3;
308 }
309
310 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
311 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
312 0)) != 0) {
313 printf("%s: unable to load control data DMA map, error = %d\n",
314 sc->sc_dev.dv_xname, error);
315 goto fail_4;
316 }
317
318 /*
319 * Create the transmit buffer DMA maps.
320 */
321 for (i = 0; i < AE_TXQUEUELEN; i++) {
322 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
323 AE_NTXSEGS, MCLBYTES, 0, 0,
324 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
325 printf("%s: unable to create tx DMA map %d, "
326 "error = %d\n", sc->sc_dev.dv_xname, i, error);
327 goto fail_5;
328 }
329 }
330
331 /*
332 * Create the receive buffer DMA maps.
333 */
334 for (i = 0; i < AE_NRXDESC; i++) {
335 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
336 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
337 printf("%s: unable to create rx DMA map %d, "
338 "error = %d\n", sc->sc_dev.dv_xname, i, error);
339 goto fail_6;
340 }
341 sc->sc_rxsoft[i].rxs_mbuf = NULL;
342 }
343
344 /*
345 * Reset the chip to a known state.
346 */
347 ae_reset(sc);
348
349 /*
350 * From this point forward, the attachment cannot fail. A failure
351 * before this point releases all resources that may have been
352 * allocated.
353 */
354 sc->sc_flags |= AE_ATTACHED;
355
356 /*
357 * Initialize our media structures. This may probe the MII, if
358 * present.
359 */
360 sc->sc_mii.mii_ifp = ifp;
361 sc->sc_mii.mii_readreg = ae_mii_readreg;
362 sc->sc_mii.mii_writereg = ae_mii_writereg;
363 sc->sc_mii.mii_statchg = ae_mii_statchg;
364 ifmedia_init(&sc->sc_mii.mii_media, 0, ae_mediachange,
365 ae_mediastatus);
366 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
367 MII_OFFSET_ANY, 0);
368
369 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
370 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
371 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
372 } else
373 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
374
375 sc->sc_tick = ae_mii_tick;
376
377 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
378 ifp->if_softc = sc;
379 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
380 sc->sc_if_flags = ifp->if_flags;
381 ifp->if_ioctl = ae_ioctl;
382 ifp->if_start = ae_start;
383 ifp->if_watchdog = ae_watchdog;
384 ifp->if_init = ae_init;
385 ifp->if_stop = ae_stop;
386 IFQ_SET_READY(&ifp->if_snd);
387
388 /*
389 * We can support 802.1Q VLAN-sized frames.
390 */
391 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
392
393 /*
394 * Attach the interface.
395 */
396 if_attach(ifp);
397 ether_ifattach(ifp, enaddr);
398
399 #if NRND > 0
400 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
401 RND_TYPE_NET, 0);
402 #endif
403
404 /*
405 * Make sure the interface is shutdown during reboot.
406 */
407 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
408 if (sc->sc_sdhook == NULL)
409 printf("%s: WARNING: unable to establish shutdown hook\n",
410 sc->sc_dev.dv_xname);
411
412 /*
413 * Add a suspend hook to make sure we come back up after a
414 * resume.
415 */
416 sc->sc_powerhook = powerhook_establish(ae_power, sc);
417 if (sc->sc_powerhook == NULL)
418 printf("%s: WARNING: unable to establish power hook\n",
419 sc->sc_dev.dv_xname);
420 return;
421
422 /*
423 * Free any resources we've allocated during the failed attach
424 * attempt. Do this in reverse order and fall through.
425 */
426 fail_6:
427 for (i = 0; i < AE_NRXDESC; i++) {
428 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
429 bus_dmamap_destroy(sc->sc_dmat,
430 sc->sc_rxsoft[i].rxs_dmamap);
431 }
432 fail_5:
433 for (i = 0; i < AE_TXQUEUELEN; i++) {
434 if (sc->sc_txsoft[i].txs_dmamap != NULL)
435 bus_dmamap_destroy(sc->sc_dmat,
436 sc->sc_txsoft[i].txs_dmamap);
437 }
438 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
439 fail_4:
440 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
441 fail_3:
442 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
443 sizeof(struct ae_control_data));
444 fail_2:
445 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
446 fail_1:
447 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
448 fail_0:
449 return;
450 }
451
452 /*
453 * ae_activate:
454 *
455 * Handle device activation/deactivation requests.
456 */
457 int
458 ae_activate(struct device *self, enum devact act)
459 {
460 struct ae_softc *sc = (void *) self;
461 int s, error = 0;
462
463 s = splnet();
464 switch (act) {
465 case DVACT_ACTIVATE:
466 error = EOPNOTSUPP;
467 break;
468
469 case DVACT_DEACTIVATE:
470 mii_activate(&sc->sc_mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
471 if_deactivate(&sc->sc_ethercom.ec_if);
472 break;
473 }
474 splx(s);
475
476 return (error);
477 }
478
479 /*
480 * ae_detach:
481 *
482 * Detach a device interface.
483 */
484 int
485 ae_detach(struct device *self, int flags)
486 {
487 struct ae_softc *sc = (void *)self;
488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
489 struct ae_rxsoft *rxs;
490 struct ae_txsoft *txs;
491 int i;
492
493 /*
494 * Succeed now if there isn't any work to do.
495 */
496 if ((sc->sc_flags & AE_ATTACHED) == 0)
497 return (0);
498
499 /* Unhook our tick handler. */
500 if (sc->sc_tick)
501 callout_stop(&sc->sc_tick_callout);
502
503 /* Detach all PHYs */
504 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
505
506 /* Delete all remaining media. */
507 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
508
509 #if NRND > 0
510 rnd_detach_source(&sc->sc_rnd_source);
511 #endif
512 ether_ifdetach(ifp);
513 if_detach(ifp);
514
515 for (i = 0; i < AE_NRXDESC; i++) {
516 rxs = &sc->sc_rxsoft[i];
517 if (rxs->rxs_mbuf != NULL) {
518 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
519 m_freem(rxs->rxs_mbuf);
520 rxs->rxs_mbuf = NULL;
521 }
522 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
523 }
524 for (i = 0; i < AE_TXQUEUELEN; i++) {
525 txs = &sc->sc_txsoft[i];
526 if (txs->txs_mbuf != NULL) {
527 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
528 m_freem(txs->txs_mbuf);
529 txs->txs_mbuf = NULL;
530 }
531 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
532 }
533 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
534 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
535 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
536 sizeof(struct ae_control_data));
537 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
538
539 shutdownhook_disestablish(sc->sc_sdhook);
540 powerhook_disestablish(sc->sc_powerhook);
541
542 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
543
544
545 return (0);
546 }
547
548 /*
549 * ae_shutdown:
550 *
551 * Make sure the interface is stopped at reboot time.
