if_ae.c revision 1.20 1 /* $Id: if_ae.c,v 1.20 2011/07/01 18:40:00 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the onboard ethernet MAC found on the AR5312
74 * chip's AHB bus.
75 *
76 * This device is very simliar to the tulip in most regards, and
77 * the code is directly derived from NetBSD's tulip.c. However, it
78 * is different enough that it did not seem to be a good idea to
79 * add further complexity to the tulip driver, so we have our own.
80 *
81 * Also tulip has a lot of complexity in it for various parts/options
82 * that we don't need, and on these little boxes with only ~8MB RAM, we
83 * don't want any extra bloat.
84 */
85
86 /*
87 * TODO:
88 *
89 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
90 * inbound packets on a half-word boundary, which would make life easier
91 * for TCP/IP. (Aligning IP headers on a word.)
92 *
93 * 2) There is stuff in original tulip to shut down the device when reacting
94 * to a a change in link status. Is that needed.
95 *
96 * 3) Test with variety of 10/100 HDX/FDX scenarios.
97 *
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.20 2011/07/01 18:40:00 dyoung Exp $");
102
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/mbuf.h>
108 #include <sys/malloc.h>
109 #include <sys/kernel.h>
110 #include <sys/socket.h>
111 #include <sys/ioctl.h>
112 #include <sys/errno.h>
113 #include <sys/device.h>
114
115 #include <machine/endian.h>
116
117 #include <uvm/uvm_extern.h>
118
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123
124 #include <net/bpf.h>
125
126 #include <sys/bus.h>
127 #include <machine/intr.h>
128
129 #include <dev/mii/mii.h>
130 #include <dev/mii/miivar.h>
131 #include <dev/mii/mii_bitbang.h>
132
133 #include <mips/atheros/include/arbusvar.h>
134 #include <mips/atheros/dev/aereg.h>
135 #include <mips/atheros/dev/aevar.h>
136
137 static const struct {
138 u_int32_t txth_opmode; /* OPMODE bits */
139 const char *txth_name; /* name of mode */
140 } ae_txthresh[] = {
141 { OPMODE_TR_32, "32 words" },
142 { OPMODE_TR_64, "64 words" },
143 { OPMODE_TR_128, "128 words" },
144 { OPMODE_TR_256, "256 words" },
145 { OPMODE_SF, "store and forward mode" },
146 { 0, NULL },
147 };
148
149 static int ae_match(device_t, struct cfdata *, void *);
150 static void ae_attach(device_t, device_t, void *);
151 static int ae_detach(device_t, int);
152 static int ae_activate(device_t, enum devact);
153
154 static int ae_ifflags_cb(struct ethercom *);
155 static void ae_reset(struct ae_softc *);
156 static void ae_idle(struct ae_softc *, u_int32_t);
157
158 static void ae_start(struct ifnet *);
159 static void ae_watchdog(struct ifnet *);
160 static int ae_ioctl(struct ifnet *, u_long, void *);
161 static int ae_init(struct ifnet *);
162 static void ae_stop(struct ifnet *, int);
163
164 static void ae_shutdown(void *);
165
166 static void ae_rxdrain(struct ae_softc *);
167 static int ae_add_rxbuf(struct ae_softc *, int);
168
169 static int ae_enable(struct ae_softc *);
170 static void ae_disable(struct ae_softc *);
171 static void ae_power(int, void *);
172
173 static void ae_filter_setup(struct ae_softc *);
174
175 static int ae_intr(void *);
176 static void ae_rxintr(struct ae_softc *);
177 static void ae_txintr(struct ae_softc *);
178
179 static void ae_mii_tick(void *);
180 static void ae_mii_statchg(device_t);
181
182 static int ae_mii_readreg(device_t, int, int);
183 static void ae_mii_writereg(device_t, int, int, int);
184
185 #ifdef AE_DEBUG
186 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
187 printf x
188 #else
189 #define DPRINTF(sc, x) /* nothing */
190 #endif
191
192 #ifdef AE_STATS
193 static void ae_print_stats(struct ae_softc *);
194 #endif
195
196 CFATTACH_DECL(ae, sizeof(struct ae_softc),
197 ae_match, ae_attach, ae_detach, ae_activate);
198
199 /*
200 * ae_match:
201 *
202 * Check for a device match.
203 */
204 int
205 ae_match(device_t parent, struct cfdata *cf, void *aux)
206 {
207 struct arbus_attach_args *aa = aux;
208
209 if (strcmp(aa->aa_name, cf->cf_name) == 0)
210 return 1;
211
212 return 0;
213
214 }
215
216 /*
217 * ae_attach:
218 *
219 * Attach an ae interface to the system.
220 */
221 void
222 ae_attach(device_t parent, device_t self, void *aux)
223 {
224 const uint8_t *enaddr;
225 prop_data_t ea;
226 struct ae_softc *sc = device_private(self);
227 struct arbus_attach_args *aa = aux;
228 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
229 int i, error;
230
231 callout_init(&sc->sc_tick_callout, 0);
232
233 printf(": Atheros AR531X 10/100 Ethernet\n");
234
235 /*
236 * Try to get MAC address.
237 */
238 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-address");
239 if (ea == NULL) {
240 printf("%s: unable to get mac-addr property\n",
241 sc->sc_dev.dv_xname);
242 return;
243 }
244 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
245 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
246 enaddr = prop_data_data_nocopy(ea);
247
248 /* Announce ourselves. */
249 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
250 ether_sprintf(enaddr));
251
252 sc->sc_cirq = aa->aa_cirq;
253 sc->sc_mirq = aa->aa_mirq;
254 sc->sc_st = aa->aa_bst;
255 sc->sc_dmat = aa->aa_dmat;
256
257 SIMPLEQ_INIT(&sc->sc_txfreeq);
258 SIMPLEQ_INIT(&sc->sc_txdirtyq);
259
260 /*
261 * Map registers.
262 */
263 sc->sc_size = aa->aa_size;
264 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
265 &sc->sc_sh)) != 0) {
266 printf("%s: unable to map registers, error = %d\n",
267 sc->sc_dev.dv_xname, error);
268 goto fail_0;
269 }
270
271 /*
272 * Allocate the control data structures, and create and load the
273 * DMA map for it.
