if_ae.c revision 1.30 1 /* $Id: if_ae.c,v 1.30 2016/12/15 09:28:03 ozaki-r Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the onboard ethernet MAC found on the AR5312
74 * chip's AHB bus.
75 *
76 * This device is very simliar to the tulip in most regards, and
77 * the code is directly derived from NetBSD's tulip.c. However, it
78 * is different enough that it did not seem to be a good idea to
79 * add further complexity to the tulip driver, so we have our own.
80 *
81 * Also tulip has a lot of complexity in it for various parts/options
82 * that we don't need, and on these little boxes with only ~8MB RAM, we
83 * don't want any extra bloat.
84 */
85
86 /*
87 * TODO:
88 *
89 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
90 * inbound packets on a half-word boundary, which would make life easier
91 * for TCP/IP. (Aligning IP headers on a word.)
92 *
93 * 2) There is stuff in original tulip to shut down the device when reacting
94 * to a a change in link status. Is that needed.
95 *
96 * 3) Test with variety of 10/100 HDX/FDX scenarios.
97 *
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.30 2016/12/15 09:28:03 ozaki-r Exp $");
102
103
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116
117 #include <uvm/uvm_extern.h>
118
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123
124 #include <net/bpf.h>
125
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #include <dev/mii/mii_bitbang.h>
129
130 #include <mips/atheros/include/arbusvar.h>
131 #include <mips/atheros/dev/aereg.h>
132 #include <mips/atheros/dev/aevar.h>
133
134 static const struct {
135 u_int32_t txth_opmode; /* OPMODE bits */
136 const char *txth_name; /* name of mode */
137 } ae_txthresh[] = {
138 { OPMODE_TR_32, "32 words" },
139 { OPMODE_TR_64, "64 words" },
140 { OPMODE_TR_128, "128 words" },
141 { OPMODE_TR_256, "256 words" },
142 { OPMODE_SF, "store and forward mode" },
143 { 0, NULL },
144 };
145
146 static int ae_match(device_t, struct cfdata *, void *);
147 static void ae_attach(device_t, device_t, void *);
148 static int ae_detach(device_t, int);
149 static int ae_activate(device_t, enum devact);
150
151 static int ae_ifflags_cb(struct ethercom *);
152 static void ae_reset(struct ae_softc *);
153 static void ae_idle(struct ae_softc *, u_int32_t);
154
155 static void ae_start(struct ifnet *);
156 static void ae_watchdog(struct ifnet *);
157 static int ae_ioctl(struct ifnet *, u_long, void *);
158 static int ae_init(struct ifnet *);
159 static void ae_stop(struct ifnet *, int);
160
161 static void ae_shutdown(void *);
162
163 static void ae_rxdrain(struct ae_softc *);
164 static int ae_add_rxbuf(struct ae_softc *, int);
165
166 static int ae_enable(struct ae_softc *);
167 static void ae_disable(struct ae_softc *);
168 static void ae_power(int, void *);
169
170 static void ae_filter_setup(struct ae_softc *);
171
172 static int ae_intr(void *);
173 static void ae_rxintr(struct ae_softc *);
174 static void ae_txintr(struct ae_softc *);
175
176 static void ae_mii_tick(void *);
177 static void ae_mii_statchg(struct ifnet *);
178
179 static int ae_mii_readreg(device_t, int, int);
180 static void ae_mii_writereg(device_t, int, int, int);
181
182 #ifdef AE_DEBUG
183 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
184 printf x
185 #else
186 #define DPRINTF(sc, x) /* nothing */
187 #endif
188
189 #ifdef AE_STATS
190 static void ae_print_stats(struct ae_softc *);
191 #endif
192
193 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
194 ae_match, ae_attach, ae_detach, ae_activate);
195
196 /*
197 * ae_match:
198 *
199 * Check for a device match.
200 */
201 int
202 ae_match(device_t parent, struct cfdata *cf, void *aux)
203 {
204 struct arbus_attach_args *aa = aux;
205
206 if (strcmp(aa->aa_name, cf->cf_name) == 0)
207 return 1;
208
209 return 0;
210
211 }
212
213 /*
214 * ae_attach:
215 *
216 * Attach an ae interface to the system.
217 */
218 void
219 ae_attach(device_t parent, device_t self, void *aux)
220 {
221 const uint8_t *enaddr;
222 prop_data_t ea;
223 struct ae_softc *sc = device_private(self);
224 struct arbus_attach_args *aa = aux;
225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 int i, error;
227
228 sc->sc_dev = self;
229
230 callout_init(&sc->sc_tick_callout, 0);
231
232 printf(": Atheros AR531X 10/100 Ethernet\n");
233
234 /*
235 * Try to get MAC address.
236 */
237 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 if (ea == NULL) {
239 printf("%s: unable to get mac-addr property\n",
240 device_xname(sc->sc_dev));
241 return;
242 }
243 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 enaddr = prop_data_data_nocopy(ea);
246
247 /* Announce ourselves. */
248 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 ether_sprintf(enaddr));
250
251 sc->sc_cirq = aa->aa_cirq;
252 sc->sc_mirq = aa->aa_mirq;
253 sc->sc_st = aa->aa_bst;
254 sc->sc_dmat = aa->aa_dmat;
255
256 SIMPLEQ_INIT(&sc->sc_txfreeq);
257 SIMPLEQ_INIT(&sc->sc_txdirtyq);
258
259 /*
260 * Map registers.
261 */
262 sc->sc_size = aa->aa_size;
263 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 &sc->sc_sh)) != 0) {
265 printf("%s: unable to map registers, error = %d\n",
266 device_xname(sc->sc_dev), error);
267 goto fail_0;
268 }
269
270 /*
271 * Allocate the control data structures, and create and load the
272 * DMA map for it.
273 */
274 if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 1, &sc->sc_cdnseg, 0)) != 0) {
277 printf("%s: unable to allocate control data, error = %d\n",
278 device_xname(sc->sc_dev), error);
279 goto fail_1;
280 }
281
282 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 BUS_DMA_COHERENT)) != 0) {
285 printf("%s: unable to map control data, error = %d\n",
286 device_xname(sc->sc_dev), error);
287 goto fail_2;
288 }
289
290 if ((error = bus_dmamap_create(sc->sc_dmat,
291 sizeof(struct ae_control_data), 1,
292 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 printf("%s: unable to create control data DMA map, "
294 "error = %d\n", device_xname(sc->sc_dev), error);
295 goto fail_3;
296 }
297
298 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 0)) != 0) {
301 printf("%s: unable to load control data DMA map, error = %d\n",
302 device_xname(sc->sc_dev), error);
303 goto fail_4;
304 }
305
306 /*
307 * Create the transmit buffer DMA maps.