552 */
553 static void
554 ae_shutdown(void *arg)
555 {
556 struct ae_softc *sc = arg;
557
558 ae_stop(&sc->sc_ethercom.ec_if, 1);
559 }
560
561 /*
562 * ae_start: [ifnet interface function]
563 *
564 * Start packet transmission on the interface.
565 */
566 static void
567 ae_start(struct ifnet *ifp)
568 {
569 struct ae_softc *sc = ifp->if_softc;
570 struct mbuf *m0, *m;
571 struct ae_txsoft *txs, *last_txs = NULL;
572 bus_dmamap_t dmamap;
573 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
574
575 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
576 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
577
578
579 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
580 return;
581
582 /*
583 * Remember the previous number of free descriptors and
584 * the first descriptor we'll use.
585 */
586 ofree = sc->sc_txfree;
587 firsttx = sc->sc_txnext;
588
589 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
590 sc->sc_dev.dv_xname, ofree, firsttx));
591
592 /*
593 * Loop through the send queue, setting up transmit descriptors
594 * until we drain the queue, or use up all available transmit
595 * descriptors.
596 */
597 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
598 sc->sc_txfree != 0) {
599 /*
600 * Grab a packet off the queue.
601 */
602 IFQ_POLL(&ifp->if_snd, m0);
603 if (m0 == NULL)
604 break;
605 m = NULL;
606
607 dmamap = txs->txs_dmamap;
608
609 /*
610 * Load the DMA map. If this fails, the packet either
611 * didn't fit in the alloted number of segments, or we were
612 * short on resources. In this case, we'll copy and try
613 * again.
614 */
615 if (((mtod(m0, uintptr_t) & 3) != 0) ||
616 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
617 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
618 MGETHDR(m, M_DONTWAIT, MT_DATA);
619 if (m == NULL) {
620 printf("%s: unable to allocate Tx mbuf\n",
621 sc->sc_dev.dv_xname);
622 break;
623 }
624 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
625 if (m0->m_pkthdr.len > MHLEN) {
626 MCLGET(m, M_DONTWAIT);
627 if ((m->m_flags & M_EXT) == 0) {
628 printf("%s: unable to allocate Tx "
629 "cluster\n", sc->sc_dev.dv_xname);
630 m_freem(m);
631 break;
632 }
633 }
634 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
635 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
636 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
637 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
638 if (error) {
639 printf("%s: unable to load Tx buffer, "
640 "error = %d\n", sc->sc_dev.dv_xname,
641 error);
642 break;
643 }
644 }
645
646 /*
647 * Ensure we have enough descriptors free to describe
648 * the packet.
649 */
650 if (dmamap->dm_nsegs > sc->sc_txfree) {
651 /*
652 * Not enough free descriptors to transmit this
653 * packet. We haven't committed to anything yet,
654 * so just unload the DMA map, put the packet
655 * back on the queue, and punt. Notify the upper
656 * layer that there are no more slots left.
657 *
658 * XXX We could allocate an mbuf and copy, but
659 * XXX it is worth it?
660 */
661 ifp->if_flags |= IFF_OACTIVE;
662 bus_dmamap_unload(sc->sc_dmat, dmamap);
663 if (m != NULL)
664 m_freem(m);
665 break;
666 }
667
668 IFQ_DEQUEUE(&ifp->if_snd, m0);
669 if (m != NULL) {
670 m_freem(m0);
671 m0 = m;
672 }
673
674 /*
675 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
676 */
677
678 /* Sync the DMA map. */
679 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
680 BUS_DMASYNC_PREWRITE);
681
682 /*
683 * Initialize the transmit descriptors.
684 */
685 for (nexttx = sc->sc_txnext, seg = 0;
686 seg < dmamap->dm_nsegs;
687 seg++, nexttx = AE_NEXTTX(nexttx)) {
688 /*
689 * If this is the first descriptor we're
690 * enqueueing, don't set the OWN bit just
691 * yet. That could cause a race condition.
692 * We'll do it below.
693 */
694 sc->sc_txdescs[nexttx].ad_status =
695 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
696 sc->sc_txdescs[nexttx].ad_bufaddr1 =
697 dmamap->dm_segs[seg].ds_addr;
698 sc->sc_txdescs[nexttx].ad_ctl =
699 (dmamap->dm_segs[seg].ds_len <<
700 ADCTL_SIZE1_SHIFT) |
701 (nexttx == (AE_NTXDESC - 1) ?
702 ADCTL_ER : 0);
703 lasttx = nexttx;
704 }
705
706 KASSERT(lasttx != -1);
707
708 /* Set `first segment' and `last segment' appropriately. */
709 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
710 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
711
712 #ifdef AE_DEBUG
713 if (ifp->if_flags & IFF_DEBUG) {
714 printf(" txsoft %p transmit chain:\n", txs);
715 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
716 printf(" descriptor %d:\n", seg);
717 printf(" ad_status: 0x%08x\n",
718 sc->sc_txdescs[seg].ad_status);
719 printf(" ad_ctl: 0x%08x\n",
720 sc->sc_txdescs[seg].ad_ctl);
721 printf(" ad_bufaddr1: 0x%08x\n",
722 sc->sc_txdescs[seg].ad_bufaddr1);
723 printf(" ad_bufaddr2: 0x%08x\n",
724 sc->sc_txdescs[seg].ad_bufaddr2);
725 if (seg == lasttx)
726 break;
727 }
728 }
729 #endif
730
731 /* Sync the descriptors we're using. */
732 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
733 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
734
735 /*
736 * Store a pointer to the packet so we can free it later,
737 * and remember what txdirty will be once the packet is
738 * done.