274 */
275 if ((error = bus_dmamem_alloc(sc->sc_dmat,
276 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
277 1, &sc->sc_cdnseg, 0)) != 0) {
278 printf("%s: unable to allocate control data, error = %d\n",
279 sc->sc_dev.dv_xname, error);
280 goto fail_1;
281 }
282
283 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
284 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
285 BUS_DMA_COHERENT)) != 0) {
286 printf("%s: unable to map control data, error = %d\n",
287 sc->sc_dev.dv_xname, error);
288 goto fail_2;
289 }
290
291 if ((error = bus_dmamap_create(sc->sc_dmat,
292 sizeof(struct ae_control_data), 1,
293 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
294 printf("%s: unable to create control data DMA map, "
295 "error = %d\n", sc->sc_dev.dv_xname, error);
296 goto fail_3;
297 }
298
299 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
300 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
301 0)) != 0) {
302 printf("%s: unable to load control data DMA map, error = %d\n",
303 sc->sc_dev.dv_xname, error);
304 goto fail_4;
305 }
306
307 /*
308 * Create the transmit buffer DMA maps.
309 */
310 for (i = 0; i < AE_TXQUEUELEN; i++) {
311 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
312 AE_NTXSEGS, MCLBYTES, 0, 0,
313 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
314 printf("%s: unable to create tx DMA map %d, "
315 "error = %d\n", sc->sc_dev.dv_xname, i, error);
316 goto fail_5;
317 }
318 }
319
320 /*
321 * Create the receive buffer DMA maps.
322 */
323 for (i = 0; i < AE_NRXDESC; i++) {
324 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
325 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
326 printf("%s: unable to create rx DMA map %d, "
327 "error = %d\n", sc->sc_dev.dv_xname, i, error);
328 goto fail_6;
329 }
330 sc->sc_rxsoft[i].rxs_mbuf = NULL;
331 }
332
333 /*
334 * Reset the chip to a known state.
335 */
336 ae_reset(sc);
337
338 /*
339 * From this point forward, the attachment cannot fail. A failure
340 * before this point releases all resources that may have been
341 * allocated.
342 */
343 sc->sc_flags |= AE_ATTACHED;
344
345 /*
346 * Initialize our media structures. This may probe the MII, if
347 * present.
348 */
349 sc->sc_mii.mii_ifp = ifp;
350 sc->sc_mii.mii_readreg = ae_mii_readreg;
351 sc->sc_mii.mii_writereg = ae_mii_writereg;
352 sc->sc_mii.mii_statchg = ae_mii_statchg;
353 sc->sc_ethercom.ec_mii = &sc->sc_mii;
354 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
355 ether_mediastatus);
356 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
357 MII_OFFSET_ANY, 0);
358
359 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
360 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
361 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
362 } else
363 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
364
365 sc->sc_tick = ae_mii_tick;
366
367 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
368 ifp->if_softc = sc;
369 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
370 sc->sc_if_flags = ifp->if_flags;
371 ifp->if_ioctl = ae_ioctl;
372 ifp->if_start = ae_start;
373 ifp->if_watchdog = ae_watchdog;
374 ifp->if_init = ae_init;
375 ifp->if_stop = ae_stop;
376 IFQ_SET_READY(&ifp->if_snd);
377
378 /*
379 * We can support 802.1Q VLAN-sized frames.
380 */
381 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
382
383 /*
384 * Attach the interface.
385 */
386 if_attach(ifp);
387 ether_ifattach(ifp, enaddr);
388 ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
389
390 #if NRND > 0
391 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
392 RND_TYPE_NET, 0);
393 #endif
394
395 /*
396 * Make sure the interface is shutdown during reboot.
397 */
398 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
399 if (sc->sc_sdhook == NULL)
400 printf("%s: WARNING: unable to establish shutdown hook\n",
401 sc->sc_dev.dv_xname);
402
403 /*
404 * Add a suspend hook to make sure we come back up after a
405 * resume.
406 */
407 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
408 ae_power, sc);
409 if (sc->sc_powerhook == NULL)
410 printf("%s: WARNING: unable to establish power hook\n",
411 sc->sc_dev.dv_xname);
412 return;
413
414 /*
415 * Free any resources we've allocated during the failed attach
416 * attempt. Do this in reverse order and fall through.
417 */
418 fail_6:
419 for (i = 0; i < AE_NRXDESC; i++) {
420 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
421 bus_dmamap_destroy(sc->sc_dmat,
422 sc->sc_rxsoft[i].rxs_dmamap);
423 }
424 fail_5:
425 for (i = 0; i < AE_TXQUEUELEN; i++) {
426 if (sc->sc_txsoft[i].txs_dmamap != NULL)
427 bus_dmamap_destroy(sc->sc_dmat,
428 sc->sc_txsoft[i].txs_dmamap);
429 }
430 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
431 fail_4:
432 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
433 fail_3:
434 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
435 sizeof(struct ae_control_data));
436 fail_2:
437 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
438 fail_1:
439 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
440 fail_0:
441 return;
442 }
443
444 /*
445 * ae_activate:
446 *
447 * Handle device activation/deactivation requests.
448 */
449 int
450 ae_activate(device_t self, enum devact act)
451 {
452 struct ae_softc *sc = device_private(self);
453
454 switch (act) {
455 case DVACT_DEACTIVATE:
456 if_deactivate(&sc->sc_ethercom.ec_if);
457 return 0;
458 default:
459 return EOPNOTSUPP;
460 }
461 }
462
463 /*
464 * ae_detach:
465 *
466 * Detach a device interface.
467 */
468 int
469 ae_detach(device_t self, int flags)
470 {
471 struct ae_softc *sc = device_private(self);
472 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
473 struct ae_rxsoft *rxs;
474 struct ae_txsoft *txs;
475 int i;
476
477 /*
478 * Succeed now if there isn't any work to do.
479 */
480 if ((sc->sc_flags & AE_ATTACHED) == 0)
481 return (0);
482
483 /* Unhook our tick handler. */
484 if (sc->sc_tick)
485 callout_stop(&sc->sc_tick_callout);
486
487 /* Detach all PHYs */
488 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
489
490 /* Delete all remaining media. */
491 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
492
493 #if NRND > 0
494 rnd_detach_source(&sc->sc_rnd_source);
495 #endif
496 ether_ifdetach(ifp);
497 if_detach(ifp);
498
499 for (i = 0; i < AE_NRXDESC; i++) {
500 rxs = &sc->sc_rxsoft[i];
501 if (rxs->rxs_mbuf != NULL) {
502 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
503 m_freem(rxs->rxs_mbuf);
504 rxs->rxs_mbuf = NULL;
505 }
506 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
507 }
508 for (i = 0; i < AE_TXQUEUELEN; i++) {
509 txs = &sc->sc_txsoft[i];
510 if (txs->txs_mbuf != NULL) {
511 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
512 m_freem(txs->txs_mbuf);
513 txs->txs_mbuf = NULL;
514 }
515 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
516 }
517 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
518 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
519 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
520 sizeof(struct ae_control_data));
521 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
522
523 shutdownhook_disestablish(sc->sc_sdhook);
524 powerhook_disestablish(sc->sc_powerhook);
525
526 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
527
528
529 return (0);
530 }
531
532 /*
533 * ae_shutdown:
534 *
535 * Make sure the interface is stopped at reboot time.