308 */
309 for (i = 0; i < AE_TXQUEUELEN; i++) {
310 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 AE_NTXSEGS, MCLBYTES, 0, 0,
312 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 printf("%s: unable to create tx DMA map %d, "
314 "error = %d\n", device_xname(sc->sc_dev), i, error);
315 goto fail_5;
316 }
317 }
318
319 /*
320 * Create the receive buffer DMA maps.
321 */
322 for (i = 0; i < AE_NRXDESC; i++) {
323 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 printf("%s: unable to create rx DMA map %d, "
326 "error = %d\n", device_xname(sc->sc_dev), i, error);
327 goto fail_6;
328 }
329 sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 }
331
332 /*
333 * Reset the chip to a known state.
334 */
335 ae_reset(sc);
336
337 /*
338 * From this point forward, the attachment cannot fail. A failure
339 * before this point releases all resources that may have been
340 * allocated.
341 */
342 sc->sc_flags |= AE_ATTACHED;
343
344 /*
345 * Initialize our media structures. This may probe the MII, if
346 * present.
347 */
348 sc->sc_mii.mii_ifp = ifp;
349 sc->sc_mii.mii_readreg = ae_mii_readreg;
350 sc->sc_mii.mii_writereg = ae_mii_writereg;
351 sc->sc_mii.mii_statchg = ae_mii_statchg;
352 sc->sc_ethercom.ec_mii = &sc->sc_mii;
353 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
354 ether_mediastatus);
355 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
356 MII_OFFSET_ANY, 0);
357
358 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
359 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
360 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
361 } else
362 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
363
364 sc->sc_tick = ae_mii_tick;
365
366 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 sc->sc_if_flags = ifp->if_flags;
370 ifp->if_ioctl = ae_ioctl;
371 ifp->if_start = ae_start;
372 ifp->if_watchdog = ae_watchdog;
373 ifp->if_init = ae_init;
374 ifp->if_stop = ae_stop;
375 IFQ_SET_READY(&ifp->if_snd);
376
377 /*
378 * We can support 802.1Q VLAN-sized frames.
379 */
380 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
381
382 /*
383 * Attach the interface.
384 */
385 if_attach(ifp);
386 if_deferred_start_init(ifp, NULL);
387 ether_ifattach(ifp, enaddr);
388 ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
389
390 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
391 RND_TYPE_NET, RND_FLAG_DEFAULT);
392
393 /*
394 * Make sure the interface is shutdown during reboot.
395 */
396 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
397 if (sc->sc_sdhook == NULL)
398 printf("%s: WARNING: unable to establish shutdown hook\n",
399 device_xname(sc->sc_dev));
400
401 /*
402 * Add a suspend hook to make sure we come back up after a
403 * resume.
404 */
405 sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
406 ae_power, sc);
407 if (sc->sc_powerhook == NULL)
408 printf("%s: WARNING: unable to establish power hook\n",
409 device_xname(sc->sc_dev));
410 return;
411
412 /*
413 * Free any resources we've allocated during the failed attach
414 * attempt. Do this in reverse order and fall through.
415 */
416 fail_6:
417 for (i = 0; i < AE_NRXDESC; i++) {
418 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
419 bus_dmamap_destroy(sc->sc_dmat,
420 sc->sc_rxsoft[i].rxs_dmamap);
421 }
422 fail_5:
423 for (i = 0; i < AE_TXQUEUELEN; i++) {
424 if (sc->sc_txsoft[i].txs_dmamap != NULL)
425 bus_dmamap_destroy(sc->sc_dmat,
426 sc->sc_txsoft[i].txs_dmamap);
427 }
428 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
429 fail_4:
430 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
431 fail_3:
432 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
433 sizeof(struct ae_control_data));
434 fail_2:
435 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
436 fail_1:
437 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
438 fail_0:
439 return;
440 }
441
442 /*
443 * ae_activate:
444 *
445 * Handle device activation/deactivation requests.
446 */
447 int
448 ae_activate(device_t self, enum devact act)
449 {
450 struct ae_softc *sc = device_private(self);
451
452 switch (act) {
453 case DVACT_DEACTIVATE:
454 if_deactivate(&sc->sc_ethercom.ec_if);
455 return 0;
456 default:
457 return EOPNOTSUPP;
458 }
459 }
460
461 /*
462 * ae_detach:
463 *
464 * Detach a device interface.
465 */
466 int
467 ae_detach(device_t self, int flags)
468 {
469 struct ae_softc *sc = device_private(self);
470 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
471 struct ae_rxsoft *rxs;
472 struct ae_txsoft *txs;
473 int i;
474
475 /*
476 * Succeed now if there isn't any work to do.
477 */
478 if ((sc->sc_flags & AE_ATTACHED) == 0)
479 return (0);
480
481 /* Unhook our tick handler. */
482 if (sc->sc_tick)
483 callout_stop(&sc->sc_tick_callout);
484
485 /* Detach all PHYs */
486 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
487
488 /* Delete all remaining media. */
489 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
490
491 rnd_detach_source(&sc->sc_rnd_source);
492 ether_ifdetach(ifp);
493 if_detach(ifp);
494
495 for (i = 0; i < AE_NRXDESC; i++) {
496 rxs = &sc->sc_rxsoft[i];
497 if (rxs->rxs_mbuf != NULL) {
498 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
499 m_freem(rxs->rxs_mbuf);
500 rxs->rxs_mbuf = NULL;
501 }
502 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
503 }
504 for (i = 0; i < AE_TXQUEUELEN; i++) {
505 txs = &sc->sc_txsoft[i];
506 if (txs->txs_mbuf != NULL) {
507 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
508 m_freem(txs->txs_mbuf);
509 txs->txs_mbuf = NULL;
510 }
511 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
512 }
513 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
514 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
515 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
516 sizeof(struct ae_control_data));
517 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
518
519 shutdownhook_disestablish(sc->sc_sdhook);
520 powerhook_disestablish(sc->sc_powerhook);
521
522 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
523
524
525 return (0);
526 }
527
528 /*
529 * ae_shutdown:
530 *
531 * Make sure the interface is stopped at reboot time.
532 */
533 static void
534 ae_shutdown(void *arg)
535 {
536 struct ae_softc *sc = arg;
537
538 ae_stop(&sc->sc_ethercom.ec_if, 1);
539 }
540
541 /*
542 * ae_start: [ifnet interface function]
543 *
544 * Start packet transmission on the interface.
