if_ae.c revision 1.27 1 /* $Id: if_ae.c,v 1.27 2016/02/09 08:32:09 ozaki-r Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the onboard ethernet MAC found on the AR5312
74 * chip's AHB bus.
75 *
76 * This device is very simliar to the tulip in most regards, and
77 * the code is directly derived from NetBSD's tulip.c. However, it
78 * is different enough that it did not seem to be a good idea to
79 * add further complexity to the tulip driver, so we have our own.
80 *
81 * Also tulip has a lot of complexity in it for various parts/options
82 * that we don't need, and on these little boxes with only ~8MB RAM, we
83 * don't want any extra bloat.
84 */
85
86 /*
87 * TODO:
88 *
89 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
90 * inbound packets on a half-word boundary, which would make life easier
91 * for TCP/IP. (Aligning IP headers on a word.)
92 *
93 * 2) There is stuff in original tulip to shut down the device when reacting
94 * to a a change in link status. Is that needed.
95 *
96 * 3) Test with variety of 10/100 HDX/FDX scenarios.
97 *
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.27 2016/02/09 08:32:09 ozaki-r Exp $");
102
103
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116
117 #include <uvm/uvm_extern.h>
118
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123
124 #include <net/bpf.h>
125
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #include <dev/mii/mii_bitbang.h>
129
130 #include <mips/atheros/include/arbusvar.h>
131 #include <mips/atheros/dev/aereg.h>
132 #include <mips/atheros/dev/aevar.h>
133
134 static const struct {
135 u_int32_t txth_opmode; /* OPMODE bits */
136 const char *txth_name; /* name of mode */
137 } ae_txthresh[] = {
138 { OPMODE_TR_32, "32 words" },
139 { OPMODE_TR_64, "64 words" },
140 { OPMODE_TR_128, "128 words" },
141 { OPMODE_TR_256, "256 words" },
142 { OPMODE_SF, "store and forward mode" },
143 { 0, NULL },
144 };
145
146 static int ae_match(device_t, struct cfdata *, void *);
147 static void ae_attach(device_t, device_t, void *);
148 static int ae_detach(device_t, int);
149 static int ae_activate(device_t, enum devact);
150
151 static int ae_ifflags_cb(struct ethercom *);
152 static void ae_reset(struct ae_softc *);
153 static void ae_idle(struct ae_softc *, u_int32_t);
154
155 static void ae_start(struct ifnet *);
156 static void ae_watchdog(struct ifnet *);
157 static int ae_ioctl(struct ifnet *, u_long, void *);
158 static int ae_init(struct ifnet *);
159 static void ae_stop(struct ifnet *, int);
160
161 static void ae_shutdown(void *);
162
163 static void ae_rxdrain(struct ae_softc *);
164 static int ae_add_rxbuf(struct ae_softc *, int);
165
166 static int ae_enable(struct ae_softc *);
167 static void ae_disable(struct ae_softc *);
168 static void ae_power(int, void *);
169
170 static void ae_filter_setup(struct ae_softc *);
171
172 static int ae_intr(void *);
173 static void ae_rxintr(struct ae_softc *);
174 static void ae_txintr(struct ae_softc *);
175
176 static void ae_mii_tick(void *);
177 static void ae_mii_statchg(struct ifnet *);
178
179 static int ae_mii_readreg(device_t, int, int);
180 static void ae_mii_writereg(device_t, int, int, int);
181
182 #ifdef AE_DEBUG
183 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
184 printf x
185 #else
186 #define DPRINTF(sc, x) /* nothing */
187 #endif
188
189 #ifdef AE_STATS
190 static void ae_print_stats(struct ae_softc *);
191 #endif
192
193 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
194 ae_match, ae_attach, ae_detach, ae_activate);
195
196 /*
197 * ae_match:
198 *
199 * Check for a device match.
200 */
201 int
202 ae_match(device_t parent, struct cfdata *cf, void *aux)
203 {
204 struct arbus_attach_args *aa = aux;
205
206 if (strcmp(aa->aa_name, cf->cf_name) == 0)
207 return 1;
208
209 return 0;
210
211 }
212
213 /*
214 * ae_attach:
215 *
216 * Attach an ae interface to the system.
217 */
218 void
219 ae_attach(device_t parent, device_t self, void *aux)
220 {
221 const uint8_t *enaddr;
222 prop_data_t ea;
223 struct ae_softc *sc = device_private(self);
224 struct arbus_attach_args *aa = aux;
225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 int i, error;
227
228 sc->sc_dev = self;
229
230 callout_init(&sc->sc_tick_callout, 0);
231
232 printf(": Atheros AR531X 10/100 Ethernet\n");
233
234 /*
235 * Try to get MAC address.
236 */
237 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 if (ea == NULL) {
239 printf("%s: unable to get mac-addr property\n",
240 device_xname(sc->sc_dev));
241 return;
242 }
243 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 enaddr = prop_data_data_nocopy(ea);
246
247 /* Announce ourselves. */
248 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 ether_sprintf(enaddr));
250
251 sc->sc_cirq = aa->aa_cirq;
252 sc->sc_mirq = aa->aa_mirq;
253 sc->sc_st = aa->aa_bst;
254 sc->sc_dmat = aa->aa_dmat;
255
256 SIMPLEQ_INIT(&sc->sc_txfreeq);
257 SIMPLEQ_INIT(&sc->sc_txdirtyq);
258
259 /*
260 * Map registers.
261 */
262 sc->sc_size = aa->aa_size;
263 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 &sc->sc_sh)) != 0) {
265 printf("%s: unable to map registers, error = %d\n",
266 device_xname(sc->sc_dev), error);
267 goto fail_0;
268 }
269
270 /*
271 * Allocate the control data structures, and create and load the
272 * DMA map for it.
273 */
274 if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 1, &sc->sc_cdnseg, 0)) != 0) {
277 printf("%s: unable to allocate control data, error = %d\n",
278 device_xname(sc->sc_dev), error);
279 goto fail_1;
280 }
281
282 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 BUS_DMA_COHERENT)) != 0) {
285 printf("%s: unable to map control data, error = %d\n",
286 device_xname(sc->sc_dev), error);
287 goto fail_2;
288 }
289
290 if ((error = bus_dmamap_create(sc->sc_dmat,
291 sizeof(struct ae_control_data), 1,
292 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 printf("%s: unable to create control data DMA map, "
294 "error = %d\n", device_xname(sc->sc_dev), error);
295 goto fail_3;
296 }
297
298 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 0)) != 0) {
301 printf("%s: unable to load control data DMA map, error = %d\n",
302 device_xname(sc->sc_dev), error);
303 goto fail_4;
304 }
305
306 /*
307 * Create the transmit buffer DMA maps.