536 */
537 static void
538 ae_shutdown(void *arg)
539 {
540 struct ae_softc *sc = arg;
541
542 ae_stop(&sc->sc_ethercom.ec_if, 1);
543 }
544
545 /*
546 * ae_start: [ifnet interface function]
547 *
548 * Start packet transmission on the interface.
549 */
550 static void
551 ae_start(struct ifnet *ifp)
552 {
553 struct ae_softc *sc = ifp->if_softc;
554 struct mbuf *m0, *m;
555 struct ae_txsoft *txs, *last_txs = NULL;
556 bus_dmamap_t dmamap;
557 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
558
559 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
560 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
561
562
563 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
564 return;
565
566 /*
567 * Remember the previous number of free descriptors and
568 * the first descriptor we'll use.
569 */
570 ofree = sc->sc_txfree;
571 firsttx = sc->sc_txnext;
572
573 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
574 sc->sc_dev.dv_xname, ofree, firsttx));
575
576 /*
577 * Loop through the send queue, setting up transmit descriptors
578 * until we drain the queue, or use up all available transmit
579 * descriptors.
580 */
581 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
582 sc->sc_txfree != 0) {
583 /*
584 * Grab a packet off the queue.
585 */
586 IFQ_POLL(&ifp->if_snd, m0);
587 if (m0 == NULL)
588 break;
589 m = NULL;
590
591 dmamap = txs->txs_dmamap;
592
593 /*
594 * Load the DMA map. If this fails, the packet either
595 * didn't fit in the alloted number of segments, or we were
596 * short on resources. In this case, we'll copy and try
597 * again.
598 */
599 if (((mtod(m0, uintptr_t) & 3) != 0) ||
600 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
601 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
602 MGETHDR(m, M_DONTWAIT, MT_DATA);
603 if (m == NULL) {
604 printf("%s: unable to allocate Tx mbuf\n",
605 sc->sc_dev.dv_xname);
606 break;
607 }
608 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
609 if (m0->m_pkthdr.len > MHLEN) {
610 MCLGET(m, M_DONTWAIT);
611 if ((m->m_flags & M_EXT) == 0) {
612 printf("%s: unable to allocate Tx "
613 "cluster\n", sc->sc_dev.dv_xname);
614 m_freem(m);
615 break;
616 }
617 }
618 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
619 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
620 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
621 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
622 if (error) {
623 printf("%s: unable to load Tx buffer, "
624 "error = %d\n", sc->sc_dev.dv_xname,
625 error);
626 break;
627 }
628 }
629
630 /*
631 * Ensure we have enough descriptors free to describe
632 * the packet.
633 */
634 if (dmamap->dm_nsegs > sc->sc_txfree) {
635 /*
636 * Not enough free descriptors to transmit this
637 * packet. We haven't committed to anything yet,
638 * so just unload the DMA map, put the packet
639 * back on the queue, and punt. Notify the upper
640 * layer that there are no more slots left.
641 *
642 * XXX We could allocate an mbuf and copy, but
643 * XXX it is worth it?
644 */
645 ifp->if_flags |= IFF_OACTIVE;
646 bus_dmamap_unload(sc->sc_dmat, dmamap);
647 if (m != NULL)
648 m_freem(m);
649 break;
650 }
651
652 IFQ_DEQUEUE(&ifp->if_snd, m0);
653 if (m != NULL) {
654 m_freem(m0);
655 m0 = m;
656 }
657
658 /*
659 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
660 */
661
662 /* Sync the DMA map. */
663 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
664 BUS_DMASYNC_PREWRITE);
665
666 /*
667 * Initialize the transmit descriptors.
668 */
669 for (nexttx = sc->sc_txnext, seg = 0;
670 seg < dmamap->dm_nsegs;
671 seg++, nexttx = AE_NEXTTX(nexttx)) {
672 /*
673 * If this is the first descriptor we're
674 * enqueueing, don't set the OWN bit just
675 * yet. That could cause a race condition.
676 * We'll do it below.
677 */
678 sc->sc_txdescs[nexttx].ad_status =
679 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
680 sc->sc_txdescs[nexttx].ad_bufaddr1 =
681 dmamap->dm_segs[seg].ds_addr;
682 sc->sc_txdescs[nexttx].ad_ctl =
683 (dmamap->dm_segs[seg].ds_len <<
684 ADCTL_SIZE1_SHIFT) |
685 (nexttx == (AE_NTXDESC - 1) ?
686 ADCTL_ER : 0);
687 lasttx = nexttx;
688 }
689
690 KASSERT(lasttx != -1);
691
692 /* Set `first segment' and `last segment' appropriately. */
693 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
694 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
695
696 #ifdef AE_DEBUG
697 if (ifp->if_flags & IFF_DEBUG) {
698 printf(" txsoft %p transmit chain:\n", txs);
699 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
700 printf(" descriptor %d:\n", seg);
701 printf(" ad_status: 0x%08x\n",
702 sc->sc_txdescs[seg].ad_status);
703 printf(" ad_ctl: 0x%08x\n",
704 sc->sc_txdescs[seg].ad_ctl);
705 printf(" ad_bufaddr1: 0x%08x\n",
706 sc->sc_txdescs[seg].ad_bufaddr1);
707 printf(" ad_bufaddr2: 0x%08x\n",
708 sc->sc_txdescs[seg].ad_bufaddr2);
709 if (seg == lasttx)
710 break;
711 }
712 }
713 #endif
714
715 /* Sync the descriptors we're using. */
716 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
717 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
718
719 /*
720 * Store a pointer to the packet so we can free it later,
721 * and remember what txdirty will be once the packet is
722 * done.
723 */
724 txs->txs_mbuf = m0;
725 txs->txs_firstdesc = sc->sc_txnext;
726 txs->txs_lastdesc = lasttx;
727 txs->txs_ndescs = dmamap->dm_nsegs;
728
729 /* Advance the tx pointer. */
730 sc->sc_txfree -= dmamap->dm_nsegs;
731 sc->sc_txnext = nexttx;
732
733 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
734 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
735
736 last_txs = txs;
737
738 /*
739 * Pass the packet to any BPF listeners.
740 */
741 bpf_mtap(ifp, m0);
742 }
743
744 if (txs == NULL || sc->sc_txfree == 0) {
745 /* No more slots left; notify upper layer. */
746 ifp->if_flags |= IFF_OACTIVE;
747 }
748
749 if (sc->sc_txfree != ofree) {
750 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
751 sc->sc_dev.dv_xname, lasttx, firsttx));
752 /*
753 * Cause a transmit interrupt to happen on the
754 * last packet we enqueued.
