if_ae.c revision 1.23.2.1 1 /* $Id: if_ae.c,v 1.23.2.1 2012/11/20 03:01:33 tls Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the onboard ethernet MAC found on the AR5312
74 * chip's AHB bus.
75 *
76 * This device is very simliar to the tulip in most regards, and
77 * the code is directly derived from NetBSD's tulip.c. However, it
78 * is different enough that it did not seem to be a good idea to
79 * add further complexity to the tulip driver, so we have our own.
80 *
81 * Also tulip has a lot of complexity in it for various parts/options
82 * that we don't need, and on these little boxes with only ~8MB RAM, we
83 * don't want any extra bloat.
84 */
85
86 /*
87 * TODO:
88 *
89 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
90 * inbound packets on a half-word boundary, which would make life easier
91 * for TCP/IP. (Aligning IP headers on a word.)
92 *
93 * 2) There is stuff in original tulip to shut down the device when reacting
94 * to a a change in link status. Is that needed.
95 *
96 * 3) Test with variety of 10/100 HDX/FDX scenarios.
97 *
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.23.2.1 2012/11/20 03:01:33 tls Exp $");
102
103
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116
117 #include <uvm/uvm_extern.h>
118
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123
124 #include <net/bpf.h>
125
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #include <dev/mii/mii_bitbang.h>
129
130 #include <mips/atheros/include/arbusvar.h>
131 #include <mips/atheros/dev/aereg.h>
132 #include <mips/atheros/dev/aevar.h>
133
134 static const struct {
135 u_int32_t txth_opmode; /* OPMODE bits */
136 const char *txth_name; /* name of mode */
137 } ae_txthresh[] = {
138 { OPMODE_TR_32, "32 words" },
139 { OPMODE_TR_64, "64 words" },
140 { OPMODE_TR_128, "128 words" },
141 { OPMODE_TR_256, "256 words" },
142 { OPMODE_SF, "store and forward mode" },
143 { 0, NULL },
144 };
145
146 static int ae_match(device_t, struct cfdata *, void *);
147 static void ae_attach(device_t, device_t, void *);
148 static int ae_detach(device_t, int);
149 static int ae_activate(device_t, enum devact);
150
151 static int ae_ifflags_cb(struct ethercom *);
152 static void ae_reset(struct ae_softc *);
153 static void ae_idle(struct ae_softc *, u_int32_t);
154
155 static void ae_start(struct ifnet *);
156 static void ae_watchdog(struct ifnet *);
157 static int ae_ioctl(struct ifnet *, u_long, void *);
158 static int ae_init(struct ifnet *);
159 static void ae_stop(struct ifnet *, int);
160
161 static void ae_shutdown(void *);
162
163 static void ae_rxdrain(struct ae_softc *);
164 static int ae_add_rxbuf(struct ae_softc *, int);
165
166 static int ae_enable(struct ae_softc *);
167 static void ae_disable(struct ae_softc *);
168 static void ae_power(int, void *);
169
170 static void ae_filter_setup(struct ae_softc *);
171
172 static int ae_intr(void *);
173 static void ae_rxintr(struct ae_softc *);
174 static void ae_txintr(struct ae_softc *);
175
176 static void ae_mii_tick(void *);
177 static void ae_mii_statchg(struct ifnet *);
178
179 static int ae_mii_readreg(device_t, int, int);
180 static void ae_mii_writereg(device_t, int, int, int);
181
182 #ifdef AE_DEBUG
183 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
184 printf x
185 #else
186 #define DPRINTF(sc, x) /* nothing */
187 #endif
188
189 #ifdef AE_STATS
190 static void ae_print_stats(struct ae_softc *);
191 #endif
192
193 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
194 ae_match, ae_attach, ae_detach, ae_activate);
195
196 /*
197 * ae_match:
198 *
199 * Check for a device match.
200 */
201 int
202 ae_match(device_t parent, struct cfdata *cf, void *aux)
203 {
204 struct arbus_attach_args *aa = aux;
205
206 if (strcmp(aa->aa_name, cf->cf_name) == 0)
207 return 1;
208
209 return 0;
210
211 }
212
213 /*
214 * ae_attach:
215 *
216 * Attach an ae interface to the system.
217 */
218 void
219 ae_attach(device_t parent, device_t self, void *aux)
220 {
221 const uint8_t *enaddr;
222 prop_data_t ea;
223 struct ae_softc *sc = device_private(self);
224 struct arbus_attach_args *aa = aux;
225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 int i, error;
227
228 sc->sc_dev = self;
229
230 callout_init(&sc->sc_tick_callout, 0);
231
232 printf(": Atheros AR531X 10/100 Ethernet\n");
233
234 /*
235 * Try to get MAC address.
236 */
237 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 if (ea == NULL) {
239 printf("%s: unable to get mac-addr property\n",
240 device_xname(sc->sc_dev));
241 return;
242 }
243 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 enaddr = prop_data_data_nocopy(ea);
246
247 /* Announce ourselves. */
248 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 ether_sprintf(enaddr));
250
251 sc->sc_cirq = aa->aa_cirq;
252 sc->sc_mirq = aa->aa_mirq;
253 sc->sc_st = aa->aa_bst;
254 sc->sc_dmat = aa->aa_dmat;
255
256 SIMPLEQ_INIT(&sc->sc_txfreeq);
257 SIMPLEQ_INIT(&sc->sc_txdirtyq);
258
259 /*
260 * Map registers.
261 */
262 sc->sc_size = aa->aa_size;
263 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 &sc->sc_sh)) != 0) {
265 printf("%s: unable to map registers, error = %d\n",
266 device_xname(sc->sc_dev), error);
267 goto fail_0;
268 }
269
270 /*
271 * Allocate the control data structures, and create and load the
272 * DMA map for it.
273 */
274 if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 1, &sc->sc_cdnseg, 0)) != 0) {
277 printf("%s: unable to allocate control data, error = %d\n",
278 device_xname(sc->sc_dev), error);
279 goto fail_1;
280 }
281
282 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 BUS_DMA_COHERENT)) != 0) {
285 printf("%s: unable to map control data, error = %d\n",
286 device_xname(sc->sc_dev), error);
287 goto fail_2;
288 }
289
290 if ((error = bus_dmamap_create(sc->sc_dmat,
291 sizeof(struct ae_control_data), 1,
292 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 printf("%s: unable to create control data DMA map, "
294 "error = %d\n", device_xname(sc->sc_dev), error);
295 goto fail_3;
296 }
297
298 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 0)) != 0) {
301 printf("%s: unable to load control data DMA map, error = %d\n",
302 device_xname(sc->sc_dev), error);
303 goto fail_4;
304 }
305
306 /*
307 * Create the transmit buffer DMA maps.