545 */
546 static void
547 ae_start(struct ifnet *ifp)
548 {
549 struct ae_softc *sc = ifp->if_softc;
550 struct mbuf *m0, *m;
551 struct ae_txsoft *txs;
552 bus_dmamap_t dmamap;
553 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
554
555 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
556 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
557
558
559 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
560 return;
561
562 /*
563 * Remember the previous number of free descriptors and
564 * the first descriptor we'll use.
565 */
566 ofree = sc->sc_txfree;
567 firsttx = sc->sc_txnext;
568
569 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
570 device_xname(sc->sc_dev), ofree, firsttx));
571
572 /*
573 * Loop through the send queue, setting up transmit descriptors
574 * until we drain the queue, or use up all available transmit
575 * descriptors.
576 */
577 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
578 sc->sc_txfree != 0) {
579 /*
580 * Grab a packet off the queue.
581 */
582 IFQ_POLL(&ifp->if_snd, m0);
583 if (m0 == NULL)
584 break;
585 m = NULL;
586
587 dmamap = txs->txs_dmamap;
588
589 /*
590 * Load the DMA map. If this fails, the packet either
591 * didn't fit in the alloted number of segments, or we were
592 * short on resources. In this case, we'll copy and try
593 * again.
594 */
595 if (((mtod(m0, uintptr_t) & 3) != 0) ||
596 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
597 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
598 MGETHDR(m, M_DONTWAIT, MT_DATA);
599 if (m == NULL) {
600 printf("%s: unable to allocate Tx mbuf\n",
601 device_xname(sc->sc_dev));
602 break;
603 }
604 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
605 if (m0->m_pkthdr.len > MHLEN) {
606 MCLGET(m, M_DONTWAIT);
607 if ((m->m_flags & M_EXT) == 0) {
608 printf("%s: unable to allocate Tx "
609 "cluster\n", device_xname(sc->sc_dev));
610 m_freem(m);
611 break;
612 }
613 }
614 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
615 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
616 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
617 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
618 if (error) {
619 printf("%s: unable to load Tx buffer, "
620 "error = %d\n", device_xname(sc->sc_dev),
621 error);
622 break;
623 }
624 }
625
626 /*
627 * Ensure we have enough descriptors free to describe
628 * the packet.
629 */
630 if (dmamap->dm_nsegs > sc->sc_txfree) {
631 /*
632 * Not enough free descriptors to transmit this
633 * packet. We haven't committed to anything yet,
634 * so just unload the DMA map, put the packet
635 * back on the queue, and punt. Notify the upper
636 * layer that there are no more slots left.
637 *
638 * XXX We could allocate an mbuf and copy, but
639 * XXX it is worth it?
640 */
641 ifp->if_flags |= IFF_OACTIVE;
642 bus_dmamap_unload(sc->sc_dmat, dmamap);
643 if (m != NULL)
644 m_freem(m);
645 break;
646 }
647
648 IFQ_DEQUEUE(&ifp->if_snd, m0);
649 if (m != NULL) {
650 m_freem(m0);
651 m0 = m;
652 }
653
654 /*
655 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
656 */
657
658 /* Sync the DMA map. */
659 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
660 BUS_DMASYNC_PREWRITE);
661
662 /*
663 * Initialize the transmit descriptors.
664 */
665 for (nexttx = sc->sc_txnext, seg = 0;
666 seg < dmamap->dm_nsegs;
667 seg++, nexttx = AE_NEXTTX(nexttx)) {
668 /*
669 * If this is the first descriptor we're
670 * enqueueing, don't set the OWN bit just
671 * yet. That could cause a race condition.
672 * We'll do it below.
673 */
674 sc->sc_txdescs[nexttx].ad_status =
675 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
676 sc->sc_txdescs[nexttx].ad_bufaddr1 =
677 dmamap->dm_segs[seg].ds_addr;
678 sc->sc_txdescs[nexttx].ad_ctl =
679 (dmamap->dm_segs[seg].ds_len <<
680 ADCTL_SIZE1_SHIFT) |
681 (nexttx == (AE_NTXDESC - 1) ?
682 ADCTL_ER : 0);
683 lasttx = nexttx;
684 }
685
686 KASSERT(lasttx != -1);
687
688 /* Set `first segment' and `last segment' appropriately. */
689 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
690 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
691
692 #ifdef AE_DEBUG
693 if (ifp->if_flags & IFF_DEBUG) {
694 printf(" txsoft %p transmit chain:\n", txs);
695 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
696 printf(" descriptor %d:\n", seg);
697 printf(" ad_status: 0x%08x\n",
698 sc->sc_txdescs[seg].ad_status);
699 printf(" ad_ctl: 0x%08x\n",
700 sc->sc_txdescs[seg].ad_ctl);
701 printf(" ad_bufaddr1: 0x%08x\n",
702 sc->sc_txdescs[seg].ad_bufaddr1);
703 printf(" ad_bufaddr2: 0x%08x\n",
704 sc->sc_txdescs[seg].ad_bufaddr2);
705 if (seg == lasttx)
706 break;
707 }
708 }
709 #endif
710
711 /* Sync the descriptors we're using. */
712 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
713 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
714
715 /*
716 * Store a pointer to the packet so we can free it later,
717 * and remember what txdirty will be once the packet is
718 * done.
719 */
720 txs->txs_mbuf = m0;
721 txs->txs_firstdesc = sc->sc_txnext;
722 txs->txs_lastdesc = lasttx;
723 txs->txs_ndescs = dmamap->dm_nsegs;
724
725 /* Advance the tx pointer. */
726 sc->sc_txfree -= dmamap->dm_nsegs;
727 sc->sc_txnext = nexttx;
728
729 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
730 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
731
732 /*
733 * Pass the packet to any BPF listeners.
734 */
735 bpf_mtap(ifp, m0);
736 }
737
738 if (txs == NULL || sc->sc_txfree == 0) {
739 /* No more slots left; notify upper layer. */
740 ifp->if_flags |= IFF_OACTIVE;
741 }
742
743 if (sc->sc_txfree != ofree) {
744 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
745 device_xname(sc->sc_dev), lasttx, firsttx));
746 /*
747 * Cause a transmit interrupt to happen on the
748 * last packet we enqueued.
749 */
750 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
751 AE_CDTXSYNC(sc, lasttx, 1,
752 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753
754 /*
755 * The entire packet chain is set up. Give the
756 * first descriptor to the chip now.