755 */
756 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
757 AE_CDTXSYNC(sc, lasttx, 1,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759
760 /*
761 * The entire packet chain is set up. Give the
762 * first descriptor to the chip now.
763 */
764 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
765 AE_CDTXSYNC(sc, firsttx, 1,
766 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
767
768 /* Wake up the transmitter. */
769 /* XXX USE AUTOPOLLING? */
770 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
771 AE_BARRIER(sc);
772
773 /* Set a watchdog timer in case the chip flakes out. */
774 ifp->if_timer = 5;
775 }
776 }
777
778 /*
779 * ae_watchdog: [ifnet interface function]
780 *
781 * Watchdog timer handler.
782 */
783 static void
784 ae_watchdog(struct ifnet *ifp)
785 {
786 struct ae_softc *sc = ifp->if_softc;
787 int doing_transmit;
788
789 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
790
791 if (doing_transmit) {
792 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
793 ifp->if_oerrors++;
794 }
795 else
796 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
797
798 (void) ae_init(ifp);
799
800 /* Try to get more packets going. */
801 ae_start(ifp);
802 }
803
804 /* If the interface is up and running, only modify the receive
805 * filter when changing to/from promiscuous mode. Otherwise return
806 * ENETRESET so that ether_ioctl will reset the chip.
807 */
808 static int
809 ae_ifflags_cb(struct ethercom *ec)
810 {
811 struct ifnet *ifp = &ec->ec_if;
812 struct ae_softc *sc = ifp->if_softc;
813 int change = ifp->if_flags ^ sc->sc_if_flags;
814
815 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
816 return ENETRESET;
817 else if ((change & IFF_PROMISC) != 0)
818 ae_filter_setup(sc);
819 return 0;
820 }
821
822 /*
823 * ae_ioctl: [ifnet interface function]
824 *
825 * Handle control requests from the operator.
826 */
827 static int
828 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
829 {
830 struct ae_softc *sc = ifp->if_softc;
831 int s, error;
832
833 s = splnet();
834
835 error = ether_ioctl(ifp, cmd, data);
836 if (error == ENETRESET) {
837 if (ifp->if_flags & IFF_RUNNING) {
838 /*
839 * Multicast list has changed. Set the
840 * hardware filter accordingly.
841 */
842 ae_filter_setup(sc);
843 }
844 error = 0;
845 }
846
847 /* Try to get more packets going. */
848 if (AE_IS_ENABLED(sc))
849 ae_start(ifp);
850
851 sc->sc_if_flags = ifp->if_flags;
852 splx(s);
853 return (error);
854 }
855
856 /*
857 * ae_intr:
858 *
859 * Interrupt service routine.
860 */
861 int
862 ae_intr(void *arg)
863 {
864 struct ae_softc *sc = arg;
865 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
866 u_int32_t status, rxstatus, txstatus;
867 int handled = 0, txthresh;
868
869 DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
870
871 #ifdef DEBUG
872 if (AE_IS_ENABLED(sc) == 0)
873 panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
874 #endif
875
876 /*
877 * If the interface isn't running, the interrupt couldn't
878 * possibly have come from us.
879 */
880 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
881 !device_is_active(&sc->sc_dev)) {
882 printf("spurious?!?\n");
883 return (0);
884 }
885
886 for (;;) {
887 status = AE_READ(sc, CSR_STATUS);
888 if (status) {
889 AE_WRITE(sc, CSR_STATUS, status);
890 AE_BARRIER(sc);
891 }
892
893 if ((status & sc->sc_inten) == 0)
894 break;
895
896 handled = 1;
897
898 rxstatus = status & sc->sc_rxint_mask;
899 txstatus = status & sc->sc_txint_mask;
900
901 if (rxstatus) {
902 /* Grab new any new packets. */
903 ae_rxintr(sc);
904
905 if (rxstatus & STATUS_RU) {
906 printf("%s: receive ring overrun\n",
907 sc->sc_dev.dv_xname);
908 /* Get the receive process going again. */
909 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
910 AE_BARRIER(sc);
911 break;
912 }
913 }
914
915 if (txstatus) {
916 /* Sweep up transmit descriptors. */
917 ae_txintr(sc);
918
919 if (txstatus & STATUS_TJT)
920 printf("%s: transmit jabber timeout\n",
921 sc->sc_dev.dv_xname);
922
923 if (txstatus & STATUS_UNF) {
924 /*
925 * Increase our transmit threshold if
926 * another is available.
927 */
928 txthresh = sc->sc_txthresh + 1;
929 if (ae_txthresh[txthresh].txth_name != NULL) {
930 uint32_t opmode;
931 /* Idle the transmit process. */
932 opmode = AE_READ(sc, CSR_OPMODE);
933 ae_idle(sc, OPMODE_ST);
934
935 sc->sc_txthresh = txthresh;
936 opmode &=
937 ~(OPMODE_TR|OPMODE_SF);
938 opmode |=
939 ae_txthresh[txthresh].txth_opmode;
940 printf("%s: transmit underrun; new "
941 "threshold: %s\n",
942 sc->sc_dev.dv_xname,
943 ae_txthresh[txthresh].txth_name);
944
945 /*
946 * Set the new threshold and restart
947 * the transmit process.
948 */
949 AE_WRITE(sc, CSR_OPMODE, opmode);
950 AE_BARRIER(sc);
951 }
952 /*
953 * XXX Log every Nth underrun from
954 * XXX now on?
955 */
956 }
957 }
958
959 if (status & (STATUS_TPS|STATUS_RPS)) {
960 if (status & STATUS_TPS)
961 printf("%s: transmit process stopped\n",
962 sc->sc_dev.dv_xname);
963 if (status & STATUS_RPS)
964 printf("%s: receive process stopped\n",
965 sc->sc_dev.dv_xname);
966 (void) ae_init(ifp);
967 break;
968 }
969
970 if (status & STATUS_SE) {
971 const char *str;
972
973 if (status & STATUS_TX_ABORT)
974 str = "tx abort";
975 else if (status & STATUS_RX_ABORT)
976 str = "rx abort";
977 else
978 str = "unknown error";
979
980 printf("%s: fatal system error: %s\n",
981 sc->sc_dev.dv_xname, str);
982 (void) ae_init(ifp);
983 break;
984 }
985
986 /*
987 * Not handled:
988 *
989 * Transmit buffer unavailable -- normal
990 * condition, nothing to do, really.
991 *
992 * General purpose timer experied -- we don't
993 * use the general purpose timer.
994 *
995 * Early receive interrupt -- not available on
996 * all chips, we just use RI. We also only
997 * use single-segment receive DMA, so this
998 * is mostly useless.