308 */
309 for (i = 0; i < AE_TXQUEUELEN; i++) {
310 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 AE_NTXSEGS, MCLBYTES, 0, 0,
312 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 printf("%s: unable to create tx DMA map %d, "
314 "error = %d\n", device_xname(sc->sc_dev), i, error);
315 goto fail_5;
316 }
317 }
318
319 /*
320 * Create the receive buffer DMA maps.
321 */
322 for (i = 0; i < AE_NRXDESC; i++) {
323 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 printf("%s: unable to create rx DMA map %d, "
326 "error = %d\n", device_xname(sc->sc_dev), i, error);
327 goto fail_6;
328 }
329 sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 }
331
332 /*
333 * Reset the chip to a known state.
334 */
335 ae_reset(sc);
336
337 /*
338 * From this point forward, the attachment cannot fail. A failure
339 * before this point releases all resources that may have been
340 * allocated.
341 */
342 sc->sc_flags |= AE_ATTACHED;
343
344 /*
345 * Initialize our media structures. This may probe the MII, if
346 * present.
347 */
348 sc->sc_mii.mii_ifp = ifp;
349 sc->sc_mii.mii_readreg = ae_mii_readreg;
350 sc->sc_mii.mii_writereg = ae_mii_writereg;
351 sc->sc_mii.mii_statchg = ae_mii_statchg;
352 sc->sc_ethercom.ec_mii = &sc->sc_mii;
353 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
354 ether_mediastatus);
355 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
356 MII_OFFSET_ANY, 0);
357
358 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
359 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
360 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
361 } else
362 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
363
364 sc->sc_tick = ae_mii_tick;
365
366 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 sc->sc_if_flags = ifp->if_flags;
370 ifp->if_ioctl = ae_ioctl;
371 ifp->if_start = ae_start;
372 ifp->if_watchdog = ae_watchdog;
373 ifp->if_init = ae_init;
374 ifp->if_stop = ae_stop;
375 IFQ_SET_READY(&ifp->if_snd);
376
377 /*
378 * We can support 802.1Q VLAN-sized frames.
379 */
380 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
381
382 /*
383 * Attach the interface.
384 */
385 if_attach(ifp);
386 ether_ifattach(ifp, enaddr);
387 ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
388
389 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
390 RND_TYPE_NET, 0);
391
392 /*
393 * Make sure the interface is shutdown during reboot.
394 */
395 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
396 if (sc->sc_sdhook == NULL)
397 printf("%s: WARNING: unable to establish shutdown hook\n",
398 device_xname(sc->sc_dev));
399
400 /*
401 * Add a suspend hook to make sure we come back up after a
402 * resume.
403 */
404 sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
405 ae_power, sc);
406 if (sc->sc_powerhook == NULL)
407 printf("%s: WARNING: unable to establish power hook\n",
408 device_xname(sc->sc_dev));
409 return;
410
411 /*
412 * Free any resources we've allocated during the failed attach
413 * attempt. Do this in reverse order and fall through.
414 */
415 fail_6:
416 for (i = 0; i < AE_NRXDESC; i++) {
417 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
418 bus_dmamap_destroy(sc->sc_dmat,
419 sc->sc_rxsoft[i].rxs_dmamap);
420 }
421 fail_5:
422 for (i = 0; i < AE_TXQUEUELEN; i++) {
423 if (sc->sc_txsoft[i].txs_dmamap != NULL)
424 bus_dmamap_destroy(sc->sc_dmat,
425 sc->sc_txsoft[i].txs_dmamap);
426 }
427 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
428 fail_4:
429 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
430 fail_3:
431 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
432 sizeof(struct ae_control_data));
433 fail_2:
434 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
435 fail_1:
436 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
437 fail_0:
438 return;
439 }
440
441 /*
442 * ae_activate:
443 *
444 * Handle device activation/deactivation requests.
445 */
446 int
447 ae_activate(device_t self, enum devact act)
448 {
449 struct ae_softc *sc = device_private(self);
450
451 switch (act) {
452 case DVACT_DEACTIVATE:
453 if_deactivate(&sc->sc_ethercom.ec_if);
454 return 0;
455 default:
456 return EOPNOTSUPP;
457 }
458 }
459
460 /*
461 * ae_detach:
462 *
463 * Detach a device interface.
464 */
465 int
466 ae_detach(device_t self, int flags)
467 {
468 struct ae_softc *sc = device_private(self);
469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 struct ae_rxsoft *rxs;
471 struct ae_txsoft *txs;
472 int i;
473
474 /*
475 * Succeed now if there isn't any work to do.
476 */
477 if ((sc->sc_flags & AE_ATTACHED) == 0)
478 return (0);
479
480 /* Unhook our tick handler. */
481 if (sc->sc_tick)
482 callout_stop(&sc->sc_tick_callout);
483
484 /* Detach all PHYs */
485 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
486
487 /* Delete all remaining media. */
488 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
489
490 rnd_detach_source(&sc->sc_rnd_source);
491 ether_ifdetach(ifp);
492 if_detach(ifp);
493
494 for (i = 0; i < AE_NRXDESC; i++) {
495 rxs = &sc->sc_rxsoft[i];
496 if (rxs->rxs_mbuf != NULL) {
497 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
498 m_freem(rxs->rxs_mbuf);
499 rxs->rxs_mbuf = NULL;
500 }
501 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
502 }
503 for (i = 0; i < AE_TXQUEUELEN; i++) {
504 txs = &sc->sc_txsoft[i];
505 if (txs->txs_mbuf != NULL) {
506 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
507 m_freem(txs->txs_mbuf);
508 txs->txs_mbuf = NULL;
509 }
510 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
511 }
512 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
513 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
514 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
515 sizeof(struct ae_control_data));
516 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
517
518 shutdownhook_disestablish(sc->sc_sdhook);
519 powerhook_disestablish(sc->sc_powerhook);
520
521 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
522
523
524 return (0);
525 }
526
527 /*
528 * ae_shutdown:
529 *
530 * Make sure the interface is stopped at reboot time.
531 */
532 static void
533 ae_shutdown(void *arg)
534 {
535 struct ae_softc *sc = arg;
536
537 ae_stop(&sc->sc_ethercom.ec_if, 1);
538 }
539
540 /*
541 * ae_start: [ifnet interface function]
542 *
543 * Start packet transmission on the interface.