739 */
740 txs->txs_mbuf = m0;
741 txs->txs_firstdesc = sc->sc_txnext;
742 txs->txs_lastdesc = lasttx;
743 txs->txs_ndescs = dmamap->dm_nsegs;
744
745 /* Advance the tx pointer. */
746 sc->sc_txfree -= dmamap->dm_nsegs;
747 sc->sc_txnext = nexttx;
748
749 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
750 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
751
752 last_txs = txs;
753
754 #if NBPFILTER > 0
755 /*
756 * Pass the packet to any BPF listeners.
757 */
758 if (ifp->if_bpf)
759 bpf_mtap(ifp->if_bpf, m0);
760 #endif /* NBPFILTER > 0 */
761 }
762
763 if (txs == NULL || sc->sc_txfree == 0) {
764 /* No more slots left; notify upper layer. */
765 ifp->if_flags |= IFF_OACTIVE;
766 }
767
768 if (sc->sc_txfree != ofree) {
769 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
770 sc->sc_dev.dv_xname, lasttx, firsttx));
771 /*
772 * Cause a transmit interrupt to happen on the
773 * last packet we enqueued.
774 */
775 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
776 AE_CDTXSYNC(sc, lasttx, 1,
777 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
778
779 /*
780 * The entire packet chain is set up. Give the
781 * first descriptor to the chip now.
782 */
783 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
784 AE_CDTXSYNC(sc, firsttx, 1,
785 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
786
787 /* Wake up the transmitter. */
788 /* XXX USE AUTOPOLLING? */
789 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
790 AE_BARRIER(sc);
791
792 /* Set a watchdog timer in case the chip flakes out. */
793 ifp->if_timer = 5;
794 }
795 }
796
797 /*
798 * ae_watchdog: [ifnet interface function]
799 *
800 * Watchdog timer handler.
801 */
802 static void
803 ae_watchdog(struct ifnet *ifp)
804 {
805 struct ae_softc *sc = ifp->if_softc;
806 int doing_transmit;
807
808 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
809
810 if (doing_transmit) {
811 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
812 ifp->if_oerrors++;
813 }
814 else
815 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
816
817 (void) ae_init(ifp);
818
819 /* Try to get more packets going. */
820 ae_start(ifp);
821 }
822
823 /*
824 * ae_ioctl: [ifnet interface function]
825 *
826 * Handle control requests from the operator.
827 */
828 static int
829 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
830 {
831 struct ae_softc *sc = ifp->if_softc;
832 struct ifreq *ifr = (struct ifreq *)data;
833 int s, error;
834
835 s = splnet();
836
837 switch (cmd) {
838 case SIOCSIFMEDIA:
839 case SIOCGIFMEDIA:
840 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
841 break;
842 case SIOCSIFFLAGS:
843 /* If the interface is up and running, only modify the receive
844 * filter when setting promiscuous or debug mode. Otherwise
845 * fall through to ether_ioctl, which will reset the chip.
846 */
847 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
848 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
849 == (IFF_UP|IFF_RUNNING))
850 && ((ifp->if_flags & (~RESETIGN))
851 == (sc->sc_if_flags & (~RESETIGN)))) {
852 /* Set up the receive filter. */
853 ae_filter_setup(sc);
854 error = 0;
855 break;
856 #undef RESETIGN
857 }
858 /* FALLTHROUGH */
859 default:
860 error = ether_ioctl(ifp, cmd, data);
861 if (error == ENETRESET) {
862 if (ifp->if_flags & IFF_RUNNING) {
863 /*
864 * Multicast list has changed. Set the
865 * hardware filter accordingly.
866 */
867 ae_filter_setup(sc);
868 }
869 error = 0;
870 }
871 break;
872 }
873
874 /* Try to get more packets going. */
875 if (AE_IS_ENABLED(sc))
876 ae_start(ifp);
877
878 sc->sc_if_flags = ifp->if_flags;
879 splx(s);
880 return (error);
881 }
882
883 /*
884 * ae_intr:
885 *
886 * Interrupt service routine.
887 */
888 int
889 ae_intr(void *arg)
890 {
891 struct ae_softc *sc = arg;
892 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
893 u_int32_t status, rxstatus, txstatus;
894 int handled = 0, txthresh;
895
896 DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
897
898 #ifdef DEBUG
899 if (AE_IS_ENABLED(sc) == 0)
900 panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
901 #endif
902
903 /*
904 * If the interface isn't running, the interrupt couldn't
905 * possibly have come from us.
906 */
907 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
908 !device_is_active(&sc->sc_dev)) {
909 printf("spurious?!?\n");
910 return (0);
911 }
912
913 for (;;) {
914 status = AE_READ(sc, CSR_STATUS);
915 if (status) {
916 AE_WRITE(sc, CSR_STATUS, status);
917 AE_BARRIER(sc);
918 }
919
920 if ((status & sc->sc_inten) == 0)
921 break;
922
923 handled = 1;
924
925 rxstatus = status & sc->sc_rxint_mask;
926 txstatus = status & sc->sc_txint_mask;
927
928 if (rxstatus) {
929 /* Grab new any new packets. */
930 ae_rxintr(sc);
931
932 if (rxstatus & STATUS_RU) {
933 printf("%s: receive ring overrun\n",
934 sc->sc_dev.dv_xname);
935 /* Get the receive process going again. */
936 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
937 AE_BARRIER(sc);
938 break;
939 }
940 }
941
942 if (txstatus) {
943 /* Sweep up transmit descriptors. */
944 ae_txintr(sc);
945
946 if (txstatus & STATUS_TJT)
947 printf("%s: transmit jabber timeout\n",
948 sc->sc_dev.dv_xname);
949
950 if (txstatus & STATUS_UNF) {
951 /*
952 * Increase our transmit threshold if
953 * another is available.