308 */
309 for (i = 0; i < AE_TXQUEUELEN; i++) {
310 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 AE_NTXSEGS, MCLBYTES, 0, 0,
312 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 printf("%s: unable to create tx DMA map %d, "
314 "error = %d\n", device_xname(sc->sc_dev), i, error);
315 goto fail_5;
316 }
317 }
318
319 /*
320 * Create the receive buffer DMA maps.
321 */
322 for (i = 0; i < AE_NRXDESC; i++) {
323 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 printf("%s: unable to create rx DMA map %d, "
326 "error = %d\n", device_xname(sc->sc_dev), i, error);
327 goto fail_6;
328 }
329 sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 }
331
332 /*
333 * Reset the chip to a known state.
334 */
335 ae_reset(sc);
336
337 /*
338 * From this point forward, the attachment cannot fail. A failure
339 * before this point releases all resources that may have been
340 * allocated.
341 */
342 sc->sc_flags |= AE_ATTACHED;
343
344 /*
345 * Initialize our media structures. This may probe the MII, if
346 * present.
347 */
348 sc->sc_mii.mii_ifp = ifp;
349 sc->sc_mii.mii_readreg = ae_mii_readreg;
350 sc->sc_mii.mii_writereg = ae_mii_writereg;
351 sc->sc_mii.mii_statchg = ae_mii_statchg;
352 sc->sc_ethercom.ec_mii = &sc->sc_mii;
353 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
354 ether_mediastatus);
355 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
356 MII_OFFSET_ANY, 0);
357
358 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
359 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
360 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
361 } else
362 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
363
364 sc->sc_tick = ae_mii_tick;
365
366 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 sc->sc_if_flags = ifp->if_flags;
370 ifp->if_ioctl = ae_ioctl;
371 ifp->if_start = ae_start;
372 ifp->if_watchdog = ae_watchdog;
373 ifp->if_init = ae_init;
374 ifp->if_stop = ae_stop;
375 IFQ_SET_READY(&ifp->if_snd);
376
377 /*
378 * We can support 802.1Q VLAN-sized frames.
379 */
380 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
381
382 /*
383 * Attach the interface.
384 */
385 if_attach(ifp);
386 ether_ifattach(ifp, enaddr);
387 ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
388
389 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
390 RND_TYPE_NET, RND_FLAG_DEFAULT);
391
392 /*
393 * Make sure the interface is shutdown during reboot.
394 */
395 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
396 if (sc->sc_sdhook == NULL)
397 printf("%s: WARNING: unable to establish shutdown hook\n",
398 device_xname(sc->sc_dev));
399
400 /*
401 * Add a suspend hook to make sure we come back up after a
402 * resume.
403 */
404 sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
405 ae_power, sc);
406 if (sc->sc_powerhook == NULL)
407 printf("%s: WARNING: unable to establish power hook\n",
408 device_xname(sc->sc_dev));
409 return;
410
411 /*
412 * Free any resources we've allocated during the failed attach
413 * attempt. Do this in reverse order and fall through.
414 */
415 fail_6:
416 for (i = 0; i < AE_NRXDESC; i++) {
417 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
418 bus_dmamap_destroy(sc->sc_dmat,
419 sc->sc_rxsoft[i].rxs_dmamap);
420 }
421 fail_5:
422 for (i = 0; i < AE_TXQUEUELEN; i++) {
423 if (sc->sc_txsoft[i].txs_dmamap != NULL)
424 bus_dmamap_destroy(sc->sc_dmat,
425 sc->sc_txsoft[i].txs_dmamap);
426 }
427 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
428 fail_4:
429 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
430 fail_3:
431 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
432 sizeof(struct ae_control_data));
433 fail_2:
434 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
435 fail_1:
436 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
437 fail_0:
438 return;
439 }
440
441 /*
442 * ae_activate:
443 *
444 * Handle device activation/deactivation requests.
445 */
446 int
447 ae_activate(device_t self, enum devact act)
448 {
449 struct ae_softc *sc = device_private(self);
450
451 switch (act) {
452 case DVACT_DEACTIVATE:
453 if_deactivate(&sc->sc_ethercom.ec_if);
454 return 0;
455 default:
456 return EOPNOTSUPP;
457 }
458 }
459
460 /*
461 * ae_detach:
462 *
463 * Detach a device interface.
464 */
465 int
466 ae_detach(device_t self, int flags)
467 {
468 struct ae_softc *sc = device_private(self);
469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 struct ae_rxsoft *rxs;
471 struct ae_txsoft *txs;
472 int i;
473
474 /*
475 * Succeed now if there isn't any work to do.
476 */
477 if ((sc->sc_flags & AE_ATTACHED) == 0)
478 return (0);
479
480 /* Unhook our tick handler. */
481 if (sc->sc_tick)
482 callout_stop(&sc->sc_tick_callout);
483
484 /* Detach all PHYs */
485 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
486
487 /* Delete all remaining media. */
488 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
489
490 rnd_detach_source(&sc->sc_rnd_source);
491 ether_ifdetach(ifp);
492 if_detach(ifp);
493
494 for (i = 0; i < AE_NRXDESC; i++) {
495 rxs = &sc->sc_rxsoft[i];
496 if (rxs->rxs_mbuf != NULL) {
497 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
498 m_freem(rxs->rxs_mbuf);
499 rxs->rxs_mbuf = NULL;
500 }
501 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
502 }
503 for (i = 0; i < AE_TXQUEUELEN; i++) {
504 txs = &sc->sc_txsoft[i];
505 if (txs->txs_mbuf != NULL) {
506 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
507 m_freem(txs->txs_mbuf);
508 txs->txs_mbuf = NULL;
509 }
510 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
511 }
512 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
513 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
514 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
515 sizeof(struct ae_control_data));
516 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
517
518 shutdownhook_disestablish(sc->sc_sdhook);
519 powerhook_disestablish(sc->sc_powerhook);
520
521 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
522
523
524 return (0);
525 }
526
527 /*
528 * ae_shutdown:
529 *
530 * Make sure the interface is stopped at reboot time.
531 */
532 static void
533 ae_shutdown(void *arg)
534 {
535 struct ae_softc *sc = arg;
536
537 ae_stop(&sc->sc_ethercom.ec_if, 1);
538 }
539
540 /*
541 * ae_start: [ifnet interface function]
542 *
543 * Start packet transmission on the interface.