999 */
1000 }
1001
1002 /* Try to get more packets going. */
1003 ae_start(ifp);
1004
1005 #if NRND > 0
1006 if (handled)
1007 rnd_add_uint32(&sc->sc_rnd_source, status);
1008 #endif
1009 return (handled);
1010 }
1011
1012 /*
1013 * ae_rxintr:
1014 *
1015 * Helper; handle receive interrupts.
1016 */
1017 static void
1018 ae_rxintr(struct ae_softc *sc)
1019 {
1020 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1021 struct ether_header *eh;
1022 struct ae_rxsoft *rxs;
1023 struct mbuf *m;
1024 u_int32_t rxstat;
1025 int i, len;
1026
1027 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1028 rxs = &sc->sc_rxsoft[i];
1029
1030 AE_CDRXSYNC(sc, i,
1031 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1032
1033 rxstat = sc->sc_rxdescs[i].ad_status;
1034
1035 if (rxstat & ADSTAT_OWN) {
1036 /*
1037 * We have processed all of the receive buffers.
1038 */
1039 break;
1040 }
1041
1042 /*
1043 * If any collisions were seen on the wire, count one.
1044 */
1045 if (rxstat & ADSTAT_Rx_CS)
1046 ifp->if_collisions++;
1047
1048 /*
1049 * If an error occurred, update stats, clear the status
1050 * word, and leave the packet buffer in place. It will
1051 * simply be reused the next time the ring comes around.
1052 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1053 * error.
1054 */
1055 if (rxstat & ADSTAT_ES &&
1056 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1057 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1058 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1059 #define PRINTERR(bit, str) \
1060 if (rxstat & (bit)) \
1061 printf("%s: receive error: %s\n", \
1062 sc->sc_dev.dv_xname, str)
1063 ifp->if_ierrors++;
1064 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1065 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1066 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1067 PRINTERR(ADSTAT_Rx_RE, "MII error");
1068 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1069 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1070 #undef PRINTERR
1071 AE_INIT_RXDESC(sc, i);
1072 continue;
1073 }
1074
1075 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1076 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1077
1078 /*
1079 * No errors; receive the packet. Note the chip
1080 * includes the CRC with every packet.
1081 */
1082 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1083
1084 /*
1085 * XXX: the Atheros part can align on half words. what
1086 * is the performance implication of this? Probably
1087 * minimal, and we should use it...
1088 */
1089 #ifdef __NO_STRICT_ALIGNMENT
1090 /*
1091 * Allocate a new mbuf cluster. If that fails, we are
1092 * out of memory, and must drop the packet and recycle
1093 * the buffer that's already attached to this descriptor.
1094 */
1095 m = rxs->rxs_mbuf;
1096 if (ae_add_rxbuf(sc, i) != 0) {
1097 ifp->if_ierrors++;
1098 AE_INIT_RXDESC(sc, i);
1099 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1100 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1101 continue;
1102 }
1103 #else
1104 /*
1105 * The chip's receive buffers must be 4-byte aligned.
1106 * But this means that the data after the Ethernet header
1107 * is misaligned. We must allocate a new buffer and
1108 * copy the data, shifted forward 2 bytes.
1109 */
1110 MGETHDR(m, M_DONTWAIT, MT_DATA);
1111 if (m == NULL) {
1112 dropit:
1113 ifp->if_ierrors++;
1114 AE_INIT_RXDESC(sc, i);
1115 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1116 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1117 continue;
1118 }
1119 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1120 if (len > (MHLEN - 2)) {
1121 MCLGET(m, M_DONTWAIT);
1122 if ((m->m_flags & M_EXT) == 0) {
1123 m_freem(m);
1124 goto dropit;
1125 }
1126 }
1127 m->m_data += 2;
1128
1129 /*
1130 * Note that we use clusters for incoming frames, so the
1131 * buffer is virtually contiguous.
1132 */
1133 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1134
1135 /* Allow the receive descriptor to continue using its mbuf. */
1136 AE_INIT_RXDESC(sc, i);
1137 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1138 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1139 #endif /* __NO_STRICT_ALIGNMENT */
1140
1141 ifp->if_ipackets++;
1142 eh = mtod(m, struct ether_header *);
1143 m->m_pkthdr.rcvif = ifp;
1144 m->m_pkthdr.len = m->m_len = len;
1145
1146 /*
1147 * Pass this up to any BPF listeners, but only
1148 * pass it up the stack if its for us.
1149 */
1150 bpf_mtap(ifp, m);
1151
1152 /* Pass it on. */
1153 (*ifp->if_input)(ifp, m);
1154 }
1155
1156 /* Update the receive pointer. */
1157 sc->sc_rxptr = i;
1158 }
1159
1160 /*
1161 * ae_txintr:
1162 *
1163 * Helper; handle transmit interrupts.
1164 */
1165 static void
1166 ae_txintr(struct ae_softc *sc)
1167 {
1168 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1169 struct ae_txsoft *txs;
1170 u_int32_t txstat;
1171
1172 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1173 sc->sc_dev.dv_xname, sc->sc_flags));
1174
1175 ifp->if_flags &= ~IFF_OACTIVE;
1176
1177 /*
1178 * Go through our Tx list and free mbufs for those
1179 * frames that have been transmitted.
1180 */
1181 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1182 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1183 txs->txs_ndescs,
1184 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1185
1186 #ifdef AE_DEBUG
1187 if (ifp->if_flags & IFF_DEBUG) {
1188 int i;
1189 printf(" txsoft %p transmit chain:\n", txs);
1190 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1191 printf(" descriptor %d:\n", i);
1192 printf(" ad_status: 0x%08x\n",
1193 sc->sc_txdescs[i].ad_status);
1194 printf(" ad_ctl: 0x%08x\n",
1195 sc->sc_txdescs[i].ad_ctl);
1196 printf(" ad_bufaddr1: 0x%08x\n",
1197 sc->sc_txdescs[i].ad_bufaddr1);
1198 printf(" ad_bufaddr2: 0x%08x\n",
1199 sc->sc_txdescs[i].ad_bufaddr2);
1200 if (i == txs->txs_lastdesc)
1201 break;
1202 }
1203 }
1204 #endif
1205
1206 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1207 if (txstat & ADSTAT_OWN)
1208 break;
1209
1210 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1211
1212 sc->sc_txfree += txs->txs_ndescs;
1213
1214 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1215 0, txs->txs_dmamap->dm_mapsize,
1216 BUS_DMASYNC_POSTWRITE);
1217 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1218 m_freem(txs->txs_mbuf);
1219 txs->txs_mbuf = NULL;
1220
1221 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1222
1223 /*
1224 * Check for errors and collisions.