544 */
545 static void
546 ae_start(struct ifnet *ifp)
547 {
548 struct ae_softc *sc = ifp->if_softc;
549 struct mbuf *m0, *m;
550 struct ae_txsoft *txs, *last_txs = NULL;
551 bus_dmamap_t dmamap;
552 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
553
554 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
555 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
556
557
558 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
559 return;
560
561 /*
562 * Remember the previous number of free descriptors and
563 * the first descriptor we'll use.
564 */
565 ofree = sc->sc_txfree;
566 firsttx = sc->sc_txnext;
567
568 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
569 device_xname(sc->sc_dev), ofree, firsttx));
570
571 /*
572 * Loop through the send queue, setting up transmit descriptors
573 * until we drain the queue, or use up all available transmit
574 * descriptors.
575 */
576 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
577 sc->sc_txfree != 0) {
578 /*
579 * Grab a packet off the queue.
580 */
581 IFQ_POLL(&ifp->if_snd, m0);
582 if (m0 == NULL)
583 break;
584 m = NULL;
585
586 dmamap = txs->txs_dmamap;
587
588 /*
589 * Load the DMA map. If this fails, the packet either
590 * didn't fit in the alloted number of segments, or we were
591 * short on resources. In this case, we'll copy and try
592 * again.
593 */
594 if (((mtod(m0, uintptr_t) & 3) != 0) ||
595 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
596 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
597 MGETHDR(m, M_DONTWAIT, MT_DATA);
598 if (m == NULL) {
599 printf("%s: unable to allocate Tx mbuf\n",
600 device_xname(sc->sc_dev));
601 break;
602 }
603 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
604 if (m0->m_pkthdr.len > MHLEN) {
605 MCLGET(m, M_DONTWAIT);
606 if ((m->m_flags & M_EXT) == 0) {
607 printf("%s: unable to allocate Tx "
608 "cluster\n", device_xname(sc->sc_dev));
609 m_freem(m);
610 break;
611 }
612 }
613 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
614 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
615 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
616 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
617 if (error) {
618 printf("%s: unable to load Tx buffer, "
619 "error = %d\n", device_xname(sc->sc_dev),
620 error);
621 break;
622 }
623 }
624
625 /*
626 * Ensure we have enough descriptors free to describe
627 * the packet.
628 */
629 if (dmamap->dm_nsegs > sc->sc_txfree) {
630 /*
631 * Not enough free descriptors to transmit this
632 * packet. We haven't committed to anything yet,
633 * so just unload the DMA map, put the packet
634 * back on the queue, and punt. Notify the upper
635 * layer that there are no more slots left.
636 *
637 * XXX We could allocate an mbuf and copy, but
638 * XXX it is worth it?
639 */
640 ifp->if_flags |= IFF_OACTIVE;
641 bus_dmamap_unload(sc->sc_dmat, dmamap);
642 if (m != NULL)
643 m_freem(m);
644 break;
645 }
646
647 IFQ_DEQUEUE(&ifp->if_snd, m0);
648 if (m != NULL) {
649 m_freem(m0);
650 m0 = m;
651 }
652
653 /*
654 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
655 */
656
657 /* Sync the DMA map. */
658 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
659 BUS_DMASYNC_PREWRITE);
660
661 /*
662 * Initialize the transmit descriptors.
663 */
664 for (nexttx = sc->sc_txnext, seg = 0;
665 seg < dmamap->dm_nsegs;
666 seg++, nexttx = AE_NEXTTX(nexttx)) {
667 /*
668 * If this is the first descriptor we're
669 * enqueueing, don't set the OWN bit just
670 * yet. That could cause a race condition.
671 * We'll do it below.
672 */
673 sc->sc_txdescs[nexttx].ad_status =
674 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
675 sc->sc_txdescs[nexttx].ad_bufaddr1 =
676 dmamap->dm_segs[seg].ds_addr;
677 sc->sc_txdescs[nexttx].ad_ctl =
678 (dmamap->dm_segs[seg].ds_len <<
679 ADCTL_SIZE1_SHIFT) |
680 (nexttx == (AE_NTXDESC - 1) ?
681 ADCTL_ER : 0);
682 lasttx = nexttx;
683 }
684
685 KASSERT(lasttx != -1);
686
687 /* Set `first segment' and `last segment' appropriately. */
688 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
689 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
690
691 #ifdef AE_DEBUG
692 if (ifp->if_flags & IFF_DEBUG) {
693 printf(" txsoft %p transmit chain:\n", txs);
694 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
695 printf(" descriptor %d:\n", seg);
696 printf(" ad_status: 0x%08x\n",
697 sc->sc_txdescs[seg].ad_status);
698 printf(" ad_ctl: 0x%08x\n",
699 sc->sc_txdescs[seg].ad_ctl);
700 printf(" ad_bufaddr1: 0x%08x\n",
701 sc->sc_txdescs[seg].ad_bufaddr1);
702 printf(" ad_bufaddr2: 0x%08x\n",
703 sc->sc_txdescs[seg].ad_bufaddr2);
704 if (seg == lasttx)
705 break;
706 }
707 }
708 #endif
709
710 /* Sync the descriptors we're using. */
711 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
712 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
713
714 /*
715 * Store a pointer to the packet so we can free it later,
716 * and remember what txdirty will be once the packet is
717 * done.
718 */
719 txs->txs_mbuf = m0;
720 txs->txs_firstdesc = sc->sc_txnext;
721 txs->txs_lastdesc = lasttx;
722 txs->txs_ndescs = dmamap->dm_nsegs;
723
724 /* Advance the tx pointer. */
725 sc->sc_txfree -= dmamap->dm_nsegs;
726 sc->sc_txnext = nexttx;
727
728 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
729 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
730
731 last_txs = txs;
732
733 /*
734 * Pass the packet to any BPF listeners.
735 */
736 bpf_mtap(ifp, m0);
737 }
738
739 if (txs == NULL || sc->sc_txfree == 0) {
740 /* No more slots left; notify upper layer. */
741 ifp->if_flags |= IFF_OACTIVE;
742 }
743
744 if (sc->sc_txfree != ofree) {
745 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
746 device_xname(sc->sc_dev), lasttx, firsttx));
747 /*
748 * Cause a transmit interrupt to happen on the
749 * last packet we enqueued.
750 */
751 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
752 AE_CDTXSYNC(sc, lasttx, 1,
753 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754
755 /*
756 * The entire packet chain is set up. Give the
757 * first descriptor to the chip now.
758 */
759 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
760 AE_CDTXSYNC(sc, firsttx, 1,
761 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
762
763 /* Wake up the transmitter. */
764 /* XXX USE AUTOPOLLING? */
765 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
766 AE_BARRIER(sc);
767
768 /* Set a watchdog timer in case the chip flakes out. */
769 ifp->if_timer = 5;
770 }
771 }
772
773 /*
774 * ae_watchdog: [ifnet interface function]
775 *
776 * Watchdog timer handler.