954 */
955 txthresh = sc->sc_txthresh + 1;
956 if (ae_txthresh[txthresh].txth_name != NULL) {
957 uint32_t opmode;
958 /* Idle the transmit process. */
959 opmode = AE_READ(sc, CSR_OPMODE);
960 ae_idle(sc, OPMODE_ST);
961
962 sc->sc_txthresh = txthresh;
963 opmode &=
964 ~(OPMODE_TR|OPMODE_SF);
965 opmode |=
966 ae_txthresh[txthresh].txth_opmode;
967 printf("%s: transmit underrun; new "
968 "threshold: %s\n",
969 sc->sc_dev.dv_xname,
970 ae_txthresh[txthresh].txth_name);
971
972 /*
973 * Set the new threshold and restart
974 * the transmit process.
975 */
976 AE_WRITE(sc, CSR_OPMODE, opmode);
977 AE_BARRIER(sc);
978 }
979 /*
980 * XXX Log every Nth underrun from
981 * XXX now on?
982 */
983 }
984 }
985
986 if (status & (STATUS_TPS|STATUS_RPS)) {
987 if (status & STATUS_TPS)
988 printf("%s: transmit process stopped\n",
989 sc->sc_dev.dv_xname);
990 if (status & STATUS_RPS)
991 printf("%s: receive process stopped\n",
992 sc->sc_dev.dv_xname);
993 (void) ae_init(ifp);
994 break;
995 }
996
997 if (status & STATUS_SE) {
998 const char *str;
999
1000 if (status & STATUS_TX_ABORT)
1001 str = "tx abort";
1002 else if (status & STATUS_RX_ABORT)
1003 str = "rx abort";
1004 else
1005 str = "unknown error";
1006
1007 printf("%s: fatal system error: %s\n",
1008 sc->sc_dev.dv_xname, str);
1009 (void) ae_init(ifp);
1010 break;
1011 }
1012
1013 /*
1014 * Not handled:
1015 *
1016 * Transmit buffer unavailable -- normal
1017 * condition, nothing to do, really.
1018 *
1019 * General purpose timer experied -- we don't
1020 * use the general purpose timer.
1021 *
1022 * Early receive interrupt -- not available on
1023 * all chips, we just use RI. We also only
1024 * use single-segment receive DMA, so this
1025 * is mostly useless.
1026 */
1027 }
1028
1029 /* Try to get more packets going. */
1030 ae_start(ifp);
1031
1032 #if NRND > 0
1033 if (handled)
1034 rnd_add_uint32(&sc->sc_rnd_source, status);
1035 #endif
1036 return (handled);
1037 }
1038
1039 /*
1040 * ae_rxintr:
1041 *
1042 * Helper; handle receive interrupts.
1043 */
1044 static void
1045 ae_rxintr(struct ae_softc *sc)
1046 {
1047 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1048 struct ether_header *eh;
1049 struct ae_rxsoft *rxs;
1050 struct mbuf *m;
1051 u_int32_t rxstat;
1052 int i, len;
1053
1054 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1055 rxs = &sc->sc_rxsoft[i];
1056
1057 AE_CDRXSYNC(sc, i,
1058 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1059
1060 rxstat = sc->sc_rxdescs[i].ad_status;
1061
1062 if (rxstat & ADSTAT_OWN) {
1063 /*
1064 * We have processed all of the receive buffers.
1065 */
1066 break;
1067 }
1068
1069 /*
1070 * If any collisions were seen on the wire, count one.
1071 */
1072 if (rxstat & ADSTAT_Rx_CS)
1073 ifp->if_collisions++;
1074
1075 /*
1076 * If an error occurred, update stats, clear the status
1077 * word, and leave the packet buffer in place. It will
1078 * simply be reused the next time the ring comes around.
1079 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1080 * error.
1081 */
1082 if (rxstat & ADSTAT_ES &&
1083 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1084 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1085 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1086 #define PRINTERR(bit, str) \
1087 if (rxstat & (bit)) \
1088 printf("%s: receive error: %s\n", \
1089 sc->sc_dev.dv_xname, str)
1090 ifp->if_ierrors++;
1091 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1092 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1093 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1094 PRINTERR(ADSTAT_Rx_RE, "MII error");
1095 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1096 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1097 #undef PRINTERR
1098 AE_INIT_RXDESC(sc, i);
1099 continue;
1100 }
1101
1102 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1103 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1104
1105 /*
1106 * No errors; receive the packet. Note the chip
1107 * includes the CRC with every packet.
1108 */
1109 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1110
1111 /*
1112 * XXX: the Atheros part can align on half words. what
1113 * is the performance implication of this? Probably
1114 * minimal, and we should use it...
1115 */
1116 #ifdef __NO_STRICT_ALIGNMENT
1117 /*
1118 * Allocate a new mbuf cluster. If that fails, we are
1119 * out of memory, and must drop the packet and recycle
1120 * the buffer that's already attached to this descriptor.
1121 */
1122 m = rxs->rxs_mbuf;
1123 if (ae_add_rxbuf(sc, i) != 0) {
1124 ifp->if_ierrors++;
1125 AE_INIT_RXDESC(sc, i);
1126 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1127 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1128 continue;
1129 }
1130 #else
1131 /*
1132 * The chip's receive buffers must be 4-byte aligned.
1133 * But this means that the data after the Ethernet header
1134 * is misaligned. We must allocate a new buffer and
1135 * copy the data, shifted forward 2 bytes.
1136 */
1137 MGETHDR(m, M_DONTWAIT, MT_DATA);
1138 if (m == NULL) {
1139 dropit:
1140 ifp->if_ierrors++;
1141 AE_INIT_RXDESC(sc, i);
1142 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1143 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1144 continue;
1145 }
1146 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1147 if (len > (MHLEN - 2)) {
1148 MCLGET(m, M_DONTWAIT);
1149 if ((m->m_flags & M_EXT) == 0) {
1150 m_freem(m);
1151 goto dropit;
1152 }
1153 }
1154 m->m_data += 2;
1155
1156 /*
1157 * Note that we use clusters for incoming frames, so the
1158 * buffer is virtually contiguous.