544 */
545 static void
546 ae_start(struct ifnet *ifp)
547 {
548 struct ae_softc *sc = ifp->if_softc;
549 struct mbuf *m0, *m;
550 struct ae_txsoft *txs;
551 bus_dmamap_t dmamap;
552 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
553
554 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
555 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
556
557
558 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
559 return;
560
561 /*
562 * Remember the previous number of free descriptors and
563 * the first descriptor we'll use.
564 */
565 ofree = sc->sc_txfree;
566 firsttx = sc->sc_txnext;
567
568 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
569 device_xname(sc->sc_dev), ofree, firsttx));
570
571 /*
572 * Loop through the send queue, setting up transmit descriptors
573 * until we drain the queue, or use up all available transmit
574 * descriptors.
575 */
576 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
577 sc->sc_txfree != 0) {
578 /*
579 * Grab a packet off the queue.
580 */
581 IFQ_POLL(&ifp->if_snd, m0);
582 if (m0 == NULL)
583 break;
584 m = NULL;
585
586 dmamap = txs->txs_dmamap;
587
588 /*
589 * Load the DMA map. If this fails, the packet either
590 * didn't fit in the alloted number of segments, or we were
591 * short on resources. In this case, we'll copy and try
592 * again.
593 */
594 if (((mtod(m0, uintptr_t) & 3) != 0) ||
595 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
596 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
597 MGETHDR(m, M_DONTWAIT, MT_DATA);
598 if (m == NULL) {
599 printf("%s: unable to allocate Tx mbuf\n",
600 device_xname(sc->sc_dev));
601 break;
602 }
603 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
604 if (m0->m_pkthdr.len > MHLEN) {
605 MCLGET(m, M_DONTWAIT);
606 if ((m->m_flags & M_EXT) == 0) {
607 printf("%s: unable to allocate Tx "
608 "cluster\n", device_xname(sc->sc_dev));
609 m_freem(m);
610 break;
611 }
612 }
613 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
614 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
615 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
616 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
617 if (error) {
618 printf("%s: unable to load Tx buffer, "
619 "error = %d\n", device_xname(sc->sc_dev),
620 error);
621 break;
622 }
623 }
624
625 /*
626 * Ensure we have enough descriptors free to describe
627 * the packet.
628 */
629 if (dmamap->dm_nsegs > sc->sc_txfree) {
630 /*
631 * Not enough free descriptors to transmit this
632 * packet. We haven't committed to anything yet,
633 * so just unload the DMA map, put the packet
634 * back on the queue, and punt. Notify the upper
635 * layer that there are no more slots left.
636 *
637 * XXX We could allocate an mbuf and copy, but
638 * XXX it is worth it?
639 */
640 ifp->if_flags |= IFF_OACTIVE;
641 bus_dmamap_unload(sc->sc_dmat, dmamap);
642 if (m != NULL)
643 m_freem(m);
644 break;
645 }
646
647 IFQ_DEQUEUE(&ifp->if_snd, m0);
648 if (m != NULL) {
649 m_freem(m0);
650 m0 = m;
651 }
652
653 /*
654 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
655 */
656
657 /* Sync the DMA map. */
658 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
659 BUS_DMASYNC_PREWRITE);
660
661 /*
662 * Initialize the transmit descriptors.
663 */
664 for (nexttx = sc->sc_txnext, seg = 0;
665 seg < dmamap->dm_nsegs;
666 seg++, nexttx = AE_NEXTTX(nexttx)) {
667 /*
668 * If this is the first descriptor we're
669 * enqueueing, don't set the OWN bit just
670 * yet. That could cause a race condition.
671 * We'll do it below.
672 */
673 sc->sc_txdescs[nexttx].ad_status =
674 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
675 sc->sc_txdescs[nexttx].ad_bufaddr1 =
676 dmamap->dm_segs[seg].ds_addr;
677 sc->sc_txdescs[nexttx].ad_ctl =
678 (dmamap->dm_segs[seg].ds_len <<
679 ADCTL_SIZE1_SHIFT) |
680 (nexttx == (AE_NTXDESC - 1) ?
681 ADCTL_ER : 0);
682 lasttx = nexttx;
683 }
684
685 KASSERT(lasttx != -1);
686
687 /* Set `first segment' and `last segment' appropriately. */
688 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
689 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
690
691 #ifdef AE_DEBUG
692 if (ifp->if_flags & IFF_DEBUG) {
693 printf(" txsoft %p transmit chain:\n", txs);
694 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
695 printf(" descriptor %d:\n", seg);
696 printf(" ad_status: 0x%08x\n",
697 sc->sc_txdescs[seg].ad_status);
698 printf(" ad_ctl: 0x%08x\n",
699 sc->sc_txdescs[seg].ad_ctl);
700 printf(" ad_bufaddr1: 0x%08x\n",
701 sc->sc_txdescs[seg].ad_bufaddr1);
702 printf(" ad_bufaddr2: 0x%08x\n",
703 sc->sc_txdescs[seg].ad_bufaddr2);
704 if (seg == lasttx)
705 break;
706 }
707 }
708 #endif
709
710 /* Sync the descriptors we're using. */
711 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
712 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
713
714 /*
715 * Store a pointer to the packet so we can free it later,
716 * and remember what txdirty will be once the packet is
717 * done.
718 */
719 txs->txs_mbuf = m0;
720 txs->txs_firstdesc = sc->sc_txnext;
721 txs->txs_lastdesc = lasttx;
722 txs->txs_ndescs = dmamap->dm_nsegs;
723
724 /* Advance the tx pointer. */
725 sc->sc_txfree -= dmamap->dm_nsegs;
726 sc->sc_txnext = nexttx;
727
728 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
729 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
730
731 /*
732 * Pass the packet to any BPF listeners.
733 */
734 bpf_mtap(ifp, m0);
735 }
736
737 if (txs == NULL || sc->sc_txfree == 0) {
738 /* No more slots left; notify upper layer. */
739 ifp->if_flags |= IFF_OACTIVE;
740 }
741
742 if (sc->sc_txfree != ofree) {
743 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
744 device_xname(sc->sc_dev), lasttx, firsttx));
745 /*
746 * Cause a transmit interrupt to happen on the
747 * last packet we enqueued.
748 */
749 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
750 AE_CDTXSYNC(sc, lasttx, 1,
751 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
752
753 /*
754 * The entire packet chain is set up. Give the
755 * first descriptor to the chip now.
756 */
757 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
758 AE_CDTXSYNC(sc, firsttx, 1,
759 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
760
761 /* Wake up the transmitter. */
762 /* XXX USE AUTOPOLLING? */
763 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
764 AE_BARRIER(sc);
765
766 /* Set a watchdog timer in case the chip flakes out. */
767 ifp->if_timer = 5;
768 }
769 }
770
771 /*
772 * ae_watchdog: [ifnet interface function]
773 *
774 * Watchdog timer handler.