777 */
778 static void
779 ae_watchdog(struct ifnet *ifp)
780 {
781 struct ae_softc *sc = ifp->if_softc;
782 int doing_transmit;
783
784 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
785
786 if (doing_transmit) {
787 printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
788 ifp->if_oerrors++;
789 }
790 else
791 printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
792
793 (void) ae_init(ifp);
794
795 /* Try to get more packets going. */
796 ae_start(ifp);
797 }
798
799 /* If the interface is up and running, only modify the receive
800 * filter when changing to/from promiscuous mode. Otherwise return
801 * ENETRESET so that ether_ioctl will reset the chip.
802 */
803 static int
804 ae_ifflags_cb(struct ethercom *ec)
805 {
806 struct ifnet *ifp = &ec->ec_if;
807 struct ae_softc *sc = ifp->if_softc;
808 int change = ifp->if_flags ^ sc->sc_if_flags;
809
810 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
811 return ENETRESET;
812 else if ((change & IFF_PROMISC) != 0)
813 ae_filter_setup(sc);
814 return 0;
815 }
816
817 /*
818 * ae_ioctl: [ifnet interface function]
819 *
820 * Handle control requests from the operator.
821 */
822 static int
823 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
824 {
825 struct ae_softc *sc = ifp->if_softc;
826 int s, error;
827
828 s = splnet();
829
830 error = ether_ioctl(ifp, cmd, data);
831 if (error == ENETRESET) {
832 if (ifp->if_flags & IFF_RUNNING) {
833 /*
834 * Multicast list has changed. Set the
835 * hardware filter accordingly.
836 */
837 ae_filter_setup(sc);
838 }
839 error = 0;
840 }
841
842 /* Try to get more packets going. */
843 if (AE_IS_ENABLED(sc))
844 ae_start(ifp);
845
846 sc->sc_if_flags = ifp->if_flags;
847 splx(s);
848 return (error);
849 }
850
851 /*
852 * ae_intr:
853 *
854 * Interrupt service routine.
855 */
856 int
857 ae_intr(void *arg)
858 {
859 struct ae_softc *sc = arg;
860 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
861 u_int32_t status, rxstatus, txstatus;
862 int handled = 0, txthresh;
863
864 DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
865
866 #ifdef DEBUG
867 if (AE_IS_ENABLED(sc) == 0)
868 panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
869 #endif
870
871 /*
872 * If the interface isn't running, the interrupt couldn't
873 * possibly have come from us.
874 */
875 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
876 !device_is_active(sc->sc_dev)) {
877 printf("spurious?!?\n");
878 return (0);
879 }
880
881 for (;;) {
882 status = AE_READ(sc, CSR_STATUS);
883 if (status) {
884 AE_WRITE(sc, CSR_STATUS, status);
885 AE_BARRIER(sc);
886 }
887
888 if ((status & sc->sc_inten) == 0)
889 break;
890
891 handled = 1;
892
893 rxstatus = status & sc->sc_rxint_mask;
894 txstatus = status & sc->sc_txint_mask;
895
896 if (rxstatus) {
897 /* Grab new any new packets. */
898 ae_rxintr(sc);
899
900 if (rxstatus & STATUS_RU) {
901 printf("%s: receive ring overrun\n",
902 device_xname(sc->sc_dev));
903 /* Get the receive process going again. */
904 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
905 AE_BARRIER(sc);
906 break;
907 }
908 }
909
910 if (txstatus) {
911 /* Sweep up transmit descriptors. */
912 ae_txintr(sc);
913
914 if (txstatus & STATUS_TJT)
915 printf("%s: transmit jabber timeout\n",
916 device_xname(sc->sc_dev));
917
918 if (txstatus & STATUS_UNF) {
919 /*
920 * Increase our transmit threshold if
921 * another is available.
922 */
923 txthresh = sc->sc_txthresh + 1;
924 if (ae_txthresh[txthresh].txth_name != NULL) {
925 uint32_t opmode;
926 /* Idle the transmit process. */
927 opmode = AE_READ(sc, CSR_OPMODE);
928 ae_idle(sc, OPMODE_ST);
929
930 sc->sc_txthresh = txthresh;
931 opmode &=
932 ~(OPMODE_TR|OPMODE_SF);
933 opmode |=
934 ae_txthresh[txthresh].txth_opmode;
935 printf("%s: transmit underrun; new "
936 "threshold: %s\n",
937 device_xname(sc->sc_dev),
938 ae_txthresh[txthresh].txth_name);
939
940 /*
941 * Set the new threshold and restart
942 * the transmit process.
943 */
944 AE_WRITE(sc, CSR_OPMODE, opmode);
945 AE_BARRIER(sc);
946 }
947 /*
948 * XXX Log every Nth underrun from
949 * XXX now on?
950 */
951 }
952 }
953
954 if (status & (STATUS_TPS|STATUS_RPS)) {
955 if (status & STATUS_TPS)
956 printf("%s: transmit process stopped\n",
957 device_xname(sc->sc_dev));
958 if (status & STATUS_RPS)
959 printf("%s: receive process stopped\n",
960 device_xname(sc->sc_dev));
961 (void) ae_init(ifp);
962 break;
963 }
964
965 if (status & STATUS_SE) {
966 const char *str;
967
968 if (status & STATUS_TX_ABORT)
969 str = "tx abort";
970 else if (status & STATUS_RX_ABORT)
971 str = "rx abort";
972 else
973 str = "unknown error";
974
975 printf("%s: fatal system error: %s\n",
976 device_xname(sc->sc_dev), str);
977 (void) ae_init(ifp);
978 break;
979 }
980
981 /*
982 * Not handled:
983 *
984 * Transmit buffer unavailable -- normal
985 * condition, nothing to do, really.
986 *
987 * General purpose timer experied -- we don't
988 * use the general purpose timer.
989 *
990 * Early receive interrupt -- not available on
991 * all chips, we just use RI. We also only
992 * use single-segment receive DMA, so this
993 * is mostly useless.
994 */
995 }
996
997 /* Try to get more packets going. */
998 ae_start(ifp);
999
1000 if (handled)
1001 rnd_add_uint32(&sc->sc_rnd_source, status);
1002 return (handled);
1003 }
1004
1005 /*
1006 * ae_rxintr:
1007 *
1008 * Helper; handle receive interrupts.