1159 */
1160 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1161
1162 /* Allow the receive descriptor to continue using its mbuf. */
1163 AE_INIT_RXDESC(sc, i);
1164 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1165 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1166 #endif /* __NO_STRICT_ALIGNMENT */
1167
1168 ifp->if_ipackets++;
1169 eh = mtod(m, struct ether_header *);
1170 m->m_pkthdr.rcvif = ifp;
1171 m->m_pkthdr.len = m->m_len = len;
1172
1173 #if NBPFILTER > 0
1174 /*
1175 * Pass this up to any BPF listeners, but only
1176 * pass it up the stack if its for us.
1177 */
1178 if (ifp->if_bpf)
1179 bpf_mtap(ifp->if_bpf, m);
1180 #endif /* NPBFILTER > 0 */
1181
1182 /* Pass it on. */
1183 (*ifp->if_input)(ifp, m);
1184 }
1185
1186 /* Update the receive pointer. */
1187 sc->sc_rxptr = i;
1188 }
1189
1190 /*
1191 * ae_txintr:
1192 *
1193 * Helper; handle transmit interrupts.
1194 */
1195 static void
1196 ae_txintr(struct ae_softc *sc)
1197 {
1198 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 struct ae_txsoft *txs;
1200 u_int32_t txstat;
1201
1202 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1203 sc->sc_dev.dv_xname, sc->sc_flags));
1204
1205 ifp->if_flags &= ~IFF_OACTIVE;
1206
1207 /*
1208 * Go through our Tx list and free mbufs for those
1209 * frames that have been transmitted.
1210 */
1211 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1212 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1213 txs->txs_ndescs,
1214 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1215
1216 #ifdef AE_DEBUG
1217 if (ifp->if_flags & IFF_DEBUG) {
1218 int i;
1219 printf(" txsoft %p transmit chain:\n", txs);
1220 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1221 printf(" descriptor %d:\n", i);
1222 printf(" ad_status: 0x%08x\n",
1223 sc->sc_txdescs[i].ad_status);
1224 printf(" ad_ctl: 0x%08x\n",
1225 sc->sc_txdescs[i].ad_ctl);
1226 printf(" ad_bufaddr1: 0x%08x\n",
1227 sc->sc_txdescs[i].ad_bufaddr1);
1228 printf(" ad_bufaddr2: 0x%08x\n",
1229 sc->sc_txdescs[i].ad_bufaddr2);
1230 if (i == txs->txs_lastdesc)
1231 break;
1232 }
1233 }
1234 #endif
1235
1236 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1237 if (txstat & ADSTAT_OWN)
1238 break;
1239
1240 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1241
1242 sc->sc_txfree += txs->txs_ndescs;
1243
1244 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1245 0, txs->txs_dmamap->dm_mapsize,
1246 BUS_DMASYNC_POSTWRITE);
1247 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1248 m_freem(txs->txs_mbuf);
1249 txs->txs_mbuf = NULL;
1250
1251 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1252
1253 /*
1254 * Check for errors and collisions.
1255 */
1256 #ifdef AE_STATS
1257 if (txstat & ADSTAT_Tx_UF)
1258 sc->sc_stats.ts_tx_uf++;
1259 if (txstat & ADSTAT_Tx_TO)
1260 sc->sc_stats.ts_tx_to++;
1261 if (txstat & ADSTAT_Tx_EC)
1262 sc->sc_stats.ts_tx_ec++;
1263 if (txstat & ADSTAT_Tx_LC)
1264 sc->sc_stats.ts_tx_lc++;
1265 #endif
1266
1267 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1268 ifp->if_oerrors++;
1269
1270 if (txstat & ADSTAT_Tx_EC)
1271 ifp->if_collisions += 16;
1272 else
1273 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1274 if (txstat & ADSTAT_Tx_LC)
1275 ifp->if_collisions++;
1276
1277 ifp->if_opackets++;
1278 }
1279
1280 /*
1281 * If there are no more pending transmissions, cancel the watchdog
1282 * timer.
1283 */
1284 if (txs == NULL)
1285 ifp->if_timer = 0;
1286 }
1287
1288 #ifdef AE_STATS
1289 void
1290 ae_print_stats(struct ae_softc *sc)
1291 {
1292
1293 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1294 sc->sc_dev.dv_xname,
1295 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1296 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1297 }
1298 #endif
1299
1300 /*
1301 * ae_reset:
1302 *
1303 * Perform a soft reset on the chip.
1304 */
1305 void
1306 ae_reset(struct ae_softc *sc)
1307 {
1308 int i;
1309
1310 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1311 AE_BARRIER(sc);
1312
1313 /*
1314 * The chip doesn't take itself out of reset automatically.
1315 * We need to do so after 2us.
1316 */
1317 delay(10);
1318 AE_WRITE(sc, CSR_BUSMODE, 0);
1319 AE_BARRIER(sc);
1320
1321 for (i = 0; i < 1000; i++) {
1322 /*
1323 * Wait a bit for the reset to complete before peeking
1324 * at the chip again.
1325 */
1326 delay(10);
1327 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1328 break;
1329 }
1330
1331 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1332 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1333
1334 delay(1000);
1335 }
1336
1337 /*
1338 * ae_init: [ ifnet interface function ]
1339 *
1340 * Initialize the interface. Must be called at splnet().
1341 */
1342 static int
1343 ae_init(struct ifnet *ifp)
1344 {
1345 struct ae_softc *sc = ifp->if_softc;
1346 struct ae_txsoft *txs;
1347 struct ae_rxsoft *rxs;
1348 uint8_t *enaddr;
1349 int i, error = 0;
1350
1351 if ((error = ae_enable(sc)) != 0)
1352 goto out;
1353
1354 /*
1355 * Cancel any pending I/O.
1356 */
1357 ae_stop(ifp, 0);
1358
1359 /*
1360 * Reset the chip to a known state.
1361 */
1362 ae_reset(sc);
1363
1364 /*
1365 * Initialize the BUSMODE register.