757 */
758 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
759 AE_CDTXSYNC(sc, firsttx, 1,
760 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
761
762 /* Wake up the transmitter. */
763 /* XXX USE AUTOPOLLING? */
764 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
765 AE_BARRIER(sc);
766
767 /* Set a watchdog timer in case the chip flakes out. */
768 ifp->if_timer = 5;
769 }
770 }
771
772 /*
773 * ae_watchdog: [ifnet interface function]
774 *
775 * Watchdog timer handler.
776 */
777 static void
778 ae_watchdog(struct ifnet *ifp)
779 {
780 struct ae_softc *sc = ifp->if_softc;
781 int doing_transmit;
782
783 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
784
785 if (doing_transmit) {
786 printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
787 ifp->if_oerrors++;
788 }
789 else
790 printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
791
792 (void) ae_init(ifp);
793
794 /* Try to get more packets going. */
795 ae_start(ifp);
796 }
797
798 /* If the interface is up and running, only modify the receive
799 * filter when changing to/from promiscuous mode. Otherwise return
800 * ENETRESET so that ether_ioctl will reset the chip.
801 */
802 static int
803 ae_ifflags_cb(struct ethercom *ec)
804 {
805 struct ifnet *ifp = &ec->ec_if;
806 struct ae_softc *sc = ifp->if_softc;
807 int change = ifp->if_flags ^ sc->sc_if_flags;
808
809 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
810 return ENETRESET;
811 else if ((change & IFF_PROMISC) != 0)
812 ae_filter_setup(sc);
813 return 0;
814 }
815
816 /*
817 * ae_ioctl: [ifnet interface function]
818 *
819 * Handle control requests from the operator.
820 */
821 static int
822 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
823 {
824 struct ae_softc *sc = ifp->if_softc;
825 int s, error;
826
827 s = splnet();
828
829 error = ether_ioctl(ifp, cmd, data);
830 if (error == ENETRESET) {
831 if (ifp->if_flags & IFF_RUNNING) {
832 /*
833 * Multicast list has changed. Set the
834 * hardware filter accordingly.
835 */
836 ae_filter_setup(sc);
837 }
838 error = 0;
839 }
840
841 /* Try to get more packets going. */
842 if (AE_IS_ENABLED(sc))
843 ae_start(ifp);
844
845 sc->sc_if_flags = ifp->if_flags;
846 splx(s);
847 return (error);
848 }
849
850 /*
851 * ae_intr:
852 *
853 * Interrupt service routine.
854 */
855 int
856 ae_intr(void *arg)
857 {
858 struct ae_softc *sc = arg;
859 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
860 u_int32_t status, rxstatus, txstatus;
861 int handled = 0, txthresh;
862
863 DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
864
865 #ifdef DEBUG
866 if (AE_IS_ENABLED(sc) == 0)
867 panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
868 #endif
869
870 /*
871 * If the interface isn't running, the interrupt couldn't
872 * possibly have come from us.
873 */
874 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
875 !device_is_active(sc->sc_dev)) {
876 printf("spurious?!?\n");
877 return (0);
878 }
879
880 for (;;) {
881 status = AE_READ(sc, CSR_STATUS);
882 if (status) {
883 AE_WRITE(sc, CSR_STATUS, status);
884 AE_BARRIER(sc);
885 }
886
887 if ((status & sc->sc_inten) == 0)
888 break;
889
890 handled = 1;
891
892 rxstatus = status & sc->sc_rxint_mask;
893 txstatus = status & sc->sc_txint_mask;
894
895 if (rxstatus) {
896 /* Grab new any new packets. */
897 ae_rxintr(sc);
898
899 if (rxstatus & STATUS_RU) {
900 printf("%s: receive ring overrun\n",
901 device_xname(sc->sc_dev));
902 /* Get the receive process going again. */
903 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
904 AE_BARRIER(sc);
905 break;
906 }
907 }
908
909 if (txstatus) {
910 /* Sweep up transmit descriptors. */
911 ae_txintr(sc);
912
913 if (txstatus & STATUS_TJT)
914 printf("%s: transmit jabber timeout\n",
915 device_xname(sc->sc_dev));
916
917 if (txstatus & STATUS_UNF) {
918 /*
919 * Increase our transmit threshold if
920 * another is available.
921 */
922 txthresh = sc->sc_txthresh + 1;
923 if (ae_txthresh[txthresh].txth_name != NULL) {
924 uint32_t opmode;
925 /* Idle the transmit process. */
926 opmode = AE_READ(sc, CSR_OPMODE);
927 ae_idle(sc, OPMODE_ST);
928
929 sc->sc_txthresh = txthresh;
930 opmode &=
931 ~(OPMODE_TR|OPMODE_SF);
932 opmode |=
933 ae_txthresh[txthresh].txth_opmode;
934 printf("%s: transmit underrun; new "
935 "threshold: %s\n",
936 device_xname(sc->sc_dev),
937 ae_txthresh[txthresh].txth_name);
938
939 /*
940 * Set the new threshold and restart
941 * the transmit process.
942 */
943 AE_WRITE(sc, CSR_OPMODE, opmode);
944 AE_BARRIER(sc);
945 }
946 /*
947 * XXX Log every Nth underrun from
948 * XXX now on?
949 */
950 }
951 }
952
953 if (status & (STATUS_TPS|STATUS_RPS)) {
954 if (status & STATUS_TPS)
955 printf("%s: transmit process stopped\n",
956 device_xname(sc->sc_dev));
957 if (status & STATUS_RPS)
958 printf("%s: receive process stopped\n",
959 device_xname(sc->sc_dev));
960 (void) ae_init(ifp);
961 break;
962 }
963
964 if (status & STATUS_SE) {
965 const char *str;
966
967 if (status & STATUS_TX_ABORT)
968 str = "tx abort";
969 else if (status & STATUS_RX_ABORT)
970 str = "rx abort";
971 else
972 str = "unknown error";
973
974 printf("%s: fatal system error: %s\n",
975 device_xname(sc->sc_dev), str);
976 (void) ae_init(ifp);
977 break;
978 }
979
980 /*
981 * Not handled:
982 *
983 * Transmit buffer unavailable -- normal
984 * condition, nothing to do, really.
985 *
986 * General purpose timer experied -- we don't
987 * use the general purpose timer.
988 *
989 * Early receive interrupt -- not available on
990 * all chips, we just use RI. We also only
991 * use single-segment receive DMA, so this
992 * is mostly useless.
993 */
994 }
995
996 /* Try to get more packets going. */
997 if_schedule_deferred_start(ifp);
998
999 if (handled)
1000 rnd_add_uint32(&sc->sc_rnd_source, status);
1001 return (handled);
1002 }
1003
1004 /*
1005 * ae_rxintr:
1006 *
1007 * Helper; handle receive interrupts.
