if_ae.c revision 1.37.2.1 1 /* $Id: if_ae.c,v 1.37.2.1 2020/02/29 20:18:27 ad Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the onboard ethernet MAC found on the AR5312
74 * chip's AHB bus.
75 *
76 * This device is very simliar to the tulip in most regards, and
77 * the code is directly derived from NetBSD's tulip.c. However, it
78 * is different enough that it did not seem to be a good idea to
79 * add further complexity to the tulip driver, so we have our own.
80 *
81 * Also tulip has a lot of complexity in it for various parts/options
82 * that we don't need, and on these little boxes with only ~8MB RAM, we
83 * don't want any extra bloat.
84 */
85
86 /*
87 * TODO:
88 *
89 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
90 * inbound packets on a half-word boundary, which would make life easier
91 * for TCP/IP. (Aligning IP headers on a word.)
92 *
93 * 2) There is stuff in original tulip to shut down the device when reacting
94 * to a change in link status. Is that needed.
95 *
96 * 3) Test with variety of 10/100 HDX/FDX scenarios.
97 *
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.37.2.1 2020/02/29 20:18:27 ad Exp $");
102
103
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116
117 #include <uvm/uvm_extern.h>
118
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123
124 #include <net/bpf.h>
125
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #include <dev/mii/mii_bitbang.h>
129
130 #include <mips/atheros/include/arbusvar.h>
131 #include <mips/atheros/dev/aereg.h>
132 #include <mips/atheros/dev/aevar.h>
133
134 static const struct {
135 uint32_t txth_opmode; /* OPMODE bits */
136 const char *txth_name; /* name of mode */
137 } ae_txthresh[] = {
138 { OPMODE_TR_32, "32 words" },
139 { OPMODE_TR_64, "64 words" },
140 { OPMODE_TR_128, "128 words" },
141 { OPMODE_TR_256, "256 words" },
142 { OPMODE_SF, "store and forward mode" },
143 { 0, NULL },
144 };
145
146 static int ae_match(device_t, struct cfdata *, void *);
147 static void ae_attach(device_t, device_t, void *);
148 static int ae_detach(device_t, int);
149 static int ae_activate(device_t, enum devact);
150
151 static int ae_ifflags_cb(struct ethercom *);
152 static void ae_reset(struct ae_softc *);
153 static void ae_idle(struct ae_softc *, uint32_t);
154
155 static void ae_start(struct ifnet *);
156 static void ae_watchdog(struct ifnet *);
157 static int ae_ioctl(struct ifnet *, u_long, void *);
158 static int ae_init(struct ifnet *);
159 static void ae_stop(struct ifnet *, int);
160
161 static void ae_shutdown(void *);
162
163 static void ae_rxdrain(struct ae_softc *);
164 static int ae_add_rxbuf(struct ae_softc *, int);
165
166 static int ae_enable(struct ae_softc *);
167 static void ae_disable(struct ae_softc *);
168 static void ae_power(int, void *);
169
170 static void ae_filter_setup(struct ae_softc *);
171
172 static int ae_intr(void *);
173 static void ae_rxintr(struct ae_softc *);
174 static void ae_txintr(struct ae_softc *);
175
176 static void ae_mii_tick(void *);
177 static void ae_mii_statchg(struct ifnet *);
178
179 static int ae_mii_readreg(device_t, int, int, uint16_t *);
180 static int ae_mii_writereg(device_t, int, int, uint16_t);
181
182 #ifdef AE_DEBUG
183 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
184 printf x
185 #else
186 #define DPRINTF(sc, x) /* nothing */
187 #endif
188
189 #ifdef AE_STATS
190 static void ae_print_stats(struct ae_softc *);
191 #endif
192
193 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
194 ae_match, ae_attach, ae_detach, ae_activate);
195
196 /*
197 * ae_match:
198 *
199 * Check for a device match.
200 */
201 int
202 ae_match(device_t parent, struct cfdata *cf, void *aux)
203 {
204 struct arbus_attach_args *aa = aux;
205
206 if (strcmp(aa->aa_name, cf->cf_name) == 0)
207 return 1;
208
209 return 0;
210
211 }
212
213 /*
214 * ae_attach:
215 *
216 * Attach an ae interface to the system.
