if_ae.c revision 1.3 1 /* $Id: if_ae.c,v 1.3 2006/09/04 05:17:26 gdamore Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. All advertising materials mentioning features or use of this software
59 * must display the following acknowledgement:
60 * This product includes software developed by the NetBSD
61 * Foundation, Inc. and its contributors.
62 * 4. Neither the name of The NetBSD Foundation nor the names of its
63 * contributors may be used to endorse or promote products derived
64 * from this software without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
67 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
68 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
69 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
70 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
71 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
72 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
73 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
74 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
75 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGE.
77 */
78
79 /*
80 * Device driver for the onboard ethernet MAC found on the AR5312
81 * chip's AHB bus.
82 *
83 * This device is very simliar to the tulip in most regards, and
84 * the code is directly derived from NetBSD's tulip.c. However, it
85 * is different enough that it did not seem to be a good idea to
86 * add further complexity to the tulip driver, so we have our own.
87 *
88 * Also tulip has a lot of complexity in it for various parts/options
89 * that we don't need, and on these little boxes with only ~8MB RAM, we
90 * don't want any extra bloat.
91 */
92
93 /*
94 * TODO:
95 *
96 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
97 * inbound packets on a half-word boundary, which would make life easier
98 * for TCP/IP. (Aligning IP headers on a word.)
99 *
100 * 2) There is stuff in original tulip to shut down the device when reacting
101 * to a a change in link status. Is that needed.
102 *
103 * 3) Test with variety of 10/100 HDX/FDX scenarios.
104 *
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.3 2006/09/04 05:17:26 gdamore Exp $");
109
110 #include "bpfilter.h"
111
112 #include <sys/param.h>
113 #include <sys/systm.h>
114 #include <sys/callout.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/ioctl.h>
120 #include <sys/errno.h>
121 #include <sys/device.h>
122
123 #include <machine/endian.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #include <net/if.h>
128 #include <net/if_dl.h>
129 #include <net/if_media.h>
130 #include <net/if_ether.h>
131
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141 #include <dev/mii/mii_bitbang.h>
142
143 #include <mips/atheros/include/arbusvar.h>
144 #include <mips/atheros/dev/aereg.h>
145 #include <mips/atheros/dev/aevar.h>
146
147 static const struct {
148 u_int32_t txth_opmode; /* OPMODE bits */
149 const char *txth_name; /* name of mode */
150 } ae_txthresh[] = {
151 { OPMODE_TR_32, "32 words" },
152 { OPMODE_TR_64, "64 words" },
153 { OPMODE_TR_128, "128 words" },
154 { OPMODE_TR_256, "256 words" },
155 { OPMODE_SF, "store and forward mode" },
156 { 0, NULL },
157 };
158
159 static int ae_match(struct device *, struct cfdata *, void *);
160 static void ae_attach(struct device *, struct device *, void *);
161 static int ae_detach(struct device *, int);
162 static int ae_activate(struct device *, enum devact);
163
164 static void ae_reset(struct ae_softc *);
165 static void ae_idle(struct ae_softc *, u_int32_t);
166
167 static int ae_mediachange(struct ifnet *);
168 static void ae_mediastatus(struct ifnet *, struct ifmediareq *);
169
170 static void ae_start(struct ifnet *);
171 static void ae_watchdog(struct ifnet *);
172 static int ae_ioctl(struct ifnet *, u_long, caddr_t);
173 static int ae_init(struct ifnet *);
174 static void ae_stop(struct ifnet *, int);
175
176 static void ae_shutdown(void *);
177
178 static void ae_rxdrain(struct ae_softc *);
179 static int ae_add_rxbuf(struct ae_softc *, int);
180
181 static int ae_enable(struct ae_softc *);
182 static void ae_disable(struct ae_softc *);
183 static void ae_power(int, void *);
184
185 static void ae_filter_setup(struct ae_softc *);
186
187 static int ae_intr(void *);
188 static void ae_rxintr(struct ae_softc *);
189 static void ae_txintr(struct ae_softc *);
190
191 static void ae_mii_tick(void *);
192 static void ae_mii_statchg(struct device *);
193
194 static int ae_mii_readreg(struct device *, int, int);
195 static void ae_mii_writereg(struct device *, int, int, int);
196
197 #ifdef AE_DEBUG
198 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
199 printf x
200 #else
201 #define DPRINTF(sc, x) /* nothing */
202 #endif
203
204 #ifdef AE_STATS
205 static void ae_print_stats(struct ae_softc *);
206 #endif
207
208 CFATTACH_DECL(ae, sizeof(struct ae_softc),
209 ae_match, ae_attach, ae_detach, ae_activate);
210
211 /*
212 * ae_match:
213 *
214 * Check for a device match.
215 */
216 int
217 ae_match(struct device *parent, struct cfdata *cf, void *aux)
218 {
219 struct arbus_attach_args *aa = aux;
220
221 if (strcmp(aa->aa_name, cf->cf_name) == 0)
222 return 1;
223
224 return 0;
225
226 }
227
228 /*
229 * ae_attach:
230 *
231 * Attach an ae interface to the system.
232 */
233 void
234 ae_attach(struct device *parent, struct device *self, void *aux)
235 {
236 const uint8_t *enaddr;
237 prop_data_t ea;
238 struct ae_softc *sc = (void *)self;
239 struct arbus_attach_args *aa = aux;
240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
241 int i, error;
242
243 callout_init(&sc->sc_tick_callout);
244
245 printf(": Atheros AR531X 10/100 Ethernet\n");
246
247 /*
248 * Try to get MAC address.
249 */
250 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
251 if (ea == NULL) {
252 printf("%s: unable to get mac-addr property\n",
253 sc->sc_dev.dv_xname);
254 return;
255 }
256 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
257 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
258 enaddr = prop_data_data_nocopy(ea);
259
260 /* Announce ourselves. */
261 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
262 ether_sprintf(enaddr));
263
264 sc->sc_cirq = aa->aa_cirq;
265 sc->sc_mirq = aa->aa_mirq;
266 sc->sc_st = aa->aa_bst;
267 sc->sc_dmat = aa->aa_dmat;
268
269 SIMPLEQ_INIT(&sc->sc_txfreeq);
270 SIMPLEQ_INIT(&sc->sc_txdirtyq);
271
272 /*
273 * Map registers.
274 */
275 sc->sc_size = aa->aa_size;
276 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
277 &sc->sc_sh)) != 0) {
278 printf("%s: unable to map registers, error = %d\n",
279 sc->sc_dev.dv_xname, error);
280 goto fail_0;
281 }
282
283 /*
284 * Allocate the control data structures, and create and load the
285 * DMA map for it.