1366 */
1367 AE_WRITE(sc, CSR_BUSMODE,
1368 /* XXX: not sure if this is a good thing or not... */
1369 //BUSMODE_ALIGN_16B |
1370 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1371 AE_BARRIER(sc);
1372
1373 /*
1374 * Initialize the transmit descriptor ring.
1375 */
1376 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1377 for (i = 0; i < AE_NTXDESC; i++) {
1378 sc->sc_txdescs[i].ad_ctl = 0;
1379 sc->sc_txdescs[i].ad_bufaddr2 =
1380 AE_CDTXADDR(sc, AE_NEXTTX(i));
1381 }
1382 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1383 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1384 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1385 sc->sc_txfree = AE_NTXDESC;
1386 sc->sc_txnext = 0;
1387
1388 /*
1389 * Initialize the transmit job descriptors.
1390 */
1391 SIMPLEQ_INIT(&sc->sc_txfreeq);
1392 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1393 for (i = 0; i < AE_TXQUEUELEN; i++) {
1394 txs = &sc->sc_txsoft[i];
1395 txs->txs_mbuf = NULL;
1396 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1397 }
1398
1399 /*
1400 * Initialize the receive descriptor and receive job
1401 * descriptor rings.
1402 */
1403 for (i = 0; i < AE_NRXDESC; i++) {
1404 rxs = &sc->sc_rxsoft[i];
1405 if (rxs->rxs_mbuf == NULL) {
1406 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1407 printf("%s: unable to allocate or map rx "
1408 "buffer %d, error = %d\n",
1409 sc->sc_dev.dv_xname, i, error);
1410 /*
1411 * XXX Should attempt to run with fewer receive
1412 * XXX buffers instead of just failing.
1413 */
1414 ae_rxdrain(sc);
1415 goto out;
1416 }
1417 } else
1418 AE_INIT_RXDESC(sc, i);
1419 }
1420 sc->sc_rxptr = 0;
1421
1422 /*
1423 * Initialize the interrupt mask and enable interrupts.
1424 */
1425 /* normal interrupts */
1426 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1427
1428 /* abnormal interrupts */
1429 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1430 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1431
1432 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1433 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1434
1435 sc->sc_rxint_mask &= sc->sc_inten;
1436 sc->sc_txint_mask &= sc->sc_inten;
1437
1438 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1439 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1440
1441 /*
1442 * Give the transmit and receive rings to the chip.
1443 */
1444 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1445 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1446 AE_BARRIER(sc);
1447
1448 /*
1449 * Set the station address.
1450 */
1451 enaddr = LLADDR(ifp->if_sadl);
1452 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1453 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1454 enaddr[1] << 8 | enaddr[0]);
1455 AE_BARRIER(sc);
1456
1457 /*
1458 * Set the receive filter. This will start the transmit and
1459 * receive processes.
1460 */
1461 ae_filter_setup(sc);
1462
1463 /*
1464 * Set the current media.
1465 */
1466 ae_mediachange(ifp);
1467
1468 /*
1469 * Start the mac.
1470 */
1471 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1472 AE_BARRIER(sc);
1473
1474 /*
1475 * Write out the opmode.
1476 */
1477 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1478 ae_txthresh[sc->sc_txthresh].txth_opmode);
1479 /*
1480 * Start the receive process.
1481 */
1482 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1483 AE_BARRIER(sc);
1484
1485 if (sc->sc_tick != NULL) {
1486 /* Start the one second clock. */
1487 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1488 }
1489
1490 /*
1491 * Note that the interface is now running.
1492 */
1493 ifp->if_flags |= IFF_RUNNING;
1494 ifp->if_flags &= ~IFF_OACTIVE;
1495 sc->sc_if_flags = ifp->if_flags;
1496
1497 out:
1498 if (error) {
1499 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1500 ifp->if_timer = 0;
1501 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1502 }
1503 return (error);
1504 }
1505
1506 /*
1507 * ae_enable:
1508 *
1509 * Enable the chip.
1510 */
1511 static int
1512 ae_enable(struct ae_softc *sc)
1513 {
1514
1515 if (AE_IS_ENABLED(sc) == 0) {
1516 sc->sc_ih = arbus_intr_establish(sc->sc_irq, ae_intr, sc);
1517 if (sc->sc_ih == NULL) {
1518 printf("%s: unable to establish interrupt\n",
1519 sc->sc_dev.dv_xname);
1520 return (EIO);
1521 }
1522 sc->sc_flags |= AE_ENABLED;
1523 }
1524 return (0);
1525 }
1526
1527 /*
1528 * ae_disable:
1529 *
1530 * Disable the chip.
1531 */
1532 static void
1533 ae_disable(struct ae_softc *sc)
1534 {
1535
1536 if (AE_IS_ENABLED(sc)) {
1537 arbus_intr_disestablish(sc->sc_ih);
1538 sc->sc_flags &= ~AE_ENABLED;
1539 }
1540 }
1541
1542 /*
1543 * ae_power:
1544 *
1545 * Power management (suspend/resume) hook.
1546 */
1547 static void
1548 ae_power(int why, void *arg)
1549 {
1550 struct ae_softc *sc = arg;
1551 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1552 int s;
1553
1554 printf("power called: %d, %x\n", why, (uint32_t)arg);
1555 s = splnet();
1556 switch (why) {
1557 case PWR_STANDBY:
1558 /* do nothing! */
1559 break;
1560 case PWR_SUSPEND:
1561 ae_stop(ifp, 0);
1562 ae_disable(sc);
1563 break;
1564 case PWR_RESUME:
1565 if (ifp->if_flags & IFF_UP) {
1566 ae_enable(sc);
1567 ae_init(ifp);
1568 }
1569 break;
1570 case PWR_SOFTSUSPEND:
1571 case PWR_SOFTSTANDBY:
1572 case PWR_SOFTRESUME:
1573 break;
1574 }
1575 splx(s);
1576 }
1577
1578 /*
1579 * ae_rxdrain:
1580 *
1581 * Drain the receive queue.