775 */
776 static void
777 ae_watchdog(struct ifnet *ifp)
778 {
779 struct ae_softc *sc = ifp->if_softc;
780 int doing_transmit;
781
782 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
783
784 if (doing_transmit) {
785 printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
786 ifp->if_oerrors++;
787 }
788 else
789 printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
790
791 (void) ae_init(ifp);
792
793 /* Try to get more packets going. */
794 ae_start(ifp);
795 }
796
797 /* If the interface is up and running, only modify the receive
798 * filter when changing to/from promiscuous mode. Otherwise return
799 * ENETRESET so that ether_ioctl will reset the chip.
800 */
801 static int
802 ae_ifflags_cb(struct ethercom *ec)
803 {
804 struct ifnet *ifp = &ec->ec_if;
805 struct ae_softc *sc = ifp->if_softc;
806 int change = ifp->if_flags ^ sc->sc_if_flags;
807
808 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
809 return ENETRESET;
810 else if ((change & IFF_PROMISC) != 0)
811 ae_filter_setup(sc);
812 return 0;
813 }
814
815 /*
816 * ae_ioctl: [ifnet interface function]
817 *
818 * Handle control requests from the operator.
819 */
820 static int
821 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
822 {
823 struct ae_softc *sc = ifp->if_softc;
824 int s, error;
825
826 s = splnet();
827
828 error = ether_ioctl(ifp, cmd, data);
829 if (error == ENETRESET) {
830 if (ifp->if_flags & IFF_RUNNING) {
831 /*
832 * Multicast list has changed. Set the
833 * hardware filter accordingly.
834 */
835 ae_filter_setup(sc);
836 }
837 error = 0;
838 }
839
840 /* Try to get more packets going. */
841 if (AE_IS_ENABLED(sc))
842 ae_start(ifp);
843
844 sc->sc_if_flags = ifp->if_flags;
845 splx(s);
846 return (error);
847 }
848
849 /*
850 * ae_intr:
851 *
852 * Interrupt service routine.
853 */
854 int
855 ae_intr(void *arg)
856 {
857 struct ae_softc *sc = arg;
858 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
859 u_int32_t status, rxstatus, txstatus;
860 int handled = 0, txthresh;
861
862 DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
863
864 #ifdef DEBUG
865 if (AE_IS_ENABLED(sc) == 0)
866 panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
867 #endif
868
869 /*
870 * If the interface isn't running, the interrupt couldn't
871 * possibly have come from us.
872 */
873 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
874 !device_is_active(sc->sc_dev)) {
875 printf("spurious?!?\n");
876 return (0);
877 }
878
879 for (;;) {
880 status = AE_READ(sc, CSR_STATUS);
881 if (status) {
882 AE_WRITE(sc, CSR_STATUS, status);
883 AE_BARRIER(sc);
884 }
885
886 if ((status & sc->sc_inten) == 0)
887 break;
888
889 handled = 1;
890
891 rxstatus = status & sc->sc_rxint_mask;
892 txstatus = status & sc->sc_txint_mask;
893
894 if (rxstatus) {
895 /* Grab new any new packets. */
896 ae_rxintr(sc);
897
898 if (rxstatus & STATUS_RU) {
899 printf("%s: receive ring overrun\n",
900 device_xname(sc->sc_dev));
901 /* Get the receive process going again. */
902 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
903 AE_BARRIER(sc);
904 break;
905 }
906 }
907
908 if (txstatus) {
909 /* Sweep up transmit descriptors. */
910 ae_txintr(sc);
911
912 if (txstatus & STATUS_TJT)
913 printf("%s: transmit jabber timeout\n",
914 device_xname(sc->sc_dev));
915
916 if (txstatus & STATUS_UNF) {
917 /*
918 * Increase our transmit threshold if
919 * another is available.
920 */
921 txthresh = sc->sc_txthresh + 1;
922 if (ae_txthresh[txthresh].txth_name != NULL) {
923 uint32_t opmode;
924 /* Idle the transmit process. */
925 opmode = AE_READ(sc, CSR_OPMODE);
926 ae_idle(sc, OPMODE_ST);
927
928 sc->sc_txthresh = txthresh;
929 opmode &=
930 ~(OPMODE_TR|OPMODE_SF);
931 opmode |=
932 ae_txthresh[txthresh].txth_opmode;
933 printf("%s: transmit underrun; new "
934 "threshold: %s\n",
935 device_xname(sc->sc_dev),
936 ae_txthresh[txthresh].txth_name);
937
938 /*
939 * Set the new threshold and restart
940 * the transmit process.
941 */
942 AE_WRITE(sc, CSR_OPMODE, opmode);
943 AE_BARRIER(sc);
944 }
945 /*
946 * XXX Log every Nth underrun from
947 * XXX now on?
948 */
949 }
950 }
951
952 if (status & (STATUS_TPS|STATUS_RPS)) {
953 if (status & STATUS_TPS)
954 printf("%s: transmit process stopped\n",
955 device_xname(sc->sc_dev));
956 if (status & STATUS_RPS)
957 printf("%s: receive process stopped\n",
958 device_xname(sc->sc_dev));
959 (void) ae_init(ifp);
960 break;
961 }
962
963 if (status & STATUS_SE) {
964 const char *str;
965
966 if (status & STATUS_TX_ABORT)
967 str = "tx abort";
968 else if (status & STATUS_RX_ABORT)
969 str = "rx abort";
970 else
971 str = "unknown error";
972
973 printf("%s: fatal system error: %s\n",
974 device_xname(sc->sc_dev), str);
975 (void) ae_init(ifp);
976 break;
977 }
978
979 /*
980 * Not handled:
981 *
982 * Transmit buffer unavailable -- normal
983 * condition, nothing to do, really.
984 *
985 * General purpose timer experied -- we don't
986 * use the general purpose timer.
987 *
988 * Early receive interrupt -- not available on
989 * all chips, we just use RI. We also only
990 * use single-segment receive DMA, so this
991 * is mostly useless.
992 */
993 }
994
995 /* Try to get more packets going. */
996 ae_start(ifp);
997
998 if (handled)
999 rnd_add_uint32(&sc->sc_rnd_source, status);
1000 return (handled);
1001 }
1002
1003 /*
1004 * ae_rxintr:
1005 *
1006 * Helper; handle receive interrupts.