286 */
287 if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
289 1, &sc->sc_cdnseg, 0)) != 0) {
290 printf("%s: unable to allocate control data, error = %d\n",
291 sc->sc_dev.dv_xname, error);
292 goto fail_1;
293 }
294
295 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
296 sizeof(struct ae_control_data), (caddr_t *)&sc->sc_control_data,
297 BUS_DMA_COHERENT)) != 0) {
298 printf("%s: unable to map control data, error = %d\n",
299 sc->sc_dev.dv_xname, error);
300 goto fail_2;
301 }
302
303 if ((error = bus_dmamap_create(sc->sc_dmat,
304 sizeof(struct ae_control_data), 1,
305 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
306 printf("%s: unable to create control data DMA map, "
307 "error = %d\n", sc->sc_dev.dv_xname, error);
308 goto fail_3;
309 }
310
311 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
312 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
313 0)) != 0) {
314 printf("%s: unable to load control data DMA map, error = %d\n",
315 sc->sc_dev.dv_xname, error);
316 goto fail_4;
317 }
318
319 /*
320 * Create the transmit buffer DMA maps.
321 */
322 for (i = 0; i < AE_TXQUEUELEN; i++) {
323 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
324 AE_NTXSEGS, MCLBYTES, 0, 0,
325 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
326 printf("%s: unable to create tx DMA map %d, "
327 "error = %d\n", sc->sc_dev.dv_xname, i, error);
328 goto fail_5;
329 }
330 }
331
332 /*
333 * Create the receive buffer DMA maps.
334 */
335 for (i = 0; i < AE_NRXDESC; i++) {
336 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
337 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
338 printf("%s: unable to create rx DMA map %d, "
339 "error = %d\n", sc->sc_dev.dv_xname, i, error);
340 goto fail_6;
341 }
342 sc->sc_rxsoft[i].rxs_mbuf = NULL;
343 }
344
345 /*
346 * Reset the chip to a known state.
347 */
348 ae_reset(sc);
349
350 /*
351 * From this point forward, the attachment cannot fail. A failure
352 * before this point releases all resources that may have been
353 * allocated.
354 */
355 sc->sc_flags |= AE_ATTACHED;
356
357 /*
358 * Initialize our media structures. This may probe the MII, if
359 * present.
360 */
361 sc->sc_mii.mii_ifp = ifp;
362 sc->sc_mii.mii_readreg = ae_mii_readreg;
363 sc->sc_mii.mii_writereg = ae_mii_writereg;
364 sc->sc_mii.mii_statchg = ae_mii_statchg;
365 ifmedia_init(&sc->sc_mii.mii_media, 0, ae_mediachange,
366 ae_mediastatus);
367 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
368 MII_OFFSET_ANY, 0);
369
370 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
371 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
372 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
373 } else
374 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
375
376 sc->sc_tick = ae_mii_tick;
377
378 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
379 ifp->if_softc = sc;
380 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
381 sc->sc_if_flags = ifp->if_flags;
382 ifp->if_ioctl = ae_ioctl;
383 ifp->if_start = ae_start;
384 ifp->if_watchdog = ae_watchdog;
385 ifp->if_init = ae_init;
386 ifp->if_stop = ae_stop;
387 IFQ_SET_READY(&ifp->if_snd);
388
389 /*
390 * We can support 802.1Q VLAN-sized frames.
391 */
392 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
393
394 /*
395 * Attach the interface.
396 */
397 if_attach(ifp);
398 ether_ifattach(ifp, enaddr);
399
400 #if NRND > 0
401 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
402 RND_TYPE_NET, 0);
403 #endif
404
405 /*
406 * Make sure the interface is shutdown during reboot.
407 */
408 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
409 if (sc->sc_sdhook == NULL)
410 printf("%s: WARNING: unable to establish shutdown hook\n",
411 sc->sc_dev.dv_xname);
412
413 /*
414 * Add a suspend hook to make sure we come back up after a
415 * resume.
416 */
417 sc->sc_powerhook = powerhook_establish(ae_power, sc);
418 if (sc->sc_powerhook == NULL)
419 printf("%s: WARNING: unable to establish power hook\n",
420 sc->sc_dev.dv_xname);
421 return;
422
423 /*
424 * Free any resources we've allocated during the failed attach
425 * attempt. Do this in reverse order and fall through.
426 */
427 fail_6:
428 for (i = 0; i < AE_NRXDESC; i++) {
429 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
430 bus_dmamap_destroy(sc->sc_dmat,
431 sc->sc_rxsoft[i].rxs_dmamap);
432 }
433 fail_5:
434 for (i = 0; i < AE_TXQUEUELEN; i++) {
435 if (sc->sc_txsoft[i].txs_dmamap != NULL)
436 bus_dmamap_destroy(sc->sc_dmat,
437 sc->sc_txsoft[i].txs_dmamap);
438 }
439 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
440 fail_4:
441 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
442 fail_3:
443 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
444 sizeof(struct ae_control_data));
445 fail_2:
446 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
447 fail_1:
448 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
449 fail_0:
450 return;
451 }
452
453 /*
454 * ae_activate:
455 *
456 * Handle device activation/deactivation requests.
457 */
458 int
459 ae_activate(struct device *self, enum devact act)
460 {
461 struct ae_softc *sc = (void *) self;
462 int s, error = 0;
463
464 s = splnet();
465 switch (act) {
466 case DVACT_ACTIVATE:
467 error = EOPNOTSUPP;
468 break;
469
470 case DVACT_DEACTIVATE:
471 mii_activate(&sc->sc_mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
472 if_deactivate(&sc->sc_ethercom.ec_if);
473 break;
474 }
475 splx(s);
476
477 return (error);
478 }
479
480 /*
481 * ae_detach:
482 *
483 * Detach a device interface.
484 */
485 int
486 ae_detach(struct device *self, int flags)
487 {
488 struct ae_softc *sc = (void *)self;
489 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
490 struct ae_rxsoft *rxs;
491 struct ae_txsoft *txs;
492 int i;
493
494 /*
495 * Succeed now if there isn't any work to do.
496 */
497 if ((sc->sc_flags & AE_ATTACHED) == 0)
498 return (0);
499
500 /* Unhook our tick handler. */
501 if (sc->sc_tick)
502 callout_stop(&sc->sc_tick_callout);
503
504 /* Detach all PHYs */
505 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
506
507 /* Delete all remaining media. */
508 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
509
510 #if NRND > 0
511 rnd_detach_source(&sc->sc_rnd_source);
512 #endif
513 ether_ifdetach(ifp);
514 if_detach(ifp);
515
516 for (i = 0; i < AE_NRXDESC; i++) {
517 rxs = &sc->sc_rxsoft[i];
518 if (rxs->rxs_mbuf != NULL) {
519 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
520 m_freem(rxs->rxs_mbuf);
521 rxs->rxs_mbuf = NULL;
522 }
523 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
524 }
525 for (i = 0; i < AE_TXQUEUELEN; i++) {
526 txs = &sc->sc_txsoft[i];
527 if (txs->txs_mbuf != NULL) {
528 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
529 m_freem(txs->txs_mbuf);
530 txs->txs_mbuf = NULL;
531 }
532 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
533 }
534 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
535 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
536 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
537 sizeof(struct ae_control_data));
538 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
539
540 shutdownhook_disestablish(sc->sc_sdhook);
541 powerhook_disestablish(sc->sc_powerhook);
542
543 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
544
545
546 return (0);
547 }
548
549 /*
550 * ae_shutdown:
551 *
552 * Make sure the interface is stopped at reboot time.