1009 */
1010 static void
1011 ae_rxintr(struct ae_softc *sc)
1012 {
1013 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1014 struct ether_header *eh;
1015 struct ae_rxsoft *rxs;
1016 struct mbuf *m;
1017 u_int32_t rxstat;
1018 int i, len;
1019
1020 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1021 rxs = &sc->sc_rxsoft[i];
1022
1023 AE_CDRXSYNC(sc, i,
1024 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1025
1026 rxstat = sc->sc_rxdescs[i].ad_status;
1027
1028 if (rxstat & ADSTAT_OWN) {
1029 /*
1030 * We have processed all of the receive buffers.
1031 */
1032 break;
1033 }
1034
1035 /*
1036 * If any collisions were seen on the wire, count one.
1037 */
1038 if (rxstat & ADSTAT_Rx_CS)
1039 ifp->if_collisions++;
1040
1041 /*
1042 * If an error occurred, update stats, clear the status
1043 * word, and leave the packet buffer in place. It will
1044 * simply be reused the next time the ring comes around.
1045 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1046 * error.
1047 */
1048 if (rxstat & ADSTAT_ES &&
1049 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1050 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1051 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1052 #define PRINTERR(bit, str) \
1053 if (rxstat & (bit)) \
1054 printf("%s: receive error: %s\n", \
1055 device_xname(sc->sc_dev), str)
1056 ifp->if_ierrors++;
1057 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1058 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1059 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1060 PRINTERR(ADSTAT_Rx_RE, "MII error");
1061 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1062 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1063 #undef PRINTERR
1064 AE_INIT_RXDESC(sc, i);
1065 continue;
1066 }
1067
1068 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1069 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1070
1071 /*
1072 * No errors; receive the packet. Note the chip
1073 * includes the CRC with every packet.
1074 */
1075 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1076
1077 /*
1078 * XXX: the Atheros part can align on half words. what
1079 * is the performance implication of this? Probably
1080 * minimal, and we should use it...
1081 */
1082 #ifdef __NO_STRICT_ALIGNMENT
1083 /*
1084 * Allocate a new mbuf cluster. If that fails, we are
1085 * out of memory, and must drop the packet and recycle
1086 * the buffer that's already attached to this descriptor.
1087 */
1088 m = rxs->rxs_mbuf;
1089 if (ae_add_rxbuf(sc, i) != 0) {
1090 ifp->if_ierrors++;
1091 AE_INIT_RXDESC(sc, i);
1092 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1093 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1094 continue;
1095 }
1096 #else
1097 /*
1098 * The chip's receive buffers must be 4-byte aligned.
1099 * But this means that the data after the Ethernet header
1100 * is misaligned. We must allocate a new buffer and
1101 * copy the data, shifted forward 2 bytes.
1102 */
1103 MGETHDR(m, M_DONTWAIT, MT_DATA);
1104 if (m == NULL) {
1105 dropit:
1106 ifp->if_ierrors++;
1107 AE_INIT_RXDESC(sc, i);
1108 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1109 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1110 continue;
1111 }
1112 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1113 if (len > (MHLEN - 2)) {
1114 MCLGET(m, M_DONTWAIT);
1115 if ((m->m_flags & M_EXT) == 0) {
1116 m_freem(m);
1117 goto dropit;
1118 }
1119 }
1120 m->m_data += 2;
1121
1122 /*
1123 * Note that we use clusters for incoming frames, so the
1124 * buffer is virtually contiguous.
1125 */
1126 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1127
1128 /* Allow the receive descriptor to continue using its mbuf. */
1129 AE_INIT_RXDESC(sc, i);
1130 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1131 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1132 #endif /* __NO_STRICT_ALIGNMENT */
1133
1134 ifp->if_ipackets++;
1135 eh = mtod(m, struct ether_header *);
1136 m->m_pkthdr.rcvif = ifp;
1137 m->m_pkthdr.len = m->m_len = len;
1138
1139 /*
1140 * Pass this up to any BPF listeners, but only
1141 * pass it up the stack if its for us.
1142 */
1143 bpf_mtap(ifp, m);
1144
1145 /* Pass it on. */
1146 (*ifp->if_input)(ifp, m);
1147 }
1148
1149 /* Update the receive pointer. */
1150 sc->sc_rxptr = i;
1151 }
1152
1153 /*
1154 * ae_txintr:
1155 *
1156 * Helper; handle transmit interrupts.
1157 */
1158 static void
1159 ae_txintr(struct ae_softc *sc)
1160 {
1161 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1162 struct ae_txsoft *txs;
1163 u_int32_t txstat;
1164
1165 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1166 device_xname(sc->sc_dev), sc->sc_flags));
1167
1168 ifp->if_flags &= ~IFF_OACTIVE;
1169
1170 /*
1171 * Go through our Tx list and free mbufs for those
1172 * frames that have been transmitted.
1173 */
1174 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1175 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1176 txs->txs_ndescs,
1177 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1178
1179 #ifdef AE_DEBUG
1180 if (ifp->if_flags & IFF_DEBUG) {
1181 int i;
1182 printf(" txsoft %p transmit chain:\n", txs);
1183 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1184 printf(" descriptor %d:\n", i);
1185 printf(" ad_status: 0x%08x\n",
1186 sc->sc_txdescs[i].ad_status);
1187 printf(" ad_ctl: 0x%08x\n",
1188 sc->sc_txdescs[i].ad_ctl);
1189 printf(" ad_bufaddr1: 0x%08x\n",
1190 sc->sc_txdescs[i].ad_bufaddr1);
1191 printf(" ad_bufaddr2: 0x%08x\n",
1192 sc->sc_txdescs[i].ad_bufaddr2);
1193 if (i == txs->txs_lastdesc)
1194 break;
1195 }
1196 }
1197 #endif
1198
1199 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1200 if (txstat & ADSTAT_OWN)
1201 break;
1202
1203 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1204
1205 sc->sc_txfree += txs->txs_ndescs;
1206
1207 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1208 0, txs->txs_dmamap->dm_mapsize,
1209 BUS_DMASYNC_POSTWRITE);
1210 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1211 m_freem(txs->txs_mbuf);
1212 txs->txs_mbuf = NULL;
1213
1214 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1215
1216 /*
1217 * Check for errors and collisions.