1225 */
1226 #ifdef AE_STATS
1227 if (txstat & ADSTAT_Tx_UF)
1228 sc->sc_stats.ts_tx_uf++;
1229 if (txstat & ADSTAT_Tx_TO)
1230 sc->sc_stats.ts_tx_to++;
1231 if (txstat & ADSTAT_Tx_EC)
1232 sc->sc_stats.ts_tx_ec++;
1233 if (txstat & ADSTAT_Tx_LC)
1234 sc->sc_stats.ts_tx_lc++;
1235 #endif
1236
1237 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1238 ifp->if_oerrors++;
1239
1240 if (txstat & ADSTAT_Tx_EC)
1241 ifp->if_collisions += 16;
1242 else
1243 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1244 if (txstat & ADSTAT_Tx_LC)
1245 ifp->if_collisions++;
1246
1247 ifp->if_opackets++;
1248 }
1249
1250 /*
1251 * If there are no more pending transmissions, cancel the watchdog
1252 * timer.
1253 */
1254 if (txs == NULL)
1255 ifp->if_timer = 0;
1256 }
1257
1258 #ifdef AE_STATS
1259 void
1260 ae_print_stats(struct ae_softc *sc)
1261 {
1262
1263 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1264 sc->sc_dev.dv_xname,
1265 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1266 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1267 }
1268 #endif
1269
1270 /*
1271 * ae_reset:
1272 *
1273 * Perform a soft reset on the chip.
1274 */
1275 void
1276 ae_reset(struct ae_softc *sc)
1277 {
1278 int i;
1279
1280 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1281 AE_BARRIER(sc);
1282
1283 /*
1284 * The chip doesn't take itself out of reset automatically.
1285 * We need to do so after 2us.
1286 */
1287 delay(10);
1288 AE_WRITE(sc, CSR_BUSMODE, 0);
1289 AE_BARRIER(sc);
1290
1291 for (i = 0; i < 1000; i++) {
1292 /*
1293 * Wait a bit for the reset to complete before peeking
1294 * at the chip again.
1295 */
1296 delay(10);
1297 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1298 break;
1299 }
1300
1301 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1302 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1303
1304 delay(1000);
1305 }
1306
1307 /*
1308 * ae_init: [ ifnet interface function ]
1309 *
1310 * Initialize the interface. Must be called at splnet().
1311 */
1312 static int
1313 ae_init(struct ifnet *ifp)
1314 {
1315 struct ae_softc *sc = ifp->if_softc;
1316 struct ae_txsoft *txs;
1317 struct ae_rxsoft *rxs;
1318 const uint8_t *enaddr;
1319 int i, error = 0;
1320
1321 if ((error = ae_enable(sc)) != 0)
1322 goto out;
1323
1324 /*
1325 * Cancel any pending I/O.
1326 */
1327 ae_stop(ifp, 0);
1328
1329 /*
1330 * Reset the chip to a known state.
1331 */
1332 ae_reset(sc);
1333
1334 /*
1335 * Initialize the BUSMODE register.
1336 */
1337 AE_WRITE(sc, CSR_BUSMODE,
1338 /* XXX: not sure if this is a good thing or not... */
1339 //BUSMODE_ALIGN_16B |
1340 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1341 AE_BARRIER(sc);
1342
1343 /*
1344 * Initialize the transmit descriptor ring.
1345 */
1346 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1347 for (i = 0; i < AE_NTXDESC; i++) {
1348 sc->sc_txdescs[i].ad_ctl = 0;
1349 sc->sc_txdescs[i].ad_bufaddr2 =
1350 AE_CDTXADDR(sc, AE_NEXTTX(i));
1351 }
1352 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1353 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1354 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1355 sc->sc_txfree = AE_NTXDESC;
1356 sc->sc_txnext = 0;
1357
1358 /*
1359 * Initialize the transmit job descriptors.
1360 */
1361 SIMPLEQ_INIT(&sc->sc_txfreeq);
1362 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1363 for (i = 0; i < AE_TXQUEUELEN; i++) {
1364 txs = &sc->sc_txsoft[i];
1365 txs->txs_mbuf = NULL;
1366 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1367 }
1368
1369 /*
1370 * Initialize the receive descriptor and receive job
1371 * descriptor rings.
1372 */
1373 for (i = 0; i < AE_NRXDESC; i++) {
1374 rxs = &sc->sc_rxsoft[i];
1375 if (rxs->rxs_mbuf == NULL) {
1376 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1377 printf("%s: unable to allocate or map rx "
1378 "buffer %d, error = %d\n",
1379 sc->sc_dev.dv_xname, i, error);
1380 /*
1381 * XXX Should attempt to run with fewer receive
1382 * XXX buffers instead of just failing.
1383 */
1384 ae_rxdrain(sc);
1385 goto out;
1386 }
1387 } else
1388 AE_INIT_RXDESC(sc, i);
1389 }
1390 sc->sc_rxptr = 0;
1391
1392 /*
1393 * Initialize the interrupt mask and enable interrupts.
1394 */
1395 /* normal interrupts */
1396 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1397
1398 /* abnormal interrupts */
1399 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1400 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1401
1402 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1403 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1404
1405 sc->sc_rxint_mask &= sc->sc_inten;
1406 sc->sc_txint_mask &= sc->sc_inten;
1407
1408 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1409 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1410
1411 /*
1412 * Give the transmit and receive rings to the chip.
1413 */
1414 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1415 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1416 AE_BARRIER(sc);
1417
1418 /*
1419 * Set the station address.
1420 */
1421 enaddr = CLLADDR(ifp->if_sadl);
1422 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1423 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1424 enaddr[1] << 8 | enaddr[0]);
1425 AE_BARRIER(sc);
1426
1427 /*
1428 * Set the receive filter. This will start the transmit and
1429 * receive processes.
1430 */
1431 ae_filter_setup(sc);
1432
1433 /*
1434 * Set the current media.
1435 */
1436 if ((error = ether_mediachange(ifp)) != 0)
1437 goto out;
1438
1439 /*
1440 * Start the mac.
1441 */
1442 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1443 AE_BARRIER(sc);
1444
1445 /*
1446 * Write out the opmode.
1447 */
1448 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1449 ae_txthresh[sc->sc_txthresh].txth_opmode);
1450 /*
1451 * Start the receive process.
1452 */
1453 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1454 AE_BARRIER(sc);
1455
1456 if (sc->sc_tick != NULL) {
1457 /* Start the one second clock. */
1458 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1459 }
1460
1461 /*
1462 * Note that the interface is now running.
1463 */
1464 ifp->if_flags |= IFF_RUNNING;
1465 ifp->if_flags &= ~IFF_OACTIVE;
1466 sc->sc_if_flags = ifp->if_flags;
1467
1468 out:
1469 if (error) {
1470 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1471 ifp->if_timer = 0;
1472 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1473 }
1474 return (error);
1475 }
1476
1477 /*
1478 * ae_enable:
1479 *
1480 * Enable the chip.