553 */
554 static void
555 ae_shutdown(void *arg)
556 {
557 struct ae_softc *sc = arg;
558
559 ae_stop(&sc->sc_ethercom.ec_if, 1);
560 }
561
562 /*
563 * ae_start: [ifnet interface function]
564 *
565 * Start packet transmission on the interface.
566 */
567 static void
568 ae_start(struct ifnet *ifp)
569 {
570 struct ae_softc *sc = ifp->if_softc;
571 struct mbuf *m0, *m;
572 struct ae_txsoft *txs, *last_txs = NULL;
573 bus_dmamap_t dmamap;
574 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
575
576 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
577 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
578
579
580 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
581 return;
582
583 /*
584 * Remember the previous number of free descriptors and
585 * the first descriptor we'll use.
586 */
587 ofree = sc->sc_txfree;
588 firsttx = sc->sc_txnext;
589
590 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
591 sc->sc_dev.dv_xname, ofree, firsttx));
592
593 /*
594 * Loop through the send queue, setting up transmit descriptors
595 * until we drain the queue, or use up all available transmit
596 * descriptors.
597 */
598 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
599 sc->sc_txfree != 0) {
600 /*
601 * Grab a packet off the queue.
602 */
603 IFQ_POLL(&ifp->if_snd, m0);
604 if (m0 == NULL)
605 break;
606 m = NULL;
607
608 dmamap = txs->txs_dmamap;
609
610 /*
611 * Load the DMA map. If this fails, the packet either
612 * didn't fit in the alloted number of segments, or we were
613 * short on resources. In this case, we'll copy and try
614 * again.
615 */
616 if (((mtod(m0, uintptr_t) & 3) != 0) ||
617 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
618 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
619 MGETHDR(m, M_DONTWAIT, MT_DATA);
620 if (m == NULL) {
621 printf("%s: unable to allocate Tx mbuf\n",
622 sc->sc_dev.dv_xname);
623 break;
624 }
625 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
626 if (m0->m_pkthdr.len > MHLEN) {
627 MCLGET(m, M_DONTWAIT);
628 if ((m->m_flags & M_EXT) == 0) {
629 printf("%s: unable to allocate Tx "
630 "cluster\n", sc->sc_dev.dv_xname);
631 m_freem(m);
632 break;
633 }
634 }
635 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
636 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
637 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
638 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
639 if (error) {
640 printf("%s: unable to load Tx buffer, "
641 "error = %d\n", sc->sc_dev.dv_xname,
642 error);
643 break;
644 }
645 }
646
647 /*
648 * Ensure we have enough descriptors free to describe
649 * the packet.
650 */
651 if (dmamap->dm_nsegs > sc->sc_txfree) {
652 /*
653 * Not enough free descriptors to transmit this
654 * packet. We haven't committed to anything yet,
655 * so just unload the DMA map, put the packet
656 * back on the queue, and punt. Notify the upper
657 * layer that there are no more slots left.
658 *
659 * XXX We could allocate an mbuf and copy, but
660 * XXX it is worth it?
661 */
662 ifp->if_flags |= IFF_OACTIVE;
663 bus_dmamap_unload(sc->sc_dmat, dmamap);
664 if (m != NULL)
665 m_freem(m);
666 break;
667 }
668
669 IFQ_DEQUEUE(&ifp->if_snd, m0);
670 if (m != NULL) {
671 m_freem(m0);
672 m0 = m;
673 }
674
675 /*
676 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
677 */
678
679 /* Sync the DMA map. */
680 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
681 BUS_DMASYNC_PREWRITE);
682
683 /*
684 * Initialize the transmit descriptors.
685 */
686 for (nexttx = sc->sc_txnext, seg = 0;
687 seg < dmamap->dm_nsegs;
688 seg++, nexttx = AE_NEXTTX(nexttx)) {
689 /*
690 * If this is the first descriptor we're
691 * enqueueing, don't set the OWN bit just
692 * yet. That could cause a race condition.
693 * We'll do it below.
694 */
695 sc->sc_txdescs[nexttx].ad_status =
696 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
697 sc->sc_txdescs[nexttx].ad_bufaddr1 =
698 dmamap->dm_segs[seg].ds_addr;
699 sc->sc_txdescs[nexttx].ad_ctl =
700 (dmamap->dm_segs[seg].ds_len <<
701 ADCTL_SIZE1_SHIFT) |
702 (nexttx == (AE_NTXDESC - 1) ?
703 ADCTL_ER : 0);
704 lasttx = nexttx;
705 }
706
707 KASSERT(lasttx != -1);
708
709 /* Set `first segment' and `last segment' appropriately. */
710 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
711 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
712
713 #ifdef AE_DEBUG
714 if (ifp->if_flags & IFF_DEBUG) {
715 printf(" txsoft %p transmit chain:\n", txs);
716 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
717 printf(" descriptor %d:\n", seg);
718 printf(" ad_status: 0x%08x\n",
719 sc->sc_txdescs[seg].ad_status);
720 printf(" ad_ctl: 0x%08x\n",
721 sc->sc_txdescs[seg].ad_ctl);
722 printf(" ad_bufaddr1: 0x%08x\n",
723 sc->sc_txdescs[seg].ad_bufaddr1);
724 printf(" ad_bufaddr2: 0x%08x\n",
725 sc->sc_txdescs[seg].ad_bufaddr2);
726 if (seg == lasttx)
727 break;
728 }
729 }
730 #endif
731
732 /* Sync the descriptors we're using. */
733 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
734 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
735
736 /*
737 * Store a pointer to the packet so we can free it later,
738 * and remember what txdirty will be once the packet is
739 * done.
740 */
741 txs->txs_mbuf = m0;
742 txs->txs_firstdesc = sc->sc_txnext;
743 txs->txs_lastdesc = lasttx;
744 txs->txs_ndescs = dmamap->dm_nsegs;
745
746 /* Advance the tx pointer. */
747 sc->sc_txfree -= dmamap->dm_nsegs;
748 sc->sc_txnext = nexttx;
749
750 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
751 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
752
753 last_txs = txs;
754
755 #if NBPFILTER > 0
756 /*
757 * Pass the packet to any BPF listeners.
758 */
759 if (ifp->if_bpf)
760 bpf_mtap(ifp->if_bpf, m0);
761 #endif /* NBPFILTER > 0 */
762 }
763
764 if (txs == NULL || sc->sc_txfree == 0) {
765 /* No more slots left; notify upper layer. */
766 ifp->if_flags |= IFF_OACTIVE;
767 }
768
769 if (sc->sc_txfree != ofree) {
770 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
771 sc->sc_dev.dv_xname, lasttx, firsttx));
772 /*
773 * Cause a transmit interrupt to happen on the
774 * last packet we enqueued.