1218 */
1219 #ifdef AE_STATS
1220 if (txstat & ADSTAT_Tx_UF)
1221 sc->sc_stats.ts_tx_uf++;
1222 if (txstat & ADSTAT_Tx_TO)
1223 sc->sc_stats.ts_tx_to++;
1224 if (txstat & ADSTAT_Tx_EC)
1225 sc->sc_stats.ts_tx_ec++;
1226 if (txstat & ADSTAT_Tx_LC)
1227 sc->sc_stats.ts_tx_lc++;
1228 #endif
1229
1230 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1231 ifp->if_oerrors++;
1232
1233 if (txstat & ADSTAT_Tx_EC)
1234 ifp->if_collisions += 16;
1235 else
1236 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1237 if (txstat & ADSTAT_Tx_LC)
1238 ifp->if_collisions++;
1239
1240 ifp->if_opackets++;
1241 }
1242
1243 /*
1244 * If there are no more pending transmissions, cancel the watchdog
1245 * timer.
1246 */
1247 if (txs == NULL)
1248 ifp->if_timer = 0;
1249 }
1250
1251 #ifdef AE_STATS
1252 void
1253 ae_print_stats(struct ae_softc *sc)
1254 {
1255
1256 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1257 device_xname(sc->sc_dev),
1258 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1259 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1260 }
1261 #endif
1262
1263 /*
1264 * ae_reset:
1265 *
1266 * Perform a soft reset on the chip.
1267 */
1268 void
1269 ae_reset(struct ae_softc *sc)
1270 {
1271 int i;
1272
1273 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1274 AE_BARRIER(sc);
1275
1276 /*
1277 * The chip doesn't take itself out of reset automatically.
1278 * We need to do so after 2us.
1279 */
1280 delay(10);
1281 AE_WRITE(sc, CSR_BUSMODE, 0);
1282 AE_BARRIER(sc);
1283
1284 for (i = 0; i < 1000; i++) {
1285 /*
1286 * Wait a bit for the reset to complete before peeking
1287 * at the chip again.
1288 */
1289 delay(10);
1290 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1291 break;
1292 }
1293
1294 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1295 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1296
1297 delay(1000);
1298 }
1299
1300 /*
1301 * ae_init: [ ifnet interface function ]
1302 *
1303 * Initialize the interface. Must be called at splnet().
1304 */
1305 static int
1306 ae_init(struct ifnet *ifp)
1307 {
1308 struct ae_softc *sc = ifp->if_softc;
1309 struct ae_txsoft *txs;
1310 struct ae_rxsoft *rxs;
1311 const uint8_t *enaddr;
1312 int i, error = 0;
1313
1314 if ((error = ae_enable(sc)) != 0)
1315 goto out;
1316
1317 /*
1318 * Cancel any pending I/O.
1319 */
1320 ae_stop(ifp, 0);
1321
1322 /*
1323 * Reset the chip to a known state.
1324 */
1325 ae_reset(sc);
1326
1327 /*
1328 * Initialize the BUSMODE register.
1329 */
1330 AE_WRITE(sc, CSR_BUSMODE,
1331 /* XXX: not sure if this is a good thing or not... */
1332 //BUSMODE_ALIGN_16B |
1333 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1334 AE_BARRIER(sc);
1335
1336 /*
1337 * Initialize the transmit descriptor ring.
1338 */
1339 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1340 for (i = 0; i < AE_NTXDESC; i++) {
1341 sc->sc_txdescs[i].ad_ctl = 0;
1342 sc->sc_txdescs[i].ad_bufaddr2 =
1343 AE_CDTXADDR(sc, AE_NEXTTX(i));
1344 }
1345 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1346 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1347 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1348 sc->sc_txfree = AE_NTXDESC;
1349 sc->sc_txnext = 0;
1350
1351 /*
1352 * Initialize the transmit job descriptors.
1353 */
1354 SIMPLEQ_INIT(&sc->sc_txfreeq);
1355 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1356 for (i = 0; i < AE_TXQUEUELEN; i++) {
1357 txs = &sc->sc_txsoft[i];
1358 txs->txs_mbuf = NULL;
1359 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1360 }
1361
1362 /*
1363 * Initialize the receive descriptor and receive job
1364 * descriptor rings.
1365 */
1366 for (i = 0; i < AE_NRXDESC; i++) {
1367 rxs = &sc->sc_rxsoft[i];
1368 if (rxs->rxs_mbuf == NULL) {
1369 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1370 printf("%s: unable to allocate or map rx "
1371 "buffer %d, error = %d\n",
1372 device_xname(sc->sc_dev), i, error);
1373 /*
1374 * XXX Should attempt to run with fewer receive
1375 * XXX buffers instead of just failing.
1376 */
1377 ae_rxdrain(sc);
1378 goto out;
1379 }
1380 } else
1381 AE_INIT_RXDESC(sc, i);
1382 }
1383 sc->sc_rxptr = 0;
1384
1385 /*
1386 * Initialize the interrupt mask and enable interrupts.
1387 */
1388 /* normal interrupts */
1389 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1390
1391 /* abnormal interrupts */
1392 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1393 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1394
1395 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1396 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1397
1398 sc->sc_rxint_mask &= sc->sc_inten;
1399 sc->sc_txint_mask &= sc->sc_inten;
1400
1401 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1402 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1403
1404 /*
1405 * Give the transmit and receive rings to the chip.
1406 */
1407 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1408 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1409 AE_BARRIER(sc);
1410
1411 /*
1412 * Set the station address.
1413 */
1414 enaddr = CLLADDR(ifp->if_sadl);
1415 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1416 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1417 enaddr[1] << 8 | enaddr[0]);
1418 AE_BARRIER(sc);
1419
1420 /*
1421 * Set the receive filter. This will start the transmit and
1422 * receive processes.
1423 */
1424 ae_filter_setup(sc);
1425
1426 /*
1427 * Set the current media.
1428 */
1429 if ((error = ether_mediachange(ifp)) != 0)
1430 goto out;
1431
1432 /*
1433 * Start the mac.
1434 */
1435 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1436 AE_BARRIER(sc);
1437
1438 /*
1439 * Write out the opmode.
1440 */
1441 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1442 ae_txthresh[sc->sc_txthresh].txth_opmode);
1443 /*
1444 * Start the receive process.
1445 */
1446 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1447 AE_BARRIER(sc);
1448
1449 if (sc->sc_tick != NULL) {
1450 /* Start the one second clock. */
1451 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1452 }
1453
1454 /*
1455 * Note that the interface is now running.
1456 */
1457 ifp->if_flags |= IFF_RUNNING;
1458 ifp->if_flags &= ~IFF_OACTIVE;
1459 sc->sc_if_flags = ifp->if_flags;
1460
1461 out:
1462 if (error) {
1463 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1464 ifp->if_timer = 0;
1465 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1466 }
1467 return (error);
1468 }
1469
1470 /*
1471 * ae_enable:
1472 *
1473 * Enable the chip.