1008 */
1009 static void
1010 ae_rxintr(struct ae_softc *sc)
1011 {
1012 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1013 struct ae_rxsoft *rxs;
1014 struct mbuf *m;
1015 u_int32_t rxstat;
1016 int i, len;
1017
1018 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1019 rxs = &sc->sc_rxsoft[i];
1020
1021 AE_CDRXSYNC(sc, i,
1022 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1023
1024 rxstat = sc->sc_rxdescs[i].ad_status;
1025
1026 if (rxstat & ADSTAT_OWN) {
1027 /*
1028 * We have processed all of the receive buffers.
1029 */
1030 break;
1031 }
1032
1033 /*
1034 * If any collisions were seen on the wire, count one.
1035 */
1036 if (rxstat & ADSTAT_Rx_CS)
1037 ifp->if_collisions++;
1038
1039 /*
1040 * If an error occurred, update stats, clear the status
1041 * word, and leave the packet buffer in place. It will
1042 * simply be reused the next time the ring comes around.
1043 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1044 * error.
1045 */
1046 if (rxstat & ADSTAT_ES &&
1047 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1048 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1049 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1050 #define PRINTERR(bit, str) \
1051 if (rxstat & (bit)) \
1052 printf("%s: receive error: %s\n", \
1053 device_xname(sc->sc_dev), str)
1054 ifp->if_ierrors++;
1055 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1056 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1057 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1058 PRINTERR(ADSTAT_Rx_RE, "MII error");
1059 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1060 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1061 #undef PRINTERR
1062 AE_INIT_RXDESC(sc, i);
1063 continue;
1064 }
1065
1066 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1067 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1068
1069 /*
1070 * No errors; receive the packet. Note the chip
1071 * includes the CRC with every packet.
1072 */
1073 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1074
1075 /*
1076 * XXX: the Atheros part can align on half words. what
1077 * is the performance implication of this? Probably
1078 * minimal, and we should use it...
1079 */
1080 #ifdef __NO_STRICT_ALIGNMENT
1081 /*
1082 * Allocate a new mbuf cluster. If that fails, we are
1083 * out of memory, and must drop the packet and recycle
1084 * the buffer that's already attached to this descriptor.
1085 */
1086 m = rxs->rxs_mbuf;
1087 if (ae_add_rxbuf(sc, i) != 0) {
1088 ifp->if_ierrors++;
1089 AE_INIT_RXDESC(sc, i);
1090 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1091 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1092 continue;
1093 }
1094 #else
1095 /*
1096 * The chip's receive buffers must be 4-byte aligned.
1097 * But this means that the data after the Ethernet header
1098 * is misaligned. We must allocate a new buffer and
1099 * copy the data, shifted forward 2 bytes.
1100 */
1101 MGETHDR(m, M_DONTWAIT, MT_DATA);
1102 if (m == NULL) {
1103 dropit:
1104 ifp->if_ierrors++;
1105 AE_INIT_RXDESC(sc, i);
1106 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1107 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1108 continue;
1109 }
1110 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1111 if (len > (MHLEN - 2)) {
1112 MCLGET(m, M_DONTWAIT);
1113 if ((m->m_flags & M_EXT) == 0) {
1114 m_freem(m);
1115 goto dropit;
1116 }
1117 }
1118 m->m_data += 2;
1119
1120 /*
1121 * Note that we use clusters for incoming frames, so the
1122 * buffer is virtually contiguous.
1123 */
1124 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1125
1126 /* Allow the receive descriptor to continue using its mbuf. */
1127 AE_INIT_RXDESC(sc, i);
1128 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1129 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1130 #endif /* __NO_STRICT_ALIGNMENT */
1131
1132 m_set_rcvif(m, ifp);
1133 m->m_pkthdr.len = m->m_len = len;
1134
1135 /* Pass it on. */
1136 if_percpuq_enqueue(ifp->if_percpuq, m);
1137 }
1138
1139 /* Update the receive pointer. */
1140 sc->sc_rxptr = i;
1141 }
1142
1143 /*
1144 * ae_txintr:
1145 *
1146 * Helper; handle transmit interrupts.
1147 */
1148 static void
1149 ae_txintr(struct ae_softc *sc)
1150 {
1151 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1152 struct ae_txsoft *txs;
1153 u_int32_t txstat;
1154
1155 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1156 device_xname(sc->sc_dev), sc->sc_flags));
1157
1158 ifp->if_flags &= ~IFF_OACTIVE;
1159
1160 /*
1161 * Go through our Tx list and free mbufs for those
1162 * frames that have been transmitted.
1163 */
1164 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1165 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1166 txs->txs_ndescs,
1167 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1168
1169 #ifdef AE_DEBUG
1170 if (ifp->if_flags & IFF_DEBUG) {
1171 int i;
1172 printf(" txsoft %p transmit chain:\n", txs);
1173 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1174 printf(" descriptor %d:\n", i);
1175 printf(" ad_status: 0x%08x\n",
1176 sc->sc_txdescs[i].ad_status);
1177 printf(" ad_ctl: 0x%08x\n",
1178 sc->sc_txdescs[i].ad_ctl);
1179 printf(" ad_bufaddr1: 0x%08x\n",
1180 sc->sc_txdescs[i].ad_bufaddr1);
1181 printf(" ad_bufaddr2: 0x%08x\n",
1182 sc->sc_txdescs[i].ad_bufaddr2);
1183 if (i == txs->txs_lastdesc)
1184 break;
1185 }
1186 }
1187 #endif
1188
1189 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1190 if (txstat & ADSTAT_OWN)
1191 break;
1192
1193 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1194
1195 sc->sc_txfree += txs->txs_ndescs;
1196
1197 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1198 0, txs->txs_dmamap->dm_mapsize,
1199 BUS_DMASYNC_POSTWRITE);
1200 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1201 m_freem(txs->txs_mbuf);
1202 txs->txs_mbuf = NULL;
1203
1204 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1205
1206 /*
1207 * Check for errors and collisions.
1208 */
1209 #ifdef AE_STATS
1210 if (txstat & ADSTAT_Tx_UF)
1211 sc->sc_stats.ts_tx_uf++;
1212 if (txstat & ADSTAT_Tx_TO)
1213 sc->sc_stats.ts_tx_to++;
1214 if (txstat & ADSTAT_Tx_EC)
1215 sc->sc_stats.ts_tx_ec++;
1216 if (txstat & ADSTAT_Tx_LC)
1217 sc->sc_stats.ts_tx_lc++;
1218 #endif
1219
1220 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1221 ifp->if_oerrors++;
1222
1223 if (txstat & ADSTAT_Tx_EC)
1224 ifp->if_collisions += 16;
1225 else
1226 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1227 if (txstat & ADSTAT_Tx_LC)
1228 ifp->if_collisions++;
1229
1230 ifp->if_opackets++;
1231 }
1232
1233 /*
1234 * If there are no more pending transmissions, cancel the watchdog
1235 * timer.