775 */
776 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
777 AE_CDTXSYNC(sc, lasttx, 1,
778 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
779
780 /*
781 * The entire packet chain is set up. Give the
782 * first descriptor to the chip now.
783 */
784 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
785 AE_CDTXSYNC(sc, firsttx, 1,
786 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
787
788 /* Wake up the transmitter. */
789 /* XXX USE AUTOPOLLING? */
790 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
791 AE_BARRIER(sc);
792
793 /* Set a watchdog timer in case the chip flakes out. */
794 ifp->if_timer = 5;
795 }
796 }
797
798 /*
799 * ae_watchdog: [ifnet interface function]
800 *
801 * Watchdog timer handler.
802 */
803 static void
804 ae_watchdog(struct ifnet *ifp)
805 {
806 struct ae_softc *sc = ifp->if_softc;
807 int doing_transmit;
808
809 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
810
811 if (doing_transmit) {
812 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
813 ifp->if_oerrors++;
814 }
815 else
816 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
817
818 (void) ae_init(ifp);
819
820 /* Try to get more packets going. */
821 ae_start(ifp);
822 }
823
824 /*
825 * ae_ioctl: [ifnet interface function]
826 *
827 * Handle control requests from the operator.
828 */
829 static int
830 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
831 {
832 struct ae_softc *sc = ifp->if_softc;
833 struct ifreq *ifr = (struct ifreq *)data;
834 int s, error;
835
836 s = splnet();
837
838 switch (cmd) {
839 case SIOCSIFMEDIA:
840 case SIOCGIFMEDIA:
841 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
842 break;
843 case SIOCSIFFLAGS:
844 /* If the interface is up and running, only modify the receive
845 * filter when setting promiscuous or debug mode. Otherwise
846 * fall through to ether_ioctl, which will reset the chip.
847 */
848 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
849 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
850 == (IFF_UP|IFF_RUNNING))
851 && ((ifp->if_flags & (~RESETIGN))
852 == (sc->sc_if_flags & (~RESETIGN)))) {
853 /* Set up the receive filter. */
854 ae_filter_setup(sc);
855 error = 0;
856 break;
857 #undef RESETIGN
858 }
859 /* FALLTHROUGH */
860 default:
861 error = ether_ioctl(ifp, cmd, data);
862 if (error == ENETRESET) {
863 if (ifp->if_flags & IFF_RUNNING) {
864 /*
865 * Multicast list has changed. Set the
866 * hardware filter accordingly.
867 */
868 ae_filter_setup(sc);
869 }
870 error = 0;
871 }
872 break;
873 }
874
875 /* Try to get more packets going. */
876 if (AE_IS_ENABLED(sc))
877 ae_start(ifp);
878
879 sc->sc_if_flags = ifp->if_flags;
880 splx(s);
881 return (error);
882 }
883
884 /*
885 * ae_intr:
886 *
887 * Interrupt service routine.
888 */
889 int
890 ae_intr(void *arg)
891 {
892 struct ae_softc *sc = arg;
893 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
894 u_int32_t status, rxstatus, txstatus;
895 int handled = 0, txthresh;
896
897 DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
898
899 #ifdef DEBUG
900 if (AE_IS_ENABLED(sc) == 0)
901 panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
902 #endif
903
904 /*
905 * If the interface isn't running, the interrupt couldn't
906 * possibly have come from us.
907 */
908 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
909 !device_is_active(&sc->sc_dev)) {
910 printf("spurious?!?\n");
911 return (0);
912 }
913
914 for (;;) {
915 status = AE_READ(sc, CSR_STATUS);
916 if (status) {
917 AE_WRITE(sc, CSR_STATUS, status);
918 AE_BARRIER(sc);
919 }
920
921 if ((status & sc->sc_inten) == 0)
922 break;
923
924 handled = 1;
925
926 rxstatus = status & sc->sc_rxint_mask;
927 txstatus = status & sc->sc_txint_mask;
928
929 if (rxstatus) {
930 /* Grab new any new packets. */
931 ae_rxintr(sc);
932
933 if (rxstatus & STATUS_RU) {
934 printf("%s: receive ring overrun\n",
935 sc->sc_dev.dv_xname);
936 /* Get the receive process going again. */
937 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
938 AE_BARRIER(sc);
939 break;
940 }
941 }
942
943 if (txstatus) {
944 /* Sweep up transmit descriptors. */
945 ae_txintr(sc);
946
947 if (txstatus & STATUS_TJT)
948 printf("%s: transmit jabber timeout\n",
949 sc->sc_dev.dv_xname);
950
951 if (txstatus & STATUS_UNF) {
952 /*
953 * Increase our transmit threshold if
954 * another is available.
955 */
956 txthresh = sc->sc_txthresh + 1;
957 if (ae_txthresh[txthresh].txth_name != NULL) {
958 uint32_t opmode;
959 /* Idle the transmit process. */
960 opmode = AE_READ(sc, CSR_OPMODE);
961 ae_idle(sc, OPMODE_ST);
962
963 sc->sc_txthresh = txthresh;
964 opmode &=
965 ~(OPMODE_TR|OPMODE_SF);
966 opmode |=
967 ae_txthresh[txthresh].txth_opmode;
968 printf("%s: transmit underrun; new "
969 "threshold: %s\n",
970 sc->sc_dev.dv_xname,
971 ae_txthresh[txthresh].txth_name);
972
973 /*
974 * Set the new threshold and restart
975 * the transmit process.
976 */
977 AE_WRITE(sc, CSR_OPMODE, opmode);
978 AE_BARRIER(sc);
979 }
980 /*
981 * XXX Log every Nth underrun from
982 * XXX now on?
983 */
984 }
985 }
986
987 if (status & (STATUS_TPS|STATUS_RPS)) {
988 if (status & STATUS_TPS)
989 printf("%s: transmit process stopped\n",
990 sc->sc_dev.dv_xname);
991 if (status & STATUS_RPS)
992 printf("%s: receive process stopped\n",
993 sc->sc_dev.dv_xname);
994 (void) ae_init(ifp);
995 break;
996 }
997
998 if (status & STATUS_SE) {
999 const char *str;
1000
1001 if (status & STATUS_TX_ABORT)
1002 str = "tx abort";
1003 else if (status & STATUS_RX_ABORT)
1004 str = "rx abort";
1005 else
1006 str = "unknown error";
1007
1008 printf("%s: fatal system error: %s\n",
1009 sc->sc_dev.dv_xname, str);
1010 (void) ae_init(ifp);
1011 break;
1012 }
1013
1014 /*
1015 * Not handled:
1016 *
1017 * Transmit buffer unavailable -- normal
1018 * condition, nothing to do, really.
1019 *
1020 * General purpose timer experied -- we don't
1021 * use the general purpose timer.
1022 *
1023 * Early receive interrupt -- not available on
1024 * all chips, we just use RI. We also only
1025 * use single-segment receive DMA, so this
1026 * is mostly useless.