1007 */
1008 static void
1009 ae_rxintr(struct ae_softc *sc)
1010 {
1011 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1012 struct ae_rxsoft *rxs;
1013 struct mbuf *m;
1014 u_int32_t rxstat;
1015 int i, len;
1016
1017 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1018 rxs = &sc->sc_rxsoft[i];
1019
1020 AE_CDRXSYNC(sc, i,
1021 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1022
1023 rxstat = sc->sc_rxdescs[i].ad_status;
1024
1025 if (rxstat & ADSTAT_OWN) {
1026 /*
1027 * We have processed all of the receive buffers.
1028 */
1029 break;
1030 }
1031
1032 /*
1033 * If any collisions were seen on the wire, count one.
1034 */
1035 if (rxstat & ADSTAT_Rx_CS)
1036 ifp->if_collisions++;
1037
1038 /*
1039 * If an error occurred, update stats, clear the status
1040 * word, and leave the packet buffer in place. It will
1041 * simply be reused the next time the ring comes around.
1042 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1043 * error.
1044 */
1045 if (rxstat & ADSTAT_ES &&
1046 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1047 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1048 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1049 #define PRINTERR(bit, str) \
1050 if (rxstat & (bit)) \
1051 printf("%s: receive error: %s\n", \
1052 device_xname(sc->sc_dev), str)
1053 ifp->if_ierrors++;
1054 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1055 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1056 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1057 PRINTERR(ADSTAT_Rx_RE, "MII error");
1058 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1059 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1060 #undef PRINTERR
1061 AE_INIT_RXDESC(sc, i);
1062 continue;
1063 }
1064
1065 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1066 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1067
1068 /*
1069 * No errors; receive the packet. Note the chip
1070 * includes the CRC with every packet.
1071 */
1072 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1073
1074 /*
1075 * XXX: the Atheros part can align on half words. what
1076 * is the performance implication of this? Probably
1077 * minimal, and we should use it...
1078 */
1079 #ifdef __NO_STRICT_ALIGNMENT
1080 /*
1081 * Allocate a new mbuf cluster. If that fails, we are
1082 * out of memory, and must drop the packet and recycle
1083 * the buffer that's already attached to this descriptor.
1084 */
1085 m = rxs->rxs_mbuf;
1086 if (ae_add_rxbuf(sc, i) != 0) {
1087 ifp->if_ierrors++;
1088 AE_INIT_RXDESC(sc, i);
1089 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1090 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1091 continue;
1092 }
1093 #else
1094 /*
1095 * The chip's receive buffers must be 4-byte aligned.
1096 * But this means that the data after the Ethernet header
1097 * is misaligned. We must allocate a new buffer and
1098 * copy the data, shifted forward 2 bytes.
1099 */
1100 MGETHDR(m, M_DONTWAIT, MT_DATA);
1101 if (m == NULL) {
1102 dropit:
1103 ifp->if_ierrors++;
1104 AE_INIT_RXDESC(sc, i);
1105 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1106 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1107 continue;
1108 }
1109 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1110 if (len > (MHLEN - 2)) {
1111 MCLGET(m, M_DONTWAIT);
1112 if ((m->m_flags & M_EXT) == 0) {
1113 m_freem(m);
1114 goto dropit;
1115 }
1116 }
1117 m->m_data += 2;
1118
1119 /*
1120 * Note that we use clusters for incoming frames, so the
1121 * buffer is virtually contiguous.
1122 */
1123 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1124
1125 /* Allow the receive descriptor to continue using its mbuf. */
1126 AE_INIT_RXDESC(sc, i);
1127 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1128 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1129 #endif /* __NO_STRICT_ALIGNMENT */
1130
1131 ifp->if_ipackets++;
1132 m->m_pkthdr.rcvif = ifp;
1133 m->m_pkthdr.len = m->m_len = len;
1134
1135 /*
1136 * Pass this up to any BPF listeners, but only
1137 * pass it up the stack if its for us.
1138 */
1139 bpf_mtap(ifp, m);
1140
1141 /* Pass it on. */
1142 if_percpuq_enqueue(ifp->if_percpuq, m);
1143 }
1144
1145 /* Update the receive pointer. */
1146 sc->sc_rxptr = i;
1147 }
1148
1149 /*
1150 * ae_txintr:
1151 *
1152 * Helper; handle transmit interrupts.
1153 */
1154 static void
1155 ae_txintr(struct ae_softc *sc)
1156 {
1157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1158 struct ae_txsoft *txs;
1159 u_int32_t txstat;
1160
1161 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1162 device_xname(sc->sc_dev), sc->sc_flags));
1163
1164 ifp->if_flags &= ~IFF_OACTIVE;
1165
1166 /*
1167 * Go through our Tx list and free mbufs for those
1168 * frames that have been transmitted.
1169 */
1170 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1171 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1172 txs->txs_ndescs,
1173 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1174
1175 #ifdef AE_DEBUG
1176 if (ifp->if_flags & IFF_DEBUG) {
1177 int i;
1178 printf(" txsoft %p transmit chain:\n", txs);
1179 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1180 printf(" descriptor %d:\n", i);
1181 printf(" ad_status: 0x%08x\n",
1182 sc->sc_txdescs[i].ad_status);
1183 printf(" ad_ctl: 0x%08x\n",
1184 sc->sc_txdescs[i].ad_ctl);
1185 printf(" ad_bufaddr1: 0x%08x\n",
1186 sc->sc_txdescs[i].ad_bufaddr1);
1187 printf(" ad_bufaddr2: 0x%08x\n",
1188 sc->sc_txdescs[i].ad_bufaddr2);
1189 if (i == txs->txs_lastdesc)
1190 break;
1191 }
1192 }
1193 #endif
1194
1195 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1196 if (txstat & ADSTAT_OWN)
1197 break;
1198
1199 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1200
1201 sc->sc_txfree += txs->txs_ndescs;
1202
1203 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1204 0, txs->txs_dmamap->dm_mapsize,
1205 BUS_DMASYNC_POSTWRITE);
1206 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1207 m_freem(txs->txs_mbuf);
1208 txs->txs_mbuf = NULL;
1209
1210 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1211
1212 /*
1213 * Check for errors and collisions.
1214 */
1215 #ifdef AE_STATS
1216 if (txstat & ADSTAT_Tx_UF)
1217 sc->sc_stats.ts_tx_uf++;
1218 if (txstat & ADSTAT_Tx_TO)
1219 sc->sc_stats.ts_tx_to++;
1220 if (txstat & ADSTAT_Tx_EC)
1221 sc->sc_stats.ts_tx_ec++;
1222 if (txstat & ADSTAT_Tx_LC)
1223 sc->sc_stats.ts_tx_lc++;
1224 #endif
1225
1226 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1227 ifp->if_oerrors++;
1228
1229 if (txstat & ADSTAT_Tx_EC)
1230 ifp->if_collisions += 16;
1231 else
1232 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1233 if (txstat & ADSTAT_Tx_LC)
1234 ifp->if_collisions++;
1235
1236 ifp->if_opackets++;
1237 }
1238
1239 /*
1240 * If there are no more pending transmissions, cancel the watchdog
1241 * timer.