1474 */
1475 static int
1476 ae_enable(struct ae_softc *sc)
1477 {
1478
1479 if (AE_IS_ENABLED(sc) == 0) {
1480 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1481 ae_intr, sc);
1482 if (sc->sc_ih == NULL) {
1483 printf("%s: unable to establish interrupt\n",
1484 device_xname(sc->sc_dev));
1485 return (EIO);
1486 }
1487 sc->sc_flags |= AE_ENABLED;
1488 }
1489 return (0);
1490 }
1491
1492 /*
1493 * ae_disable:
1494 *
1495 * Disable the chip.
1496 */
1497 static void
1498 ae_disable(struct ae_softc *sc)
1499 {
1500
1501 if (AE_IS_ENABLED(sc)) {
1502 arbus_intr_disestablish(sc->sc_ih);
1503 sc->sc_flags &= ~AE_ENABLED;
1504 }
1505 }
1506
1507 /*
1508 * ae_power:
1509 *
1510 * Power management (suspend/resume) hook.
1511 */
1512 static void
1513 ae_power(int why, void *arg)
1514 {
1515 struct ae_softc *sc = arg;
1516 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1517 int s;
1518
1519 printf("power called: %d, %x\n", why, (uint32_t)arg);
1520 s = splnet();
1521 switch (why) {
1522 case PWR_STANDBY:
1523 /* do nothing! */
1524 break;
1525 case PWR_SUSPEND:
1526 ae_stop(ifp, 0);
1527 ae_disable(sc);
1528 break;
1529 case PWR_RESUME:
1530 if (ifp->if_flags & IFF_UP) {
1531 ae_enable(sc);
1532 ae_init(ifp);
1533 }
1534 break;
1535 case PWR_SOFTSUSPEND:
1536 case PWR_SOFTSTANDBY:
1537 case PWR_SOFTRESUME:
1538 break;
1539 }
1540 splx(s);
1541 }
1542
1543 /*
1544 * ae_rxdrain:
1545 *
1546 * Drain the receive queue.
1547 */
1548 static void
1549 ae_rxdrain(struct ae_softc *sc)
1550 {
1551 struct ae_rxsoft *rxs;
1552 int i;
1553
1554 for (i = 0; i < AE_NRXDESC; i++) {
1555 rxs = &sc->sc_rxsoft[i];
1556 if (rxs->rxs_mbuf != NULL) {
1557 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1558 m_freem(rxs->rxs_mbuf);
1559 rxs->rxs_mbuf = NULL;
1560 }
1561 }
1562 }
1563
1564 /*
1565 * ae_stop: [ ifnet interface function ]
1566 *
1567 * Stop transmission on the interface.
1568 */
1569 static void
1570 ae_stop(struct ifnet *ifp, int disable)
1571 {
1572 struct ae_softc *sc = ifp->if_softc;
1573 struct ae_txsoft *txs;
1574
1575 if (sc->sc_tick != NULL) {
1576 /* Stop the one second clock. */
1577 callout_stop(&sc->sc_tick_callout);
1578 }
1579
1580 /* Down the MII. */
1581 mii_down(&sc->sc_mii);
1582
1583 /* Disable interrupts. */
1584 AE_WRITE(sc, CSR_INTEN, 0);
1585
1586 /* Stop the transmit and receive processes. */
1587 AE_WRITE(sc, CSR_OPMODE, 0);
1588 AE_WRITE(sc, CSR_RXLIST, 0);
1589 AE_WRITE(sc, CSR_TXLIST, 0);
1590 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1591 AE_BARRIER(sc);
1592
1593 /*
1594 * Release any queued transmit buffers.
1595 */
1596 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1597 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1598 if (txs->txs_mbuf != NULL) {
1599 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1600 m_freem(txs->txs_mbuf);
1601 txs->txs_mbuf = NULL;
1602 }
1603 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1604 }
1605
1606 /*
1607 * Mark the interface down and cancel the watchdog timer.
1608 */
1609 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1610 sc->sc_if_flags = ifp->if_flags;
1611 ifp->if_timer = 0;
1612
1613 if (disable) {
1614 ae_rxdrain(sc);
1615 ae_disable(sc);
1616 }
1617
1618 /*
1619 * Reset the chip (needed on some flavors to actually disable it).
1620 */
1621 ae_reset(sc);
1622 }
1623
1624 /*
1625 * ae_add_rxbuf:
1626 *
1627 * Add a receive buffer to the indicated descriptor.
1628 */
1629 static int
1630 ae_add_rxbuf(struct ae_softc *sc, int idx)
1631 {
1632 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1633 struct mbuf *m;
1634 int error;
1635
1636 MGETHDR(m, M_DONTWAIT, MT_DATA);
1637 if (m == NULL)
1638 return (ENOBUFS);
1639
1640 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1641 MCLGET(m, M_DONTWAIT);
1642 if ((m->m_flags & M_EXT) == 0) {
1643 m_freem(m);
1644 return (ENOBUFS);
1645 }
1646
1647 if (rxs->rxs_mbuf != NULL)
1648 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1649
1650 rxs->rxs_mbuf = m;
1651
1652 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1653 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1654 BUS_DMA_READ|BUS_DMA_NOWAIT);
1655 if (error) {
1656 printf("%s: can't load rx DMA map %d, error = %d\n",
1657 device_xname(sc->sc_dev), idx, error);
1658 panic("ae_add_rxbuf"); /* XXX */
1659 }
1660
1661 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1662 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1663
1664 AE_INIT_RXDESC(sc, idx);
1665
1666 return (0);
1667 }
1668
1669 /*
1670 * ae_filter_setup:
1671 *
1672 * Set the chip's receive filter.
1673 */
1674 static void
1675 ae_filter_setup(struct ae_softc *sc)
1676 {
1677 struct ethercom *ec = &sc->sc_ethercom;
1678 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1679 struct ether_multi *enm;
1680 struct ether_multistep step;
1681 uint32_t hash, mchash[2];
1682 uint32_t macctl = 0;
1683
1684 /*
1685 * If the chip is running, we need to reset the interface,
1686 * and will revisit here (with IFF_RUNNING) clear. The
1687 * chip seems to really not like to have its multicast
1688 * filter programmed without a reset.
1689 */
1690 if (ifp->if_flags & IFF_RUNNING) {
1691 (void) ae_init(ifp);
1692 return;
1693 }
1694
1695 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1696 device_xname(sc->sc_dev), sc->sc_flags));
1697
1698 macctl = AE_READ(sc, CSR_MACCTL);
1699 macctl &= ~(MACCTL_PR | MACCTL_PM);
1700 macctl |= MACCTL_HASH;
1701 macctl |= MACCTL_HBD;
1702 macctl |= MACCTL_PR;
1703
1704 if (ifp->if_flags & IFF_PROMISC) {
1705 macctl |= MACCTL_PR;
1706 goto allmulti;
1707 }
1708
1709 mchash[0] = mchash[1] = 0;
1710
1711 ETHER_FIRST_MULTI(step, ec, enm);
1712 while (enm != NULL) {
1713 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1714 /*
1715 * We must listen to a range of multicast addresses.