1481 */
1482 static int
1483 ae_enable(struct ae_softc *sc)
1484 {
1485
1486 if (AE_IS_ENABLED(sc) == 0) {
1487 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1488 ae_intr, sc);
1489 if (sc->sc_ih == NULL) {
1490 printf("%s: unable to establish interrupt\n",
1491 sc->sc_dev.dv_xname);
1492 return (EIO);
1493 }
1494 sc->sc_flags |= AE_ENABLED;
1495 }
1496 return (0);
1497 }
1498
1499 /*
1500 * ae_disable:
1501 *
1502 * Disable the chip.
1503 */
1504 static void
1505 ae_disable(struct ae_softc *sc)
1506 {
1507
1508 if (AE_IS_ENABLED(sc)) {
1509 arbus_intr_disestablish(sc->sc_ih);
1510 sc->sc_flags &= ~AE_ENABLED;
1511 }
1512 }
1513
1514 /*
1515 * ae_power:
1516 *
1517 * Power management (suspend/resume) hook.
1518 */
1519 static void
1520 ae_power(int why, void *arg)
1521 {
1522 struct ae_softc *sc = arg;
1523 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1524 int s;
1525
1526 printf("power called: %d, %x\n", why, (uint32_t)arg);
1527 s = splnet();
1528 switch (why) {
1529 case PWR_STANDBY:
1530 /* do nothing! */
1531 break;
1532 case PWR_SUSPEND:
1533 ae_stop(ifp, 0);
1534 ae_disable(sc);
1535 break;
1536 case PWR_RESUME:
1537 if (ifp->if_flags & IFF_UP) {
1538 ae_enable(sc);
1539 ae_init(ifp);
1540 }
1541 break;
1542 case PWR_SOFTSUSPEND:
1543 case PWR_SOFTSTANDBY:
1544 case PWR_SOFTRESUME:
1545 break;
1546 }
1547 splx(s);
1548 }
1549
1550 /*
1551 * ae_rxdrain:
1552 *
1553 * Drain the receive queue.
1554 */
1555 static void
1556 ae_rxdrain(struct ae_softc *sc)
1557 {
1558 struct ae_rxsoft *rxs;
1559 int i;
1560
1561 for (i = 0; i < AE_NRXDESC; i++) {
1562 rxs = &sc->sc_rxsoft[i];
1563 if (rxs->rxs_mbuf != NULL) {
1564 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1565 m_freem(rxs->rxs_mbuf);
1566 rxs->rxs_mbuf = NULL;
1567 }
1568 }
1569 }
1570
1571 /*
1572 * ae_stop: [ ifnet interface function ]
1573 *
1574 * Stop transmission on the interface.
1575 */
1576 static void
1577 ae_stop(struct ifnet *ifp, int disable)
1578 {
1579 struct ae_softc *sc = ifp->if_softc;
1580 struct ae_txsoft *txs;
1581
1582 if (sc->sc_tick != NULL) {
1583 /* Stop the one second clock. */
1584 callout_stop(&sc->sc_tick_callout);
1585 }
1586
1587 /* Down the MII. */
1588 mii_down(&sc->sc_mii);
1589
1590 /* Disable interrupts. */
1591 AE_WRITE(sc, CSR_INTEN, 0);
1592
1593 /* Stop the transmit and receive processes. */
1594 AE_WRITE(sc, CSR_OPMODE, 0);
1595 AE_WRITE(sc, CSR_RXLIST, 0);
1596 AE_WRITE(sc, CSR_TXLIST, 0);
1597 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1598 AE_BARRIER(sc);
1599
1600 /*
1601 * Release any queued transmit buffers.
1602 */
1603 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1604 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1605 if (txs->txs_mbuf != NULL) {
1606 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1607 m_freem(txs->txs_mbuf);
1608 txs->txs_mbuf = NULL;
1609 }
1610 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1611 }
1612
1613 /*
1614 * Mark the interface down and cancel the watchdog timer.
1615 */
1616 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1617 sc->sc_if_flags = ifp->if_flags;
1618 ifp->if_timer = 0;
1619
1620 if (disable) {
1621 ae_rxdrain(sc);
1622 ae_disable(sc);
1623 }
1624
1625 /*
1626 * Reset the chip (needed on some flavors to actually disable it).
1627 */
1628 ae_reset(sc);
1629 }
1630
1631 /*
1632 * ae_add_rxbuf:
1633 *
1634 * Add a receive buffer to the indicated descriptor.
1635 */
1636 static int
1637 ae_add_rxbuf(struct ae_softc *sc, int idx)
1638 {
1639 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1640 struct mbuf *m;
1641 int error;
1642
1643 MGETHDR(m, M_DONTWAIT, MT_DATA);
1644 if (m == NULL)
1645 return (ENOBUFS);
1646
1647 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1648 MCLGET(m, M_DONTWAIT);
1649 if ((m->m_flags & M_EXT) == 0) {
1650 m_freem(m);
1651 return (ENOBUFS);
1652 }
1653
1654 if (rxs->rxs_mbuf != NULL)
1655 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1656
1657 rxs->rxs_mbuf = m;
1658
1659 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1660 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1661 BUS_DMA_READ|BUS_DMA_NOWAIT);
1662 if (error) {
1663 printf("%s: can't load rx DMA map %d, error = %d\n",
1664 sc->sc_dev.dv_xname, idx, error);
1665 panic("ae_add_rxbuf"); /* XXX */
1666 }
1667
1668 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1669 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1670
1671 AE_INIT_RXDESC(sc, idx);
1672
1673 return (0);
1674 }
1675
1676 /*
1677 * ae_filter_setup:
1678 *
1679 * Set the chip's receive filter.
1680 */
1681 static void
1682 ae_filter_setup(struct ae_softc *sc)
1683 {
1684 struct ethercom *ec = &sc->sc_ethercom;
1685 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1686 struct ether_multi *enm;
1687 struct ether_multistep step;
1688 uint32_t hash, mchash[2];
1689 uint32_t macctl = 0;
1690
1691 /*
1692 * If the chip is running, we need to reset the interface,
1693 * and will revisit here (with IFF_RUNNING) clear. The
1694 * chip seems to really not like to have its multicast
1695 * filter programmed without a reset.