1027 */
1028 }
1029
1030 /* Try to get more packets going. */
1031 ae_start(ifp);
1032
1033 #if NRND > 0
1034 if (handled)
1035 rnd_add_uint32(&sc->sc_rnd_source, status);
1036 #endif
1037 return (handled);
1038 }
1039
1040 /*
1041 * ae_rxintr:
1042 *
1043 * Helper; handle receive interrupts.
1044 */
1045 static void
1046 ae_rxintr(struct ae_softc *sc)
1047 {
1048 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1049 struct ether_header *eh;
1050 struct ae_rxsoft *rxs;
1051 struct mbuf *m;
1052 u_int32_t rxstat;
1053 int i, len;
1054
1055 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1056 rxs = &sc->sc_rxsoft[i];
1057
1058 AE_CDRXSYNC(sc, i,
1059 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1060
1061 rxstat = sc->sc_rxdescs[i].ad_status;
1062
1063 if (rxstat & ADSTAT_OWN) {
1064 /*
1065 * We have processed all of the receive buffers.
1066 */
1067 break;
1068 }
1069
1070 /*
1071 * If any collisions were seen on the wire, count one.
1072 */
1073 if (rxstat & ADSTAT_Rx_CS)
1074 ifp->if_collisions++;
1075
1076 /*
1077 * If an error occurred, update stats, clear the status
1078 * word, and leave the packet buffer in place. It will
1079 * simply be reused the next time the ring comes around.
1080 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1081 * error.
1082 */
1083 if (rxstat & ADSTAT_ES &&
1084 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1085 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1086 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1087 #define PRINTERR(bit, str) \
1088 if (rxstat & (bit)) \
1089 printf("%s: receive error: %s\n", \
1090 sc->sc_dev.dv_xname, str)
1091 ifp->if_ierrors++;
1092 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1093 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1094 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1095 PRINTERR(ADSTAT_Rx_RE, "MII error");
1096 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1097 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1098 #undef PRINTERR
1099 AE_INIT_RXDESC(sc, i);
1100 continue;
1101 }
1102
1103 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1104 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1105
1106 /*
1107 * No errors; receive the packet. Note the chip
1108 * includes the CRC with every packet.
1109 */
1110 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1111
1112 /*
1113 * XXX: the Atheros part can align on half words. what
1114 * is the performance implication of this? Probably
1115 * minimal, and we should use it...
1116 */
1117 #ifdef __NO_STRICT_ALIGNMENT
1118 /*
1119 * Allocate a new mbuf cluster. If that fails, we are
1120 * out of memory, and must drop the packet and recycle
1121 * the buffer that's already attached to this descriptor.
1122 */
1123 m = rxs->rxs_mbuf;
1124 if (ae_add_rxbuf(sc, i) != 0) {
1125 ifp->if_ierrors++;
1126 AE_INIT_RXDESC(sc, i);
1127 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1128 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1129 continue;
1130 }
1131 #else
1132 /*
1133 * The chip's receive buffers must be 4-byte aligned.
1134 * But this means that the data after the Ethernet header
1135 * is misaligned. We must allocate a new buffer and
1136 * copy the data, shifted forward 2 bytes.
1137 */
1138 MGETHDR(m, M_DONTWAIT, MT_DATA);
1139 if (m == NULL) {
1140 dropit:
1141 ifp->if_ierrors++;
1142 AE_INIT_RXDESC(sc, i);
1143 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1144 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1145 continue;
1146 }
1147 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1148 if (len > (MHLEN - 2)) {
1149 MCLGET(m, M_DONTWAIT);
1150 if ((m->m_flags & M_EXT) == 0) {
1151 m_freem(m);
1152 goto dropit;
1153 }
1154 }
1155 m->m_data += 2;
1156
1157 /*
1158 * Note that we use clusters for incoming frames, so the
1159 * buffer is virtually contiguous.
1160 */
1161 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1162
1163 /* Allow the receive descriptor to continue using its mbuf. */
1164 AE_INIT_RXDESC(sc, i);
1165 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1166 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1167 #endif /* __NO_STRICT_ALIGNMENT */
1168
1169 ifp->if_ipackets++;
1170 eh = mtod(m, struct ether_header *);
1171 m->m_pkthdr.rcvif = ifp;
1172 m->m_pkthdr.len = m->m_len = len;
1173
1174 #if NBPFILTER > 0
1175 /*
1176 * Pass this up to any BPF listeners, but only
1177 * pass it up the stack if its for us.
1178 */
1179 if (ifp->if_bpf)
1180 bpf_mtap(ifp->if_bpf, m);
1181 #endif /* NPBFILTER > 0 */
1182
1183 /* Pass it on. */
1184 (*ifp->if_input)(ifp, m);
1185 }
1186
1187 /* Update the receive pointer. */
1188 sc->sc_rxptr = i;
1189 }
1190
1191 /*
1192 * ae_txintr:
1193 *
1194 * Helper; handle transmit interrupts.
1195 */
1196 static void
1197 ae_txintr(struct ae_softc *sc)
1198 {
1199 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1200 struct ae_txsoft *txs;
1201 u_int32_t txstat;
1202
1203 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1204 sc->sc_dev.dv_xname, sc->sc_flags));
1205
1206 ifp->if_flags &= ~IFF_OACTIVE;
1207
1208 /*
1209 * Go through our Tx list and free mbufs for those
1210 * frames that have been transmitted.
1211 */
1212 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1213 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1214 txs->txs_ndescs,
1215 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1216
1217 #ifdef AE_DEBUG
1218 if (ifp->if_flags & IFF_DEBUG) {
1219 int i;
1220 printf(" txsoft %p transmit chain:\n", txs);
1221 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1222 printf(" descriptor %d:\n", i);
1223 printf(" ad_status: 0x%08x\n",
1224 sc->sc_txdescs[i].ad_status);
1225 printf(" ad_ctl: 0x%08x\n",
1226 sc->sc_txdescs[i].ad_ctl);
1227 printf(" ad_bufaddr1: 0x%08x\n",
1228 sc->sc_txdescs[i].ad_bufaddr1);
1229 printf(" ad_bufaddr2: 0x%08x\n",
1230 sc->sc_txdescs[i].ad_bufaddr2);
1231 if (i == txs->txs_lastdesc)
1232 break;
1233 }
1234 }
1235 #endif
1236
1237 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1238 if (txstat & ADSTAT_OWN)
1239 break;
1240
1241 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1242
1243 sc->sc_txfree += txs->txs_ndescs;
1244
1245 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1246 0, txs->txs_dmamap->dm_mapsize,
1247 BUS_DMASYNC_POSTWRITE);
1248 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1249 m_freem(txs->txs_mbuf);
1250 txs->txs_mbuf = NULL;
1251
1252 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1253
1254 /*
1255 * Check for errors and collisions.