1582 */
1583 static void
1584 ae_rxdrain(struct ae_softc *sc)
1585 {
1586 struct ae_rxsoft *rxs;
1587 int i;
1588
1589 for (i = 0; i < AE_NRXDESC; i++) {
1590 rxs = &sc->sc_rxsoft[i];
1591 if (rxs->rxs_mbuf != NULL) {
1592 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1593 m_freem(rxs->rxs_mbuf);
1594 rxs->rxs_mbuf = NULL;
1595 }
1596 }
1597 }
1598
1599 /*
1600 * ae_stop: [ ifnet interface function ]
1601 *
1602 * Stop transmission on the interface.
1603 */
1604 static void
1605 ae_stop(struct ifnet *ifp, int disable)
1606 {
1607 struct ae_softc *sc = ifp->if_softc;
1608 struct ae_txsoft *txs;
1609
1610 if (sc->sc_tick != NULL) {
1611 /* Stop the one second clock. */
1612 callout_stop(&sc->sc_tick_callout);
1613 }
1614
1615 /* Down the MII. */
1616 mii_down(&sc->sc_mii);
1617
1618 /* Disable interrupts. */
1619 AE_WRITE(sc, CSR_INTEN, 0);
1620
1621 /* Stop the transmit and receive processes. */
1622 AE_WRITE(sc, CSR_OPMODE, 0);
1623 AE_WRITE(sc, CSR_RXLIST, 0);
1624 AE_WRITE(sc, CSR_TXLIST, 0);
1625 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1626 AE_BARRIER(sc);
1627
1628 /*
1629 * Release any queued transmit buffers.
1630 */
1631 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1632 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1633 if (txs->txs_mbuf != NULL) {
1634 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1635 m_freem(txs->txs_mbuf);
1636 txs->txs_mbuf = NULL;
1637 }
1638 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1639 }
1640
1641 if (disable) {
1642 ae_rxdrain(sc);
1643 ae_disable(sc);
1644 }
1645
1646 /*
1647 * Mark the interface down and cancel the watchdog timer.
1648 */
1649 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1650 sc->sc_if_flags = ifp->if_flags;
1651 ifp->if_timer = 0;
1652
1653 /*
1654 * Reset the chip (needed on some flavors to actually disable it).
1655 */
1656 ae_reset(sc);
1657 }
1658
1659 /*
1660 * ae_add_rxbuf:
1661 *
1662 * Add a receive buffer to the indicated descriptor.
1663 */
1664 static int
1665 ae_add_rxbuf(struct ae_softc *sc, int idx)
1666 {
1667 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1668 struct mbuf *m;
1669 int error;
1670
1671 MGETHDR(m, M_DONTWAIT, MT_DATA);
1672 if (m == NULL)
1673 return (ENOBUFS);
1674
1675 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1676 MCLGET(m, M_DONTWAIT);
1677 if ((m->m_flags & M_EXT) == 0) {
1678 m_freem(m);
1679 return (ENOBUFS);
1680 }
1681
1682 if (rxs->rxs_mbuf != NULL)
1683 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1684
1685 rxs->rxs_mbuf = m;
1686
1687 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1688 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1689 BUS_DMA_READ|BUS_DMA_NOWAIT);
1690 if (error) {
1691 printf("%s: can't load rx DMA map %d, error = %d\n",
1692 sc->sc_dev.dv_xname, idx, error);
1693 panic("ae_add_rxbuf"); /* XXX */
1694 }
1695
1696 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1697 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1698
1699 AE_INIT_RXDESC(sc, idx);
1700
1701 return (0);
1702 }
1703
1704 /*
1705 * ae_filter_setup:
1706 *
1707 * Set the chip's receive filter.
1708 */
1709 static void
1710 ae_filter_setup(struct ae_softc *sc)
1711 {
1712 struct ethercom *ec = &sc->sc_ethercom;
1713 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1714 struct ether_multi *enm;
1715 struct ether_multistep step;
1716 uint32_t hash, mchash[2];
1717 uint32_t macctl = 0;
1718
1719 /*
1720 * If the chip is running, we need to reset the interface,
1721 * and will revisit here (with IFF_RUNNING) clear. The
1722 * chip seems to really not like to have its multicast
1723 * filter programmed without a reset.
1724 */
1725 if (ifp->if_flags & IFF_RUNNING) {
1726 (void) ae_init(ifp);
1727 return;
1728 }
1729
1730 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1731 sc->sc_dev.dv_xname, sc->sc_flags));
1732
1733 macctl = AE_READ(sc, CSR_MACCTL);
1734 macctl &= ~(MACCTL_PR | MACCTL_PM);
1735 macctl |= MACCTL_HASH;
1736 macctl |= MACCTL_HBD;
1737 macctl |= MACCTL_PR;
1738
1739 if (ifp->if_flags & IFF_PROMISC) {
1740 macctl |= MACCTL_PR;
1741 goto allmulti;
1742 }
1743
1744 mchash[0] = mchash[1] = 0;
1745
1746 ETHER_FIRST_MULTI(step, ec, enm);
1747 while (enm != NULL) {
1748 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1749 /*
1750 * We must listen to a range of multicast addresses.
1751 * For now, just accept all multicasts, rather than
1752 * trying to set only those filter bits needed to match
1753 * the range. (At this time, the only use of address
1754 * ranges is for IP multicast routing, for which the
1755 * range is big enough to require all bits set.)
1756 */
1757 goto allmulti;
1758 }
1759
1760 /* Verify whether we use big or little endian hashes */
1761 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1762 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1763 ETHER_NEXT_MULTI(step, enm);
1764 }
1765 ifp->if_flags &= ~IFF_ALLMULTI;
1766 goto setit;
1767
1768 allmulti:
1769 ifp->if_flags |= IFF_ALLMULTI;
1770 mchash[0] = mchash[1] = 0xffffffff;
1771 macctl |= MACCTL_PM;
1772
1773 setit:
1774 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1775 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1776
1777 AE_WRITE(sc, CSR_MACCTL, macctl);
1778 AE_BARRIER(sc);
1779
1780 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1781 sc->sc_dev.dv_xname, macctl));
1782 }
1783
1784 /*
1785 * ae_idle:
1786 *
1787 * Cause the transmit and/or receive processes to go idle.