1236 */
1237 if (txs == NULL)
1238 ifp->if_timer = 0;
1239 }
1240
1241 #ifdef AE_STATS
1242 void
1243 ae_print_stats(struct ae_softc *sc)
1244 {
1245
1246 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1247 device_xname(sc->sc_dev),
1248 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1249 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1250 }
1251 #endif
1252
1253 /*
1254 * ae_reset:
1255 *
1256 * Perform a soft reset on the chip.
1257 */
1258 void
1259 ae_reset(struct ae_softc *sc)
1260 {
1261 int i;
1262
1263 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1264 AE_BARRIER(sc);
1265
1266 /*
1267 * The chip doesn't take itself out of reset automatically.
1268 * We need to do so after 2us.
1269 */
1270 delay(10);
1271 AE_WRITE(sc, CSR_BUSMODE, 0);
1272 AE_BARRIER(sc);
1273
1274 for (i = 0; i < 1000; i++) {
1275 /*
1276 * Wait a bit for the reset to complete before peeking
1277 * at the chip again.
1278 */
1279 delay(10);
1280 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1281 break;
1282 }
1283
1284 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1285 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1286
1287 delay(1000);
1288 }
1289
1290 /*
1291 * ae_init: [ ifnet interface function ]
1292 *
1293 * Initialize the interface. Must be called at splnet().
1294 */
1295 static int
1296 ae_init(struct ifnet *ifp)
1297 {
1298 struct ae_softc *sc = ifp->if_softc;
1299 struct ae_txsoft *txs;
1300 struct ae_rxsoft *rxs;
1301 const uint8_t *enaddr;
1302 int i, error = 0;
1303
1304 if ((error = ae_enable(sc)) != 0)
1305 goto out;
1306
1307 /*
1308 * Cancel any pending I/O.
1309 */
1310 ae_stop(ifp, 0);
1311
1312 /*
1313 * Reset the chip to a known state.
1314 */
1315 ae_reset(sc);
1316
1317 /*
1318 * Initialize the BUSMODE register.
1319 */
1320 AE_WRITE(sc, CSR_BUSMODE,
1321 /* XXX: not sure if this is a good thing or not... */
1322 //BUSMODE_ALIGN_16B |
1323 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1324 AE_BARRIER(sc);
1325
1326 /*
1327 * Initialize the transmit descriptor ring.
1328 */
1329 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1330 for (i = 0; i < AE_NTXDESC; i++) {
1331 sc->sc_txdescs[i].ad_ctl = 0;
1332 sc->sc_txdescs[i].ad_bufaddr2 =
1333 AE_CDTXADDR(sc, AE_NEXTTX(i));
1334 }
1335 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1336 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1337 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1338 sc->sc_txfree = AE_NTXDESC;
1339 sc->sc_txnext = 0;
1340
1341 /*
1342 * Initialize the transmit job descriptors.
1343 */
1344 SIMPLEQ_INIT(&sc->sc_txfreeq);
1345 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1346 for (i = 0; i < AE_TXQUEUELEN; i++) {
1347 txs = &sc->sc_txsoft[i];
1348 txs->txs_mbuf = NULL;
1349 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1350 }
1351
1352 /*
1353 * Initialize the receive descriptor and receive job
1354 * descriptor rings.
1355 */
1356 for (i = 0; i < AE_NRXDESC; i++) {
1357 rxs = &sc->sc_rxsoft[i];
1358 if (rxs->rxs_mbuf == NULL) {
1359 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1360 printf("%s: unable to allocate or map rx "
1361 "buffer %d, error = %d\n",
1362 device_xname(sc->sc_dev), i, error);
1363 /*
1364 * XXX Should attempt to run with fewer receive
1365 * XXX buffers instead of just failing.
1366 */
1367 ae_rxdrain(sc);
1368 goto out;
1369 }
1370 } else
1371 AE_INIT_RXDESC(sc, i);
1372 }
1373 sc->sc_rxptr = 0;
1374
1375 /*
1376 * Initialize the interrupt mask and enable interrupts.
1377 */
1378 /* normal interrupts */
1379 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1380
1381 /* abnormal interrupts */
1382 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1383 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1384
1385 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1386 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1387
1388 sc->sc_rxint_mask &= sc->sc_inten;
1389 sc->sc_txint_mask &= sc->sc_inten;
1390
1391 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1392 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1393
1394 /*
1395 * Give the transmit and receive rings to the chip.
1396 */
1397 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1398 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1399 AE_BARRIER(sc);
1400
1401 /*
1402 * Set the station address.
1403 */
1404 enaddr = CLLADDR(ifp->if_sadl);
1405 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1406 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1407 enaddr[1] << 8 | enaddr[0]);
1408 AE_BARRIER(sc);
1409
1410 /*
1411 * Set the receive filter. This will start the transmit and
1412 * receive processes.
1413 */
1414 ae_filter_setup(sc);
1415
1416 /*
1417 * Set the current media.
1418 */
1419 if ((error = ether_mediachange(ifp)) != 0)
1420 goto out;
1421
1422 /*
1423 * Start the mac.
1424 */
1425 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1426 AE_BARRIER(sc);
1427
1428 /*
1429 * Write out the opmode.
1430 */
1431 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1432 ae_txthresh[sc->sc_txthresh].txth_opmode);
1433 /*
1434 * Start the receive process.
1435 */
1436 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1437 AE_BARRIER(sc);
1438
1439 if (sc->sc_tick != NULL) {
1440 /* Start the one second clock. */
1441 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1442 }
1443
1444 /*
1445 * Note that the interface is now running.
1446 */
1447 ifp->if_flags |= IFF_RUNNING;
1448 ifp->if_flags &= ~IFF_OACTIVE;
1449 sc->sc_if_flags = ifp->if_flags;
1450
1451 out:
1452 if (error) {
1453 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1454 ifp->if_timer = 0;
1455 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1456 }
1457 return (error);
1458 }
1459
1460 /*
1461 * ae_enable:
1462 *
1463 * Enable the chip.