1256 */
1257 #ifdef AE_STATS
1258 if (txstat & ADSTAT_Tx_UF)
1259 sc->sc_stats.ts_tx_uf++;
1260 if (txstat & ADSTAT_Tx_TO)
1261 sc->sc_stats.ts_tx_to++;
1262 if (txstat & ADSTAT_Tx_EC)
1263 sc->sc_stats.ts_tx_ec++;
1264 if (txstat & ADSTAT_Tx_LC)
1265 sc->sc_stats.ts_tx_lc++;
1266 #endif
1267
1268 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1269 ifp->if_oerrors++;
1270
1271 if (txstat & ADSTAT_Tx_EC)
1272 ifp->if_collisions += 16;
1273 else
1274 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1275 if (txstat & ADSTAT_Tx_LC)
1276 ifp->if_collisions++;
1277
1278 ifp->if_opackets++;
1279 }
1280
1281 /*
1282 * If there are no more pending transmissions, cancel the watchdog
1283 * timer.
1284 */
1285 if (txs == NULL)
1286 ifp->if_timer = 0;
1287 }
1288
1289 #ifdef AE_STATS
1290 void
1291 ae_print_stats(struct ae_softc *sc)
1292 {
1293
1294 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1295 sc->sc_dev.dv_xname,
1296 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1297 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1298 }
1299 #endif
1300
1301 /*
1302 * ae_reset:
1303 *
1304 * Perform a soft reset on the chip.
1305 */
1306 void
1307 ae_reset(struct ae_softc *sc)
1308 {
1309 int i;
1310
1311 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1312 AE_BARRIER(sc);
1313
1314 /*
1315 * The chip doesn't take itself out of reset automatically.
1316 * We need to do so after 2us.
1317 */
1318 delay(10);
1319 AE_WRITE(sc, CSR_BUSMODE, 0);
1320 AE_BARRIER(sc);
1321
1322 for (i = 0; i < 1000; i++) {
1323 /*
1324 * Wait a bit for the reset to complete before peeking
1325 * at the chip again.
1326 */
1327 delay(10);
1328 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1329 break;
1330 }
1331
1332 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1333 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1334
1335 delay(1000);
1336 }
1337
1338 /*
1339 * ae_init: [ ifnet interface function ]
1340 *
1341 * Initialize the interface. Must be called at splnet().
1342 */
1343 static int
1344 ae_init(struct ifnet *ifp)
1345 {
1346 struct ae_softc *sc = ifp->if_softc;
1347 struct ae_txsoft *txs;
1348 struct ae_rxsoft *rxs;
1349 uint8_t *enaddr;
1350 int i, error = 0;
1351
1352 if ((error = ae_enable(sc)) != 0)
1353 goto out;
1354
1355 /*
1356 * Cancel any pending I/O.
1357 */
1358 ae_stop(ifp, 0);
1359
1360 /*
1361 * Reset the chip to a known state.
1362 */
1363 ae_reset(sc);
1364
1365 /*
1366 * Initialize the BUSMODE register.
1367 */
1368 AE_WRITE(sc, CSR_BUSMODE,
1369 /* XXX: not sure if this is a good thing or not... */
1370 //BUSMODE_ALIGN_16B |
1371 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1372 AE_BARRIER(sc);
1373
1374 /*
1375 * Initialize the transmit descriptor ring.
1376 */
1377 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1378 for (i = 0; i < AE_NTXDESC; i++) {
1379 sc->sc_txdescs[i].ad_ctl = 0;
1380 sc->sc_txdescs[i].ad_bufaddr2 =
1381 AE_CDTXADDR(sc, AE_NEXTTX(i));
1382 }
1383 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1384 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1385 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1386 sc->sc_txfree = AE_NTXDESC;
1387 sc->sc_txnext = 0;
1388
1389 /*
1390 * Initialize the transmit job descriptors.
1391 */
1392 SIMPLEQ_INIT(&sc->sc_txfreeq);
1393 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1394 for (i = 0; i < AE_TXQUEUELEN; i++) {
1395 txs = &sc->sc_txsoft[i];
1396 txs->txs_mbuf = NULL;
1397 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1398 }
1399
1400 /*
1401 * Initialize the receive descriptor and receive job
1402 * descriptor rings.
1403 */
1404 for (i = 0; i < AE_NRXDESC; i++) {
1405 rxs = &sc->sc_rxsoft[i];
1406 if (rxs->rxs_mbuf == NULL) {
1407 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1408 printf("%s: unable to allocate or map rx "
1409 "buffer %d, error = %d\n",
1410 sc->sc_dev.dv_xname, i, error);
1411 /*
1412 * XXX Should attempt to run with fewer receive
1413 * XXX buffers instead of just failing.
1414 */
1415 ae_rxdrain(sc);
1416 goto out;
1417 }
1418 } else
1419 AE_INIT_RXDESC(sc, i);
1420 }
1421 sc->sc_rxptr = 0;
1422
1423 /*
1424 * Initialize the interrupt mask and enable interrupts.
1425 */
1426 /* normal interrupts */
1427 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1428
1429 /* abnormal interrupts */
1430 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1431 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1432
1433 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1434 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1435
1436 sc->sc_rxint_mask &= sc->sc_inten;
1437 sc->sc_txint_mask &= sc->sc_inten;
1438
1439 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1440 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1441
1442 /*
1443 * Give the transmit and receive rings to the chip.
1444 */
1445 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1446 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1447 AE_BARRIER(sc);
1448
1449 /*
1450 * Set the station address.
1451 */
1452 enaddr = LLADDR(ifp->if_sadl);
1453 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1454 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1455 enaddr[1] << 8 | enaddr[0]);
1456 AE_BARRIER(sc);
1457
1458 /*
1459 * Set the receive filter. This will start the transmit and
1460 * receive processes.
1461 */
1462 ae_filter_setup(sc);
1463
1464 /*
1465 * Set the current media.
1466 */
1467 ae_mediachange(ifp);
1468
1469 /*
1470 * Start the mac.
1471 */
1472 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1473 AE_BARRIER(sc);
1474
1475 /*
1476 * Write out the opmode.
1477 */
1478 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1479 ae_txthresh[sc->sc_txthresh].txth_opmode);
1480 /*
1481 * Start the receive process.
1482 */
1483 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1484 AE_BARRIER(sc);
1485
1486 if (sc->sc_tick != NULL) {
1487 /* Start the one second clock. */
1488 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1489 }
1490
1491 /*
1492 * Note that the interface is now running.
1493 */
1494 ifp->if_flags |= IFF_RUNNING;
1495 ifp->if_flags &= ~IFF_OACTIVE;
1496 sc->sc_if_flags = ifp->if_flags;
1497
1498 out:
1499 if (error) {
1500 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1501 ifp->if_timer = 0;
1502 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1503 }
1504 return (error);
1505 }
1506
1507 /*
1508 * ae_enable:
1509 *
1510 * Enable the chip.
1511 */
1512 static int
1513 ae_enable(struct ae_softc *sc)
1514 {
1515
1516 if (AE_IS_ENABLED(sc) == 0) {
1517 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1518 ae_intr, sc);
1519 if (sc->sc_ih == NULL) {
1520 printf("%s: unable to establish interrupt\n",
1521 sc->sc_dev.dv_xname);
1522 return (EIO);
1523 }
1524 sc->sc_flags |= AE_ENABLED;
1525 }
1526 return (0);
1527 }
1528
1529 /*
1530 * ae_disable:
1531 *
1532 * Disable the chip.