1696 */
1697 if (ifp->if_flags & IFF_RUNNING) {
1698 (void) ae_init(ifp);
1699 return;
1700 }
1701
1702 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1703 sc->sc_dev.dv_xname, sc->sc_flags));
1704
1705 macctl = AE_READ(sc, CSR_MACCTL);
1706 macctl &= ~(MACCTL_PR | MACCTL_PM);
1707 macctl |= MACCTL_HASH;
1708 macctl |= MACCTL_HBD;
1709 macctl |= MACCTL_PR;
1710
1711 if (ifp->if_flags & IFF_PROMISC) {
1712 macctl |= MACCTL_PR;
1713 goto allmulti;
1714 }
1715
1716 mchash[0] = mchash[1] = 0;
1717
1718 ETHER_FIRST_MULTI(step, ec, enm);
1719 while (enm != NULL) {
1720 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1721 /*
1722 * We must listen to a range of multicast addresses.
1723 * For now, just accept all multicasts, rather than
1724 * trying to set only those filter bits needed to match
1725 * the range. (At this time, the only use of address
1726 * ranges is for IP multicast routing, for which the
1727 * range is big enough to require all bits set.)
1728 */
1729 goto allmulti;
1730 }
1731
1732 /* Verify whether we use big or little endian hashes */
1733 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1734 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1735 ETHER_NEXT_MULTI(step, enm);
1736 }
1737 ifp->if_flags &= ~IFF_ALLMULTI;
1738 goto setit;
1739
1740 allmulti:
1741 ifp->if_flags |= IFF_ALLMULTI;
1742 mchash[0] = mchash[1] = 0xffffffff;
1743 macctl |= MACCTL_PM;
1744
1745 setit:
1746 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1747 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1748
1749 AE_WRITE(sc, CSR_MACCTL, macctl);
1750 AE_BARRIER(sc);
1751
1752 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1753 sc->sc_dev.dv_xname, macctl));
1754 }
1755
1756 /*
1757 * ae_idle:
1758 *
1759 * Cause the transmit and/or receive processes to go idle.
1760 */
1761 void
1762 ae_idle(struct ae_softc *sc, u_int32_t bits)
1763 {
1764 static const char * const txstate_names[] = {
1765 "STOPPED",
1766 "RUNNING - FETCH",
1767 "RUNNING - WAIT",
1768 "RUNNING - READING",
1769 "-- RESERVED --",
1770 "RUNNING - SETUP",
1771 "SUSPENDED",
1772 "RUNNING - CLOSE",
1773 };
1774 static const char * const rxstate_names[] = {
1775 "STOPPED",
1776 "RUNNING - FETCH",
1777 "RUNNING - CHECK",
1778 "RUNNING - WAIT",
1779 "SUSPENDED",
1780 "RUNNING - CLOSE",
1781 "RUNNING - FLUSH",
1782 "RUNNING - QUEUE",
1783 };
1784
1785 u_int32_t csr, ackmask = 0;
1786 int i;
1787
1788 if (bits & OPMODE_ST)
1789 ackmask |= STATUS_TPS;
1790
1791 if (bits & OPMODE_SR)
1792 ackmask |= STATUS_RPS;
1793
1794 AE_CLR(sc, CSR_OPMODE, bits);
1795
1796 for (i = 0; i < 1000; i++) {
1797 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1798 break;
1799 delay(10);
1800 }
1801
1802 csr = AE_READ(sc, CSR_STATUS);
1803 if ((csr & ackmask) != ackmask) {
1804 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1805 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1806 printf("%s: transmit process failed to idle: "
1807 "state %s\n", sc->sc_dev.dv_xname,
1808 txstate_names[(csr & STATUS_TS) >> 20]);
1809 }
1810 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1811 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1812 printf("%s: receive process failed to idle: "
1813 "state %s\n", sc->sc_dev.dv_xname,
1814 rxstate_names[(csr & STATUS_RS) >> 17]);
1815 }
1816 }
1817 }
1818
1819 /*****************************************************************************
1820 * Support functions for MII-attached media.
1821 *****************************************************************************/
1822
1823 /*
1824 * ae_mii_tick:
1825 *
1826 * One second timer, used to tick the MII.
1827 */
1828 static void
1829 ae_mii_tick(void *arg)
1830 {
1831 struct ae_softc *sc = arg;
1832 int s;
1833
1834 if (!device_is_active(&sc->sc_dev))
1835 return;
1836
1837 s = splnet();
1838 mii_tick(&sc->sc_mii);
1839 splx(s);
1840
1841 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1842 }
1843
1844 /*
1845 * ae_mii_statchg: [mii interface function]
1846 *
1847 * Callback from PHY when media changes.
1848 */
1849 static void
1850 ae_mii_statchg(device_t self)
1851 {
1852 struct ae_softc *sc = device_private(self);
1853 uint32_t macctl, flowc;
1854
1855 //opmode = AE_READ(sc, CSR_OPMODE);
1856 macctl = AE_READ(sc, CSR_MACCTL);
1857
1858 /* XXX: do we need to do this? */
1859 /* Idle the transmit and receive processes. */
1860 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1861
1862 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1863 flowc = FLOWC_FCE;
1864 macctl &= ~MACCTL_DRO;
1865 macctl |= MACCTL_FDX;
1866 } else {
1867 flowc = 0; /* cannot do flow control in HDX */
1868 macctl |= MACCTL_DRO;
1869 macctl &= ~MACCTL_FDX;
1870 }
1871
1872 AE_WRITE(sc, CSR_FLOWC, flowc);
1873 AE_WRITE(sc, CSR_MACCTL, macctl);
1874
1875 /* restore operational mode */
1876 //AE_WRITE(sc, CSR_OPMODE, opmode);
1877 AE_BARRIER(sc);
1878 }
1879
1880 /*
1881 * ae_mii_readreg:
1882 *
1883 * Read a PHY register.
1884 */
1885 static int
1886 ae_mii_readreg(device_t self, int phy, int reg)
1887 {
1888 struct ae_softc *sc = device_private(self);
1889 uint32_t addr;
1890 int i;
1891
1892 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1893 AE_WRITE(sc, CSR_MIIADDR, addr);
1894 AE_BARRIER(sc);
1895 for (i = 0; i < 100000000; i++) {
1896 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1897 break;
1898 }
1899
1900 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1901 }
1902
1903 /*
1904 * ae_mii_writereg:
1905 *
1906 * Write a PHY register.
1907 */
1908 static void
1909 ae_mii_writereg(device_t self, int phy, int reg, int val)
1910 {
1911 struct ae_softc *sc = device_private(self);
1912 uint32_t addr;
1913 int i;
1914
1915 /* write the data register */
1916 AE_WRITE(sc, CSR_MIIDATA, val);
1917
1918 /* write the address to latch it in */
1919 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1920 MIIADDR_WRITE;
1921 AE_WRITE(sc, CSR_MIIADDR, addr);
1922 AE_BARRIER(sc);
1923
1924 for (i = 0; i < 100000000; i++) {
1925 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1926 break;
1927 }
1928 }
1929