1464 */
1465 static int
1466 ae_enable(struct ae_softc *sc)
1467 {
1468
1469 if (AE_IS_ENABLED(sc) == 0) {
1470 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1471 ae_intr, sc);
1472 if (sc->sc_ih == NULL) {
1473 printf("%s: unable to establish interrupt\n",
1474 device_xname(sc->sc_dev));
1475 return (EIO);
1476 }
1477 sc->sc_flags |= AE_ENABLED;
1478 }
1479 return (0);
1480 }
1481
1482 /*
1483 * ae_disable:
1484 *
1485 * Disable the chip.
1486 */
1487 static void
1488 ae_disable(struct ae_softc *sc)
1489 {
1490
1491 if (AE_IS_ENABLED(sc)) {
1492 arbus_intr_disestablish(sc->sc_ih);
1493 sc->sc_flags &= ~AE_ENABLED;
1494 }
1495 }
1496
1497 /*
1498 * ae_power:
1499 *
1500 * Power management (suspend/resume) hook.
1501 */
1502 static void
1503 ae_power(int why, void *arg)
1504 {
1505 struct ae_softc *sc = arg;
1506 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1507 int s;
1508
1509 printf("power called: %d, %x\n", why, (uint32_t)arg);
1510 s = splnet();
1511 switch (why) {
1512 case PWR_STANDBY:
1513 /* do nothing! */
1514 break;
1515 case PWR_SUSPEND:
1516 ae_stop(ifp, 0);
1517 ae_disable(sc);
1518 break;
1519 case PWR_RESUME:
1520 if (ifp->if_flags & IFF_UP) {
1521 ae_enable(sc);
1522 ae_init(ifp);
1523 }
1524 break;
1525 case PWR_SOFTSUSPEND:
1526 case PWR_SOFTSTANDBY:
1527 case PWR_SOFTRESUME:
1528 break;
1529 }
1530 splx(s);
1531 }
1532
1533 /*
1534 * ae_rxdrain:
1535 *
1536 * Drain the receive queue.
1537 */
1538 static void
1539 ae_rxdrain(struct ae_softc *sc)
1540 {
1541 struct ae_rxsoft *rxs;
1542 int i;
1543
1544 for (i = 0; i < AE_NRXDESC; i++) {
1545 rxs = &sc->sc_rxsoft[i];
1546 if (rxs->rxs_mbuf != NULL) {
1547 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1548 m_freem(rxs->rxs_mbuf);
1549 rxs->rxs_mbuf = NULL;
1550 }
1551 }
1552 }
1553
1554 /*
1555 * ae_stop: [ ifnet interface function ]
1556 *
1557 * Stop transmission on the interface.
1558 */
1559 static void
1560 ae_stop(struct ifnet *ifp, int disable)
1561 {
1562 struct ae_softc *sc = ifp->if_softc;
1563 struct ae_txsoft *txs;
1564
1565 if (sc->sc_tick != NULL) {
1566 /* Stop the one second clock. */
1567 callout_stop(&sc->sc_tick_callout);
1568 }
1569
1570 /* Down the MII. */
1571 mii_down(&sc->sc_mii);
1572
1573 /* Disable interrupts. */
1574 AE_WRITE(sc, CSR_INTEN, 0);
1575
1576 /* Stop the transmit and receive processes. */
1577 AE_WRITE(sc, CSR_OPMODE, 0);
1578 AE_WRITE(sc, CSR_RXLIST, 0);
1579 AE_WRITE(sc, CSR_TXLIST, 0);
1580 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1581 AE_BARRIER(sc);
1582
1583 /*
1584 * Release any queued transmit buffers.
1585 */
1586 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1587 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1588 if (txs->txs_mbuf != NULL) {
1589 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1590 m_freem(txs->txs_mbuf);
1591 txs->txs_mbuf = NULL;
1592 }
1593 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1594 }
1595
1596 /*
1597 * Mark the interface down and cancel the watchdog timer.
1598 */
1599 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1600 sc->sc_if_flags = ifp->if_flags;
1601 ifp->if_timer = 0;
1602
1603 if (disable) {
1604 ae_rxdrain(sc);
1605 ae_disable(sc);
1606 }
1607
1608 /*
1609 * Reset the chip (needed on some flavors to actually disable it).
1610 */
1611 ae_reset(sc);
1612 }
1613
1614 /*
1615 * ae_add_rxbuf:
1616 *
1617 * Add a receive buffer to the indicated descriptor.
1618 */
1619 static int
1620 ae_add_rxbuf(struct ae_softc *sc, int idx)
1621 {
1622 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1623 struct mbuf *m;
1624 int error;
1625
1626 MGETHDR(m, M_DONTWAIT, MT_DATA);
1627 if (m == NULL)
1628 return (ENOBUFS);
1629
1630 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1631 MCLGET(m, M_DONTWAIT);
1632 if ((m->m_flags & M_EXT) == 0) {
1633 m_freem(m);
1634 return (ENOBUFS);
1635 }
1636
1637 if (rxs->rxs_mbuf != NULL)
1638 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1639
1640 rxs->rxs_mbuf = m;
1641
1642 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1643 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1644 BUS_DMA_READ|BUS_DMA_NOWAIT);
1645 if (error) {
1646 printf("%s: can't load rx DMA map %d, error = %d\n",
1647 device_xname(sc->sc_dev), idx, error);
1648 panic("ae_add_rxbuf"); /* XXX */
1649 }
1650
1651 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1652 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1653
1654 AE_INIT_RXDESC(sc, idx);
1655
1656 return (0);
1657 }
1658
1659 /*
1660 * ae_filter_setup:
1661 *
1662 * Set the chip's receive filter.
1663 */
1664 static void
1665 ae_filter_setup(struct ae_softc *sc)
1666 {
1667 struct ethercom *ec = &sc->sc_ethercom;
1668 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1669 struct ether_multi *enm;
1670 struct ether_multistep step;
1671 uint32_t hash, mchash[2];
1672 uint32_t macctl = 0;
1673
1674 /*
1675 * If the chip is running, we need to reset the interface,
1676 * and will revisit here (with IFF_RUNNING) clear. The
1677 * chip seems to really not like to have its multicast
1678 * filter programmed without a reset.
1679 */
1680 if (ifp->if_flags & IFF_RUNNING) {
1681 (void) ae_init(ifp);
1682 return;
1683 }
1684
1685 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1686 device_xname(sc->sc_dev), sc->sc_flags));
1687
1688 macctl = AE_READ(sc, CSR_MACCTL);
1689 macctl &= ~(MACCTL_PR | MACCTL_PM);
1690 macctl |= MACCTL_HASH;
1691 macctl |= MACCTL_HBD;
1692 macctl |= MACCTL_PR;
1693
1694 if (ifp->if_flags & IFF_PROMISC) {
1695 macctl |= MACCTL_PR;
1696 goto allmulti;
1697 }
1698
1699 mchash[0] = mchash[1] = 0;
1700
1701 ETHER_FIRST_MULTI(step, ec, enm);
1702 while (enm != NULL) {
1703 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1704 /*
1705 * We must listen to a range of multicast addresses.