1533 */
1534 static void
1535 ae_disable(struct ae_softc *sc)
1536 {
1537
1538 if (AE_IS_ENABLED(sc)) {
1539 arbus_intr_disestablish(sc->sc_ih);
1540 sc->sc_flags &= ~AE_ENABLED;
1541 }
1542 }
1543
1544 /*
1545 * ae_power:
1546 *
1547 * Power management (suspend/resume) hook.
1548 */
1549 static void
1550 ae_power(int why, void *arg)
1551 {
1552 struct ae_softc *sc = arg;
1553 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1554 int s;
1555
1556 printf("power called: %d, %x\n", why, (uint32_t)arg);
1557 s = splnet();
1558 switch (why) {
1559 case PWR_STANDBY:
1560 /* do nothing! */
1561 break;
1562 case PWR_SUSPEND:
1563 ae_stop(ifp, 0);
1564 ae_disable(sc);
1565 break;
1566 case PWR_RESUME:
1567 if (ifp->if_flags & IFF_UP) {
1568 ae_enable(sc);
1569 ae_init(ifp);
1570 }
1571 break;
1572 case PWR_SOFTSUSPEND:
1573 case PWR_SOFTSTANDBY:
1574 case PWR_SOFTRESUME:
1575 break;
1576 }
1577 splx(s);
1578 }
1579
1580 /*
1581 * ae_rxdrain:
1582 *
1583 * Drain the receive queue.
1584 */
1585 static void
1586 ae_rxdrain(struct ae_softc *sc)
1587 {
1588 struct ae_rxsoft *rxs;
1589 int i;
1590
1591 for (i = 0; i < AE_NRXDESC; i++) {
1592 rxs = &sc->sc_rxsoft[i];
1593 if (rxs->rxs_mbuf != NULL) {
1594 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1595 m_freem(rxs->rxs_mbuf);
1596 rxs->rxs_mbuf = NULL;
1597 }
1598 }
1599 }
1600
1601 /*
1602 * ae_stop: [ ifnet interface function ]
1603 *
1604 * Stop transmission on the interface.
1605 */
1606 static void
1607 ae_stop(struct ifnet *ifp, int disable)
1608 {
1609 struct ae_softc *sc = ifp->if_softc;
1610 struct ae_txsoft *txs;
1611
1612 if (sc->sc_tick != NULL) {
1613 /* Stop the one second clock. */
1614 callout_stop(&sc->sc_tick_callout);
1615 }
1616
1617 /* Down the MII. */
1618 mii_down(&sc->sc_mii);
1619
1620 /* Disable interrupts. */
1621 AE_WRITE(sc, CSR_INTEN, 0);
1622
1623 /* Stop the transmit and receive processes. */
1624 AE_WRITE(sc, CSR_OPMODE, 0);
1625 AE_WRITE(sc, CSR_RXLIST, 0);
1626 AE_WRITE(sc, CSR_TXLIST, 0);
1627 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1628 AE_BARRIER(sc);
1629
1630 /*
1631 * Release any queued transmit buffers.
1632 */
1633 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1634 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1635 if (txs->txs_mbuf != NULL) {
1636 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1637 m_freem(txs->txs_mbuf);
1638 txs->txs_mbuf = NULL;
1639 }
1640 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1641 }
1642
1643 if (disable) {
1644 ae_rxdrain(sc);
1645 ae_disable(sc);
1646 }
1647
1648 /*
1649 * Mark the interface down and cancel the watchdog timer.
1650 */
1651 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1652 sc->sc_if_flags = ifp->if_flags;
1653 ifp->if_timer = 0;
1654
1655 /*
1656 * Reset the chip (needed on some flavors to actually disable it).
1657 */
1658 ae_reset(sc);
1659 }
1660
1661 /*
1662 * ae_add_rxbuf:
1663 *
1664 * Add a receive buffer to the indicated descriptor.
1665 */
1666 static int
1667 ae_add_rxbuf(struct ae_softc *sc, int idx)
1668 {
1669 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1670 struct mbuf *m;
1671 int error;
1672
1673 MGETHDR(m, M_DONTWAIT, MT_DATA);
1674 if (m == NULL)
1675 return (ENOBUFS);
1676
1677 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1678 MCLGET(m, M_DONTWAIT);
1679 if ((m->m_flags & M_EXT) == 0) {
1680 m_freem(m);
1681 return (ENOBUFS);
1682 }
1683
1684 if (rxs->rxs_mbuf != NULL)
1685 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1686
1687 rxs->rxs_mbuf = m;
1688
1689 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1690 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1691 BUS_DMA_READ|BUS_DMA_NOWAIT);
1692 if (error) {
1693 printf("%s: can't load rx DMA map %d, error = %d\n",
1694 sc->sc_dev.dv_xname, idx, error);
1695 panic("ae_add_rxbuf"); /* XXX */
1696 }
1697
1698 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1699 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1700
1701 AE_INIT_RXDESC(sc, idx);
1702
1703 return (0);
1704 }
1705
1706 /*
1707 * ae_filter_setup:
1708 *
1709 * Set the chip's receive filter.
1710 */
1711 static void
1712 ae_filter_setup(struct ae_softc *sc)
1713 {
1714 struct ethercom *ec = &sc->sc_ethercom;
1715 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1716 struct ether_multi *enm;
1717 struct ether_multistep step;
1718 uint32_t hash, mchash[2];
1719 uint32_t macctl = 0;
1720
1721 /*
1722 * If the chip is running, we need to reset the interface,
1723 * and will revisit here (with IFF_RUNNING) clear. The
1724 * chip seems to really not like to have its multicast
1725 * filter programmed without a reset.
1726 */
1727 if (ifp->if_flags & IFF_RUNNING) {
1728 (void) ae_init(ifp);
1729 return;
1730 }
1731
1732 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1733 sc->sc_dev.dv_xname, sc->sc_flags));
1734
1735 macctl = AE_READ(sc, CSR_MACCTL);
1736 macctl &= ~(MACCTL_PR | MACCTL_PM);
1737 macctl |= MACCTL_HASH;
1738 macctl |= MACCTL_HBD;
1739 macctl |= MACCTL_PR;
1740
1741 if (ifp->if_flags & IFF_PROMISC) {
1742 macctl |= MACCTL_PR;
1743 goto allmulti;
1744 }
1745
1746 mchash[0] = mchash[1] = 0;
1747
1748 ETHER_FIRST_MULTI(step, ec, enm);
1749 while (enm != NULL) {
1750 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1751 /*
1752 * We must listen to a range of multicast addresses.
1753 * For now, just accept all multicasts, rather than
1754 * trying to set only those filter bits needed to match
1755 * the range. (At this time, the only use of address
1756 * ranges is for IP multicast routing, for which the
1757 * range is big enough to require all bits set.)