1716 * For now, just accept all multicasts, rather than
1717 * trying to set only those filter bits needed to match
1718 * the range. (At this time, the only use of address
1719 * ranges is for IP multicast routing, for which the
1720 * range is big enough to require all bits set.)
1721 */
1722 goto allmulti;
1723 }
1724
1725 /* Verify whether we use big or little endian hashes */
1726 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1727 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1728 ETHER_NEXT_MULTI(step, enm);
1729 }
1730 ifp->if_flags &= ~IFF_ALLMULTI;
1731 goto setit;
1732
1733 allmulti:
1734 ifp->if_flags |= IFF_ALLMULTI;
1735 mchash[0] = mchash[1] = 0xffffffff;
1736 macctl |= MACCTL_PM;
1737
1738 setit:
1739 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1740 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1741
1742 AE_WRITE(sc, CSR_MACCTL, macctl);
1743 AE_BARRIER(sc);
1744
1745 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1746 device_xname(sc->sc_dev), macctl));
1747 }
1748
1749 /*
1750 * ae_idle:
1751 *
1752 * Cause the transmit and/or receive processes to go idle.
1753 */
1754 void
1755 ae_idle(struct ae_softc *sc, u_int32_t bits)
1756 {
1757 static const char * const txstate_names[] = {
1758 "STOPPED",
1759 "RUNNING - FETCH",
1760 "RUNNING - WAIT",
1761 "RUNNING - READING",
1762 "-- RESERVED --",
1763 "RUNNING - SETUP",
1764 "SUSPENDED",
1765 "RUNNING - CLOSE",
1766 };
1767 static const char * const rxstate_names[] = {
1768 "STOPPED",
1769 "RUNNING - FETCH",
1770 "RUNNING - CHECK",
1771 "RUNNING - WAIT",
1772 "SUSPENDED",
1773 "RUNNING - CLOSE",
1774 "RUNNING - FLUSH",
1775 "RUNNING - QUEUE",
1776 };
1777
1778 u_int32_t csr, ackmask = 0;
1779 int i;
1780
1781 if (bits & OPMODE_ST)
1782 ackmask |= STATUS_TPS;
1783
1784 if (bits & OPMODE_SR)
1785 ackmask |= STATUS_RPS;
1786
1787 AE_CLR(sc, CSR_OPMODE, bits);
1788
1789 for (i = 0; i < 1000; i++) {
1790 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1791 break;
1792 delay(10);
1793 }
1794
1795 csr = AE_READ(sc, CSR_STATUS);
1796 if ((csr & ackmask) != ackmask) {
1797 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1798 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1799 printf("%s: transmit process failed to idle: "
1800 "state %s\n", device_xname(sc->sc_dev),
1801 txstate_names[(csr & STATUS_TS) >> 20]);
1802 }
1803 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1804 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1805 printf("%s: receive process failed to idle: "
1806 "state %s\n", device_xname(sc->sc_dev),
1807 rxstate_names[(csr & STATUS_RS) >> 17]);
1808 }
1809 }
1810 }
1811
1812 /*****************************************************************************
1813 * Support functions for MII-attached media.
1814 *****************************************************************************/
1815
1816 /*
1817 * ae_mii_tick:
1818 *
1819 * One second timer, used to tick the MII.
1820 */
1821 static void
1822 ae_mii_tick(void *arg)
1823 {
1824 struct ae_softc *sc = arg;
1825 int s;
1826
1827 if (!device_is_active(sc->sc_dev))
1828 return;
1829
1830 s = splnet();
1831 mii_tick(&sc->sc_mii);
1832 splx(s);
1833
1834 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1835 }
1836
1837 /*
1838 * ae_mii_statchg: [mii interface function]
1839 *
1840 * Callback from PHY when media changes.
1841 */
1842 static void
1843 ae_mii_statchg(struct ifnet *ifp)
1844 {
1845 struct ae_softc *sc = ifp->if_softc;
1846 uint32_t macctl, flowc;
1847
1848 //opmode = AE_READ(sc, CSR_OPMODE);
1849 macctl = AE_READ(sc, CSR_MACCTL);
1850
1851 /* XXX: do we need to do this? */
1852 /* Idle the transmit and receive processes. */
1853 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1854
1855 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1856 flowc = FLOWC_FCE;
1857 macctl &= ~MACCTL_DRO;
1858 macctl |= MACCTL_FDX;
1859 } else {
1860 flowc = 0; /* cannot do flow control in HDX */
1861 macctl |= MACCTL_DRO;
1862 macctl &= ~MACCTL_FDX;
1863 }
1864
1865 AE_WRITE(sc, CSR_FLOWC, flowc);
1866 AE_WRITE(sc, CSR_MACCTL, macctl);
1867
1868 /* restore operational mode */
1869 //AE_WRITE(sc, CSR_OPMODE, opmode);
1870 AE_BARRIER(sc);
1871 }
1872
1873 /*
1874 * ae_mii_readreg:
1875 *
1876 * Read a PHY register.
1877 */
1878 static int
1879 ae_mii_readreg(device_t self, int phy, int reg)
1880 {
1881 struct ae_softc *sc = device_private(self);
1882 uint32_t addr;
1883 int i;
1884
1885 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1886 AE_WRITE(sc, CSR_MIIADDR, addr);
1887 AE_BARRIER(sc);
1888 for (i = 0; i < 100000000; i++) {
1889 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1890 break;
1891 }
1892
1893 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1894 }
1895
1896 /*
1897 * ae_mii_writereg:
1898 *
1899 * Write a PHY register.
1900 */
1901 static void
1902 ae_mii_writereg(device_t self, int phy, int reg, int val)
1903 {
1904 struct ae_softc *sc = device_private(self);
1905 uint32_t addr;
1906 int i;
1907
1908 /* write the data register */
1909 AE_WRITE(sc, CSR_MIIDATA, val);
1910
1911 /* write the address to latch it in */
1912 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1913 MIIADDR_WRITE;
1914 AE_WRITE(sc, CSR_MIIADDR, addr);
1915 AE_BARRIER(sc);
1916
1917 for (i = 0; i < 100000000; i++) {
1918 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1919 break;
1920 }
1921 }
1922