1242 */
1243 if (txs == NULL)
1244 ifp->if_timer = 0;
1245 }
1246
1247 #ifdef AE_STATS
1248 void
1249 ae_print_stats(struct ae_softc *sc)
1250 {
1251
1252 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1253 device_xname(sc->sc_dev),
1254 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1255 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1256 }
1257 #endif
1258
1259 /*
1260 * ae_reset:
1261 *
1262 * Perform a soft reset on the chip.
1263 */
1264 void
1265 ae_reset(struct ae_softc *sc)
1266 {
1267 int i;
1268
1269 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1270 AE_BARRIER(sc);
1271
1272 /*
1273 * The chip doesn't take itself out of reset automatically.
1274 * We need to do so after 2us.
1275 */
1276 delay(10);
1277 AE_WRITE(sc, CSR_BUSMODE, 0);
1278 AE_BARRIER(sc);
1279
1280 for (i = 0; i < 1000; i++) {
1281 /*
1282 * Wait a bit for the reset to complete before peeking
1283 * at the chip again.
1284 */
1285 delay(10);
1286 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1287 break;
1288 }
1289
1290 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1291 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1292
1293 delay(1000);
1294 }
1295
1296 /*
1297 * ae_init: [ ifnet interface function ]
1298 *
1299 * Initialize the interface. Must be called at splnet().
1300 */
1301 static int
1302 ae_init(struct ifnet *ifp)
1303 {
1304 struct ae_softc *sc = ifp->if_softc;
1305 struct ae_txsoft *txs;
1306 struct ae_rxsoft *rxs;
1307 const uint8_t *enaddr;
1308 int i, error = 0;
1309
1310 if ((error = ae_enable(sc)) != 0)
1311 goto out;
1312
1313 /*
1314 * Cancel any pending I/O.
1315 */
1316 ae_stop(ifp, 0);
1317
1318 /*
1319 * Reset the chip to a known state.
1320 */
1321 ae_reset(sc);
1322
1323 /*
1324 * Initialize the BUSMODE register.
1325 */
1326 AE_WRITE(sc, CSR_BUSMODE,
1327 /* XXX: not sure if this is a good thing or not... */
1328 //BUSMODE_ALIGN_16B |
1329 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1330 AE_BARRIER(sc);
1331
1332 /*
1333 * Initialize the transmit descriptor ring.
1334 */
1335 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1336 for (i = 0; i < AE_NTXDESC; i++) {
1337 sc->sc_txdescs[i].ad_ctl = 0;
1338 sc->sc_txdescs[i].ad_bufaddr2 =
1339 AE_CDTXADDR(sc, AE_NEXTTX(i));
1340 }
1341 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1342 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1343 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1344 sc->sc_txfree = AE_NTXDESC;
1345 sc->sc_txnext = 0;
1346
1347 /*
1348 * Initialize the transmit job descriptors.
1349 */
1350 SIMPLEQ_INIT(&sc->sc_txfreeq);
1351 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1352 for (i = 0; i < AE_TXQUEUELEN; i++) {
1353 txs = &sc->sc_txsoft[i];
1354 txs->txs_mbuf = NULL;
1355 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1356 }
1357
1358 /*
1359 * Initialize the receive descriptor and receive job
1360 * descriptor rings.
1361 */
1362 for (i = 0; i < AE_NRXDESC; i++) {
1363 rxs = &sc->sc_rxsoft[i];
1364 if (rxs->rxs_mbuf == NULL) {
1365 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1366 printf("%s: unable to allocate or map rx "
1367 "buffer %d, error = %d\n",
1368 device_xname(sc->sc_dev), i, error);
1369 /*
1370 * XXX Should attempt to run with fewer receive
1371 * XXX buffers instead of just failing.
1372 */
1373 ae_rxdrain(sc);
1374 goto out;
1375 }
1376 } else
1377 AE_INIT_RXDESC(sc, i);
1378 }
1379 sc->sc_rxptr = 0;
1380
1381 /*
1382 * Initialize the interrupt mask and enable interrupts.
1383 */
1384 /* normal interrupts */
1385 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1386
1387 /* abnormal interrupts */
1388 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1389 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1390
1391 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1392 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1393
1394 sc->sc_rxint_mask &= sc->sc_inten;
1395 sc->sc_txint_mask &= sc->sc_inten;
1396
1397 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1398 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1399
1400 /*
1401 * Give the transmit and receive rings to the chip.
1402 */
1403 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1404 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1405 AE_BARRIER(sc);
1406
1407 /*
1408 * Set the station address.
1409 */
1410 enaddr = CLLADDR(ifp->if_sadl);
1411 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1412 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1413 enaddr[1] << 8 | enaddr[0]);
1414 AE_BARRIER(sc);
1415
1416 /*
1417 * Set the receive filter. This will start the transmit and
1418 * receive processes.
1419 */
1420 ae_filter_setup(sc);
1421
1422 /*
1423 * Set the current media.
1424 */
1425 if ((error = ether_mediachange(ifp)) != 0)
1426 goto out;
1427
1428 /*
1429 * Start the mac.
1430 */
1431 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1432 AE_BARRIER(sc);
1433
1434 /*
1435 * Write out the opmode.
1436 */
1437 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1438 ae_txthresh[sc->sc_txthresh].txth_opmode);
1439 /*
1440 * Start the receive process.
1441 */
1442 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1443 AE_BARRIER(sc);
1444
1445 if (sc->sc_tick != NULL) {
1446 /* Start the one second clock. */
1447 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1448 }
1449
1450 /*
1451 * Note that the interface is now running.
1452 */
1453 ifp->if_flags |= IFF_RUNNING;
1454 ifp->if_flags &= ~IFF_OACTIVE;
1455 sc->sc_if_flags = ifp->if_flags;
1456
1457 out:
1458 if (error) {
1459 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1460 ifp->if_timer = 0;
1461 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1462 }
1463 return (error);
1464 }
1465
1466 /*
1467 * ae_enable:
1468 *
1469 * Enable the chip.