1788 */
1789 void
1790 ae_idle(struct ae_softc *sc, u_int32_t bits)
1791 {
1792 static const char * const txstate_names[] = {
1793 "STOPPED",
1794 "RUNNING - FETCH",
1795 "RUNNING - WAIT",
1796 "RUNNING - READING",
1797 "-- RESERVED --",
1798 "RUNNING - SETUP",
1799 "SUSPENDED",
1800 "RUNNING - CLOSE",
1801 };
1802 static const char * const rxstate_names[] = {
1803 "STOPPED",
1804 "RUNNING - FETCH",
1805 "RUNNING - CHECK",
1806 "RUNNING - WAIT",
1807 "SUSPENDED",
1808 "RUNNING - CLOSE",
1809 "RUNNING - FLUSH",
1810 "RUNNING - QUEUE",
1811 };
1812
1813 u_int32_t csr, ackmask = 0;
1814 int i;
1815
1816 if (bits & OPMODE_ST)
1817 ackmask |= STATUS_TPS;
1818
1819 if (bits & OPMODE_SR)
1820 ackmask |= STATUS_RPS;
1821
1822 AE_CLR(sc, CSR_OPMODE, bits);
1823
1824 for (i = 0; i < 1000; i++) {
1825 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1826 break;
1827 delay(10);
1828 }
1829
1830 csr = AE_READ(sc, CSR_STATUS);
1831 if ((csr & ackmask) != ackmask) {
1832 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1833 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1834 printf("%s: transmit process failed to idle: "
1835 "state %s\n", sc->sc_dev.dv_xname,
1836 txstate_names[(csr & STATUS_TS) >> 20]);
1837 }
1838 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1839 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1840 printf("%s: receive process failed to idle: "
1841 "state %s\n", sc->sc_dev.dv_xname,
1842 rxstate_names[(csr & STATUS_RS) >> 17]);
1843 }
1844 }
1845 }
1846
1847 /*****************************************************************************
1848 * Generic media support functions.
1849 *****************************************************************************/
1850
1851 /*
1852 * ae_mediastatus: [ifmedia interface function]
1853 *
1854 * Query the current media.
1855 */
1856 void
1857 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1858 {
1859 struct ae_softc *sc = ifp->if_softc;
1860
1861 if (AE_IS_ENABLED(sc) == 0) {
1862 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1863 ifmr->ifm_status = 0;
1864 return;
1865 }
1866
1867 mii_pollstat(&sc->sc_mii);
1868 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1869 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1870 }
1871
1872 /*
1873 * ae_mediachange: [ifmedia interface function]
1874 *
1875 * Update the current media.
1876 */
1877 int
1878 ae_mediachange(struct ifnet *ifp)
1879 {
1880 struct ae_softc *sc = ifp->if_softc;
1881
1882 if ((ifp->if_flags & IFF_UP) == 0)
1883 return (0);
1884
1885 mii_mediachg(&sc->sc_mii);
1886 return (0);
1887 }
1888
1889 /*****************************************************************************
1890 * Support functions for MII-attached media.
1891 *****************************************************************************/
1892
1893 /*
1894 * ae_mii_tick:
1895 *
1896 * One second timer, used to tick the MII.
1897 */
1898 static void
1899 ae_mii_tick(void *arg)
1900 {
1901 struct ae_softc *sc = arg;
1902 int s;
1903
1904 if (!device_is_active(&sc->sc_dev))
1905 return;
1906
1907 s = splnet();
1908 mii_tick(&sc->sc_mii);
1909 splx(s);
1910
1911 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1912 }
1913
1914 /*
1915 * ae_mii_statchg: [mii interface function]
1916 *
1917 * Callback from PHY when media changes.
1918 */
1919 static void
1920 ae_mii_statchg(struct device *self)
1921 {
1922 struct ae_softc *sc = (struct ae_softc *)self;
1923 uint32_t macctl, flowc;
1924
1925 //opmode = AE_READ(sc, CSR_OPMODE);
1926 macctl = AE_READ(sc, CSR_MACCTL);
1927
1928 /* XXX: do we need to do this? */
1929 /* Idle the transmit and receive processes. */
1930 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1931
1932 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1933 flowc = FLOWC_FCE;
1934 macctl &= ~MACCTL_DRO;
1935 macctl |= MACCTL_FDX;
1936 } else {
1937 flowc = 0; /* cannot do flow control in HDX */
1938 macctl |= MACCTL_DRO;
1939 macctl &= ~MACCTL_FDX;
1940 }
1941
1942 AE_WRITE(sc, CSR_FLOWC, flowc);
1943 AE_WRITE(sc, CSR_MACCTL, macctl);
1944
1945 /* restore operational mode */
1946 //AE_WRITE(sc, CSR_OPMODE, opmode);
1947 AE_BARRIER(sc);
1948 }
1949
1950 /*
1951 * ae_mii_readreg:
1952 *
1953 * Read a PHY register.
1954 */
1955 static int
1956 ae_mii_readreg(struct device *self, int phy, int reg)
1957 {
1958 struct ae_softc *sc = (struct ae_softc *)self;
1959 uint32_t addr;
1960 int i;
1961
1962 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1963 AE_WRITE(sc, CSR_MIIADDR, addr);
1964 AE_BARRIER(sc);
1965 for (i = 0; i < 100000000; i++) {
1966 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1967 break;
1968 }
1969
1970 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1971 }
1972
1973 /*
1974 * ae_mii_writereg:
1975 *
1976 * Write a PHY register.
1977 */
1978 static void
1979 ae_mii_writereg(struct device *self, int phy, int reg, int val)
1980 {
1981 struct ae_softc *sc = (struct ae_softc *)self;
1982 uint32_t addr;
1983 int i;
1984
1985 /* write the data register */
1986 AE_WRITE(sc, CSR_MIIDATA, val);
1987
1988 /* write the address to latch it in */
1989 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1990 MIIADDR_WRITE;
1991 AE_WRITE(sc, CSR_MIIADDR, addr);
1992 AE_BARRIER(sc);
1993
1994 for (i = 0; i < 100000000; i++) {
1995 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1996 break;
1997 }
1998 }
1999