1706 * For now, just accept all multicasts, rather than
1707 * trying to set only those filter bits needed to match
1708 * the range. (At this time, the only use of address
1709 * ranges is for IP multicast routing, for which the
1710 * range is big enough to require all bits set.)
1711 */
1712 goto allmulti;
1713 }
1714
1715 /* Verify whether we use big or little endian hashes */
1716 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1717 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1718 ETHER_NEXT_MULTI(step, enm);
1719 }
1720 ifp->if_flags &= ~IFF_ALLMULTI;
1721 goto setit;
1722
1723 allmulti:
1724 ifp->if_flags |= IFF_ALLMULTI;
1725 mchash[0] = mchash[1] = 0xffffffff;
1726 macctl |= MACCTL_PM;
1727
1728 setit:
1729 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1730 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1731
1732 AE_WRITE(sc, CSR_MACCTL, macctl);
1733 AE_BARRIER(sc);
1734
1735 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1736 device_xname(sc->sc_dev), macctl));
1737 }
1738
1739 /*
1740 * ae_idle:
1741 *
1742 * Cause the transmit and/or receive processes to go idle.
1743 */
1744 void
1745 ae_idle(struct ae_softc *sc, u_int32_t bits)
1746 {
1747 static const char * const txstate_names[] = {
1748 "STOPPED",
1749 "RUNNING - FETCH",
1750 "RUNNING - WAIT",
1751 "RUNNING - READING",
1752 "-- RESERVED --",
1753 "RUNNING - SETUP",
1754 "SUSPENDED",
1755 "RUNNING - CLOSE",
1756 };
1757 static const char * const rxstate_names[] = {
1758 "STOPPED",
1759 "RUNNING - FETCH",
1760 "RUNNING - CHECK",
1761 "RUNNING - WAIT",
1762 "SUSPENDED",
1763 "RUNNING - CLOSE",
1764 "RUNNING - FLUSH",
1765 "RUNNING - QUEUE",
1766 };
1767
1768 u_int32_t csr, ackmask = 0;
1769 int i;
1770
1771 if (bits & OPMODE_ST)
1772 ackmask |= STATUS_TPS;
1773
1774 if (bits & OPMODE_SR)
1775 ackmask |= STATUS_RPS;
1776
1777 AE_CLR(sc, CSR_OPMODE, bits);
1778
1779 for (i = 0; i < 1000; i++) {
1780 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1781 break;
1782 delay(10);
1783 }
1784
1785 csr = AE_READ(sc, CSR_STATUS);
1786 if ((csr & ackmask) != ackmask) {
1787 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1788 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1789 printf("%s: transmit process failed to idle: "
1790 "state %s\n", device_xname(sc->sc_dev),
1791 txstate_names[(csr & STATUS_TS) >> 20]);
1792 }
1793 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1794 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1795 printf("%s: receive process failed to idle: "
1796 "state %s\n", device_xname(sc->sc_dev),
1797 rxstate_names[(csr & STATUS_RS) >> 17]);
1798 }
1799 }
1800 }
1801
1802 /*****************************************************************************
1803 * Support functions for MII-attached media.
1804 *****************************************************************************/
1805
1806 /*
1807 * ae_mii_tick:
1808 *
1809 * One second timer, used to tick the MII.
1810 */
1811 static void
1812 ae_mii_tick(void *arg)
1813 {
1814 struct ae_softc *sc = arg;
1815 int s;
1816
1817 if (!device_is_active(sc->sc_dev))
1818 return;
1819
1820 s = splnet();
1821 mii_tick(&sc->sc_mii);
1822 splx(s);
1823
1824 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1825 }
1826
1827 /*
1828 * ae_mii_statchg: [mii interface function]
1829 *
1830 * Callback from PHY when media changes.
1831 */
1832 static void
1833 ae_mii_statchg(struct ifnet *ifp)
1834 {
1835 struct ae_softc *sc = ifp->if_softc;
1836 uint32_t macctl, flowc;
1837
1838 //opmode = AE_READ(sc, CSR_OPMODE);
1839 macctl = AE_READ(sc, CSR_MACCTL);
1840
1841 /* XXX: do we need to do this? */
1842 /* Idle the transmit and receive processes. */
1843 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1844
1845 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1846 flowc = FLOWC_FCE;
1847 macctl &= ~MACCTL_DRO;
1848 macctl |= MACCTL_FDX;
1849 } else {
1850 flowc = 0; /* cannot do flow control in HDX */
1851 macctl |= MACCTL_DRO;
1852 macctl &= ~MACCTL_FDX;
1853 }
1854
1855 AE_WRITE(sc, CSR_FLOWC, flowc);
1856 AE_WRITE(sc, CSR_MACCTL, macctl);
1857
1858 /* restore operational mode */
1859 //AE_WRITE(sc, CSR_OPMODE, opmode);
1860 AE_BARRIER(sc);
1861 }
1862
1863 /*
1864 * ae_mii_readreg:
1865 *
1866 * Read a PHY register.
1867 */
1868 static int
1869 ae_mii_readreg(device_t self, int phy, int reg)
1870 {
1871 struct ae_softc *sc = device_private(self);
1872 uint32_t addr;
1873 int i;
1874
1875 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1876 AE_WRITE(sc, CSR_MIIADDR, addr);
1877 AE_BARRIER(sc);
1878 for (i = 0; i < 100000000; i++) {
1879 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1880 break;
1881 }
1882
1883 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1884 }
1885
1886 /*
1887 * ae_mii_writereg:
1888 *
1889 * Write a PHY register.
1890 */
1891 static void
1892 ae_mii_writereg(device_t self, int phy, int reg, int val)
1893 {
1894 struct ae_softc *sc = device_private(self);
1895 uint32_t addr;
1896 int i;
1897
1898 /* write the data register */
1899 AE_WRITE(sc, CSR_MIIDATA, val);
1900
1901 /* write the address to latch it in */
1902 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1903 MIIADDR_WRITE;
1904 AE_WRITE(sc, CSR_MIIADDR, addr);
1905 AE_BARRIER(sc);
1906
1907 for (i = 0; i < 100000000; i++) {
1908 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1909 break;
1910 }
1911 }
1912