1758 */
1759 goto allmulti;
1760 }
1761
1762 /* Verify whether we use big or little endian hashes */
1763 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1764 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1765 ETHER_NEXT_MULTI(step, enm);
1766 }
1767 ifp->if_flags &= ~IFF_ALLMULTI;
1768 goto setit;
1769
1770 allmulti:
1771 ifp->if_flags |= IFF_ALLMULTI;
1772 mchash[0] = mchash[1] = 0xffffffff;
1773 macctl |= MACCTL_PM;
1774
1775 setit:
1776 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1777 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1778
1779 AE_WRITE(sc, CSR_MACCTL, macctl);
1780 AE_BARRIER(sc);
1781
1782 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1783 sc->sc_dev.dv_xname, macctl));
1784 }
1785
1786 /*
1787 * ae_idle:
1788 *
1789 * Cause the transmit and/or receive processes to go idle.
1790 */
1791 void
1792 ae_idle(struct ae_softc *sc, u_int32_t bits)
1793 {
1794 static const char * const txstate_names[] = {
1795 "STOPPED",
1796 "RUNNING - FETCH",
1797 "RUNNING - WAIT",
1798 "RUNNING - READING",
1799 "-- RESERVED --",
1800 "RUNNING - SETUP",
1801 "SUSPENDED",
1802 "RUNNING - CLOSE",
1803 };
1804 static const char * const rxstate_names[] = {
1805 "STOPPED",
1806 "RUNNING - FETCH",
1807 "RUNNING - CHECK",
1808 "RUNNING - WAIT",
1809 "SUSPENDED",
1810 "RUNNING - CLOSE",
1811 "RUNNING - FLUSH",
1812 "RUNNING - QUEUE",
1813 };
1814
1815 u_int32_t csr, ackmask = 0;
1816 int i;
1817
1818 if (bits & OPMODE_ST)
1819 ackmask |= STATUS_TPS;
1820
1821 if (bits & OPMODE_SR)
1822 ackmask |= STATUS_RPS;
1823
1824 AE_CLR(sc, CSR_OPMODE, bits);
1825
1826 for (i = 0; i < 1000; i++) {
1827 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1828 break;
1829 delay(10);
1830 }
1831
1832 csr = AE_READ(sc, CSR_STATUS);
1833 if ((csr & ackmask) != ackmask) {
1834 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1835 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1836 printf("%s: transmit process failed to idle: "
1837 "state %s\n", sc->sc_dev.dv_xname,
1838 txstate_names[(csr & STATUS_TS) >> 20]);
1839 }
1840 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1841 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1842 printf("%s: receive process failed to idle: "
1843 "state %s\n", sc->sc_dev.dv_xname,
1844 rxstate_names[(csr & STATUS_RS) >> 17]);
1845 }
1846 }
1847 }
1848
1849 /*****************************************************************************
1850 * Generic media support functions.
1851 *****************************************************************************/
1852
1853 /*
1854 * ae_mediastatus: [ifmedia interface function]
1855 *
1856 * Query the current media.
1857 */
1858 void
1859 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1860 {
1861 struct ae_softc *sc = ifp->if_softc;
1862
1863 if (AE_IS_ENABLED(sc) == 0) {
1864 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1865 ifmr->ifm_status = 0;
1866 return;
1867 }
1868
1869 mii_pollstat(&sc->sc_mii);
1870 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1871 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1872 }
1873
1874 /*
1875 * ae_mediachange: [ifmedia interface function]
1876 *
1877 * Update the current media.
1878 */
1879 int
1880 ae_mediachange(struct ifnet *ifp)
1881 {
1882 struct ae_softc *sc = ifp->if_softc;
1883
1884 if ((ifp->if_flags & IFF_UP) == 0)
1885 return (0);
1886
1887 mii_mediachg(&sc->sc_mii);
1888 return (0);
1889 }
1890
1891 /*****************************************************************************
1892 * Support functions for MII-attached media.
1893 *****************************************************************************/
1894
1895 /*
1896 * ae_mii_tick:
1897 *
1898 * One second timer, used to tick the MII.
1899 */
1900 static void
1901 ae_mii_tick(void *arg)
1902 {
1903 struct ae_softc *sc = arg;
1904 int s;
1905
1906 if (!device_is_active(&sc->sc_dev))
1907 return;
1908
1909 s = splnet();
1910 mii_tick(&sc->sc_mii);
1911 splx(s);
1912
1913 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1914 }
1915
1916 /*
1917 * ae_mii_statchg: [mii interface function]
1918 *
1919 * Callback from PHY when media changes.
1920 */
1921 static void
1922 ae_mii_statchg(struct device *self)
1923 {
1924 struct ae_softc *sc = (struct ae_softc *)self;
1925 uint32_t macctl, flowc;
1926
1927 //opmode = AE_READ(sc, CSR_OPMODE);
1928 macctl = AE_READ(sc, CSR_MACCTL);
1929
1930 /* XXX: do we need to do this? */
1931 /* Idle the transmit and receive processes. */
1932 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1933
1934 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1935 flowc = FLOWC_FCE;
1936 macctl &= ~MACCTL_DRO;
1937 macctl |= MACCTL_FDX;
1938 } else {
1939 flowc = 0; /* cannot do flow control in HDX */
1940 macctl |= MACCTL_DRO;
1941 macctl &= ~MACCTL_FDX;
1942 }
1943
1944 AE_WRITE(sc, CSR_FLOWC, flowc);
1945 AE_WRITE(sc, CSR_MACCTL, macctl);
1946
1947 /* restore operational mode */
1948 //AE_WRITE(sc, CSR_OPMODE, opmode);
1949 AE_BARRIER(sc);
1950 }
1951
1952 /*
1953 * ae_mii_readreg:
1954 *
1955 * Read a PHY register.
1956 */
1957 static int
1958 ae_mii_readreg(struct device *self, int phy, int reg)
1959 {
1960 struct ae_softc *sc = (struct ae_softc *)self;
1961 uint32_t addr;
1962 int i;
1963
1964 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1965 AE_WRITE(sc, CSR_MIIADDR, addr);
1966 AE_BARRIER(sc);
1967 for (i = 0; i < 100000000; i++) {
1968 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1969 break;
1970 }
1971
1972 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1973 }
1974
1975 /*
1976 * ae_mii_writereg:
1977 *
1978 * Write a PHY register.
1979 */
1980 static void
1981 ae_mii_writereg(struct device *self, int phy, int reg, int val)
1982 {
1983 struct ae_softc *sc = (struct ae_softc *)self;
1984 uint32_t addr;
1985 int i;
1986
1987 /* write the data register */
1988 AE_WRITE(sc, CSR_MIIDATA, val);
1989
1990 /* write the address to latch it in */
1991 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1992 MIIADDR_WRITE;
1993 AE_WRITE(sc, CSR_MIIADDR, addr);
1994 AE_BARRIER(sc);
1995
1996 for (i = 0; i < 100000000; i++) {
1997 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1998 break;
1999 }
2000 }
2001