1470 */
1471 static int
1472 ae_enable(struct ae_softc *sc)
1473 {
1474
1475 if (AE_IS_ENABLED(sc) == 0) {
1476 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1477 ae_intr, sc);
1478 if (sc->sc_ih == NULL) {
1479 printf("%s: unable to establish interrupt\n",
1480 device_xname(sc->sc_dev));
1481 return (EIO);
1482 }
1483 sc->sc_flags |= AE_ENABLED;
1484 }
1485 return (0);
1486 }
1487
1488 /*
1489 * ae_disable:
1490 *
1491 * Disable the chip.
1492 */
1493 static void
1494 ae_disable(struct ae_softc *sc)
1495 {
1496
1497 if (AE_IS_ENABLED(sc)) {
1498 arbus_intr_disestablish(sc->sc_ih);
1499 sc->sc_flags &= ~AE_ENABLED;
1500 }
1501 }
1502
1503 /*
1504 * ae_power:
1505 *
1506 * Power management (suspend/resume) hook.
1507 */
1508 static void
1509 ae_power(int why, void *arg)
1510 {
1511 struct ae_softc *sc = arg;
1512 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1513 int s;
1514
1515 printf("power called: %d, %x\n", why, (uint32_t)arg);
1516 s = splnet();
1517 switch (why) {
1518 case PWR_STANDBY:
1519 /* do nothing! */
1520 break;
1521 case PWR_SUSPEND:
1522 ae_stop(ifp, 0);
1523 ae_disable(sc);
1524 break;
1525 case PWR_RESUME:
1526 if (ifp->if_flags & IFF_UP) {
1527 ae_enable(sc);
1528 ae_init(ifp);
1529 }
1530 break;
1531 case PWR_SOFTSUSPEND:
1532 case PWR_SOFTSTANDBY:
1533 case PWR_SOFTRESUME:
1534 break;
1535 }
1536 splx(s);
1537 }
1538
1539 /*
1540 * ae_rxdrain:
1541 *
1542 * Drain the receive queue.
1543 */
1544 static void
1545 ae_rxdrain(struct ae_softc *sc)
1546 {
1547 struct ae_rxsoft *rxs;
1548 int i;
1549
1550 for (i = 0; i < AE_NRXDESC; i++) {
1551 rxs = &sc->sc_rxsoft[i];
1552 if (rxs->rxs_mbuf != NULL) {
1553 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1554 m_freem(rxs->rxs_mbuf);
1555 rxs->rxs_mbuf = NULL;
1556 }
1557 }
1558 }
1559
1560 /*
1561 * ae_stop: [ ifnet interface function ]
1562 *
1563 * Stop transmission on the interface.
1564 */
1565 static void
1566 ae_stop(struct ifnet *ifp, int disable)
1567 {
1568 struct ae_softc *sc = ifp->if_softc;
1569 struct ae_txsoft *txs;
1570
1571 if (sc->sc_tick != NULL) {
1572 /* Stop the one second clock. */
1573 callout_stop(&sc->sc_tick_callout);
1574 }
1575
1576 /* Down the MII. */
1577 mii_down(&sc->sc_mii);
1578
1579 /* Disable interrupts. */
1580 AE_WRITE(sc, CSR_INTEN, 0);
1581
1582 /* Stop the transmit and receive processes. */
1583 AE_WRITE(sc, CSR_OPMODE, 0);
1584 AE_WRITE(sc, CSR_RXLIST, 0);
1585 AE_WRITE(sc, CSR_TXLIST, 0);
1586 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1587 AE_BARRIER(sc);
1588
1589 /*
1590 * Release any queued transmit buffers.
1591 */
1592 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1593 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1594 if (txs->txs_mbuf != NULL) {
1595 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1596 m_freem(txs->txs_mbuf);
1597 txs->txs_mbuf = NULL;
1598 }
1599 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1600 }
1601
1602 /*
1603 * Mark the interface down and cancel the watchdog timer.
1604 */
1605 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1606 sc->sc_if_flags = ifp->if_flags;
1607 ifp->if_timer = 0;
1608
1609 if (disable) {
1610 ae_rxdrain(sc);
1611 ae_disable(sc);
1612 }
1613
1614 /*
1615 * Reset the chip (needed on some flavors to actually disable it).
1616 */
1617 ae_reset(sc);
1618 }
1619
1620 /*
1621 * ae_add_rxbuf:
1622 *
1623 * Add a receive buffer to the indicated descriptor.
1624 */
1625 static int
1626 ae_add_rxbuf(struct ae_softc *sc, int idx)
1627 {
1628 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1629 struct mbuf *m;
1630 int error;
1631
1632 MGETHDR(m, M_DONTWAIT, MT_DATA);
1633 if (m == NULL)
1634 return (ENOBUFS);
1635
1636 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1637 MCLGET(m, M_DONTWAIT);
1638 if ((m->m_flags & M_EXT) == 0) {
1639 m_freem(m);
1640 return (ENOBUFS);
1641 }
1642
1643 if (rxs->rxs_mbuf != NULL)
1644 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1645
1646 rxs->rxs_mbuf = m;
1647
1648 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1649 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1650 BUS_DMA_READ|BUS_DMA_NOWAIT);
1651 if (error) {
1652 printf("%s: can't load rx DMA map %d, error = %d\n",
1653 device_xname(sc->sc_dev), idx, error);
1654 panic("ae_add_rxbuf"); /* XXX */
1655 }
1656
1657 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1658 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1659
1660 AE_INIT_RXDESC(sc, idx);
1661
1662 return (0);
1663 }
1664
1665 /*
1666 * ae_filter_setup:
1667 *
1668 * Set the chip's receive filter.
1669 */
1670 static void
1671 ae_filter_setup(struct ae_softc *sc)
1672 {
1673 struct ethercom *ec = &sc->sc_ethercom;
1674 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1675 struct ether_multi *enm;
1676 struct ether_multistep step;
1677 uint32_t hash, mchash[2];
1678 uint32_t macctl = 0;
1679
1680 /*
1681 * If the chip is running, we need to reset the interface,
1682 * and will revisit here (with IFF_RUNNING) clear. The
1683 * chip seems to really not like to have its multicast
1684 * filter programmed without a reset.
1685 */
1686 if (ifp->if_flags & IFF_RUNNING) {
1687 (void) ae_init(ifp);
1688 return;
1689 }
1690
1691 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1692 device_xname(sc->sc_dev), sc->sc_flags));
1693
1694 macctl = AE_READ(sc, CSR_MACCTL);
1695 macctl &= ~(MACCTL_PR | MACCTL_PM);
1696 macctl |= MACCTL_HASH;
1697 macctl |= MACCTL_HBD;
1698 macctl |= MACCTL_PR;
1699
1700 if (ifp->if_flags & IFF_PROMISC) {
1701 macctl |= MACCTL_PR;
1702 goto allmulti;
1703 }
1704
1705 mchash[0] = mchash[1] = 0;
1706
1707 ETHER_FIRST_MULTI(step, ec, enm);
1708 while (enm != NULL) {
1709 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1710 /*
1711 * We must listen to a range of multicast addresses.
1712 * For now, just accept all multicasts, rather than
1713 * trying to set only those filter bits needed to match
1714 * the range. (At this time, the only use of address
1715 * ranges is for IP multicast routing, for which the
1716 * range is big enough to require all bits set.)
1717 */
1718 goto allmulti;
1719 }
1720
1721 /* Verify whether we use big or little endian hashes */
1722 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1723 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1724 ETHER_NEXT_MULTI(step, enm);
1725 }
1726 ifp->if_flags &= ~IFF_ALLMULTI;
1727 goto setit;
1728
1729 allmulti:
1730 ifp->if_flags |= IFF_ALLMULTI;
1731 mchash[0] = mchash[1] = 0xffffffff;
1732 macctl |= MACCTL_PM;
1733
1734 setit:
1735 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1736 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1737
1738 AE_WRITE(sc, CSR_MACCTL, macctl);
1739 AE_BARRIER(sc);
1740
1741 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1742 device_xname(sc->sc_dev), macctl));
1743 }
1744
1745 /*
1746 * ae_idle:
1747 *
1748 * Cause the transmit and/or receive processes to go idle.
1749 */
1750 void
1751 ae_idle(struct ae_softc *sc, u_int32_t bits)
1752 {
1753 static const char * const txstate_names[] = {
1754 "STOPPED",
1755 "RUNNING - FETCH",
1756 "RUNNING - WAIT",
1757 "RUNNING - READING",
1758 "-- RESERVED --",
1759 "RUNNING - SETUP",
1760 "SUSPENDED",
1761 "RUNNING - CLOSE",
1762 };
1763 static const char * const rxstate_names[] = {
1764 "STOPPED",
1765 "RUNNING - FETCH",
1766 "RUNNING - CHECK",
1767 "RUNNING - WAIT",
1768 "SUSPENDED",
1769 "RUNNING - CLOSE",
1770 "RUNNING - FLUSH",
1771 "RUNNING - QUEUE",
1772 };
1773
1774 u_int32_t csr, ackmask = 0;
1775 int i;
1776
1777 if (bits & OPMODE_ST)
1778 ackmask |= STATUS_TPS;
1779
1780 if (bits & OPMODE_SR)
1781 ackmask |= STATUS_RPS;
1782
1783 AE_CLR(sc, CSR_OPMODE, bits);
1784
1785 for (i = 0; i < 1000; i++) {
1786 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1787 break;
1788 delay(10);
1789 }
1790
1791 csr = AE_READ(sc, CSR_STATUS);
1792 if ((csr & ackmask) != ackmask) {
1793 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1794 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1795 printf("%s: transmit process failed to idle: "
1796 "state %s\n", device_xname(sc->sc_dev),
1797 txstate_names[(csr & STATUS_TS) >> 20]);
1798 }
1799 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1800 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1801 printf("%s: receive process failed to idle: "
1802 "state %s\n", device_xname(sc->sc_dev),
1803 rxstate_names[(csr & STATUS_RS) >> 17]);
1804 }
1805 }
1806 }
1807
1808 /*****************************************************************************
1809 * Support functions for MII-attached media.
1810 *****************************************************************************/
1811
1812 /*
1813 * ae_mii_tick:
1814 *
1815 * One second timer, used to tick the MII.
1816 */
1817 static void
1818 ae_mii_tick(void *arg)
1819 {
1820 struct ae_softc *sc = arg;
1821 int s;
1822
1823 if (!device_is_active(sc->sc_dev))
1824 return;
1825
1826 s = splnet();
1827 mii_tick(&sc->sc_mii);
1828 splx(s);
1829
1830 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1831 }
1832
1833 /*
1834 * ae_mii_statchg: [mii interface function]
1835 *
1836 * Callback from PHY when media changes.
1837 */
1838 static void
1839 ae_mii_statchg(struct ifnet *ifp)
1840 {
1841 struct ae_softc *sc = ifp->if_softc;
1842 uint32_t macctl, flowc;
1843
1844 //opmode = AE_READ(sc, CSR_OPMODE);
1845 macctl = AE_READ(sc, CSR_MACCTL);
1846
1847 /* XXX: do we need to do this? */
1848 /* Idle the transmit and receive processes. */
1849 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1850
1851 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1852 flowc = FLOWC_FCE;
1853 macctl &= ~MACCTL_DRO;
1854 macctl |= MACCTL_FDX;
1855 } else {
1856 flowc = 0; /* cannot do flow control in HDX */
1857 macctl |= MACCTL_DRO;
1858 macctl &= ~MACCTL_FDX;
1859 }
1860
1861 AE_WRITE(sc, CSR_FLOWC, flowc);
1862 AE_WRITE(sc, CSR_MACCTL, macctl);
1863
1864 /* restore operational mode */
1865 //AE_WRITE(sc, CSR_OPMODE, opmode);
1866 AE_BARRIER(sc);
1867 }
1868
1869 /*
1870 * ae_mii_readreg:
1871 *
1872 * Read a PHY register.
1873 */
1874 static int
1875 ae_mii_readreg(device_t self, int phy, int reg)
1876 {
1877 struct ae_softc *sc = device_private(self);
1878 uint32_t addr;
1879 int i;
1880
1881 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1882 AE_WRITE(sc, CSR_MIIADDR, addr);
1883 AE_BARRIER(sc);
1884 for (i = 0; i < 100000000; i++) {
1885 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1886 break;
1887 }
1888
1889 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1890 }
1891
1892 /*
1893 * ae_mii_writereg:
1894 *
1895 * Write a PHY register.
1896 */
1897 static void
1898 ae_mii_writereg(device_t self, int phy, int reg, int val)
1899 {
1900 struct ae_softc *sc = device_private(self);
1901 uint32_t addr;
1902 int i;
1903
1904 /* write the data register */
1905 AE_WRITE(sc, CSR_MIIDATA, val);
1906
1907 /* write the address to latch it in */
1908 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1909 MIIADDR_WRITE;
1910 AE_WRITE(sc, CSR_MIIADDR, addr);
1911 AE_BARRIER(sc);
1912
1913 for (i = 0; i < 100000000; i++) {
1914 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1915 break;
1916 }
1917 }
1918