217 */
218 void
219 ae_attach(device_t parent, device_t self, void *aux)
220 {
221 const uint8_t *enaddr;
222 prop_data_t ea;
223 struct ae_softc *sc = device_private(self);
224 struct arbus_attach_args *aa = aux;
225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 struct mii_data * const mii = &sc->sc_mii;
227 int i, error;
228
229 sc->sc_dev = self;
230
231 callout_init(&sc->sc_tick_callout, 0);
232
233 printf(": Atheros AR531X 10/100 Ethernet\n");
234
235 /*
236 * Try to get MAC address.
237 */
238 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
239 if (ea == NULL) {
240 printf("%s: unable to get mac-addr property\n",
241 device_xname(sc->sc_dev));
242 return;
243 }
244 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
245 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
246 enaddr = prop_data_data_nocopy(ea);
247
248 /* Announce ourselves. */
249 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
250 ether_sprintf(enaddr));
251
252 sc->sc_cirq = aa->aa_cirq;
253 sc->sc_mirq = aa->aa_mirq;
254 sc->sc_st = aa->aa_bst;
255 sc->sc_dmat = aa->aa_dmat;
256
257 SIMPLEQ_INIT(&sc->sc_txfreeq);
258 SIMPLEQ_INIT(&sc->sc_txdirtyq);
259
260 /*
261 * Map registers.
262 */
263 sc->sc_size = aa->aa_size;
264 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
265 &sc->sc_sh)) != 0) {
266 printf("%s: unable to map registers, error = %d\n",
267 device_xname(sc->sc_dev), error);
268 goto fail_0;
269 }
270
271 /*
272 * Allocate the control data structures, and create and load the
273 * DMA map for it.
274 */
275 if ((error = bus_dmamem_alloc(sc->sc_dmat,
276 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
277 1, &sc->sc_cdnseg, 0)) != 0) {
278 printf("%s: unable to allocate control data, error = %d\n",
279 device_xname(sc->sc_dev), error);
280 goto fail_1;
281 }
282
283 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
284 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
285 BUS_DMA_COHERENT)) != 0) {
286 printf("%s: unable to map control data, error = %d\n",
287 device_xname(sc->sc_dev), error);
288 goto fail_2;
289 }
290
291 if ((error = bus_dmamap_create(sc->sc_dmat,
292 sizeof(struct ae_control_data), 1,
293 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
294 printf("%s: unable to create control data DMA map, "
295 "error = %d\n", device_xname(sc->sc_dev), error);
296 goto fail_3;
297 }
298
299 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
300 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
301 0)) != 0) {
302 printf("%s: unable to load control data DMA map, error = %d\n",
303 device_xname(sc->sc_dev), error);
304 goto fail_4;
305 }
306
307 /*
308 * Create the transmit buffer DMA maps.
309 */
310 for (i = 0; i < AE_TXQUEUELEN; i++) {
311 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
312 AE_NTXSEGS, MCLBYTES, 0, 0,
313 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
314 printf("%s: unable to create tx DMA map %d, "
315 "error = %d\n", device_xname(sc->sc_dev), i, error);
316 goto fail_5;
317 }
318 }
319
320 /*
321 * Create the receive buffer DMA maps.
322 */
323 for (i = 0; i < AE_NRXDESC; i++) {
324 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
325 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
326 printf("%s: unable to create rx DMA map %d, "
327 "error = %d\n", device_xname(sc->sc_dev), i, error);
328 goto fail_6;
329 }
330 sc->sc_rxsoft[i].rxs_mbuf = NULL;
331 }
332
333 /*
334 * Reset the chip to a known state.
335 */
336 ae_reset(sc);
337
338 /*
339 * From this point forward, the attachment cannot fail. A failure
340 * before this point releases all resources that may have been
341 * allocated.
342 */
343 sc->sc_flags |= AE_ATTACHED;
344
345 /*
346 * Initialize our media structures. This may probe the MII, if
347 * present.
348 */
349 mii->mii_ifp = ifp;
350 mii->mii_readreg = ae_mii_readreg;
351 mii->mii_writereg = ae_mii_writereg;
352 mii->mii_statchg = ae_mii_statchg;
353 sc->sc_ethercom.ec_mii = mii;
354 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
355 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
356 MII_OFFSET_ANY, 0);
357
358 if (LIST_FIRST(&mii->mii_phys) == NULL) {
359 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
360 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
361 } else
362 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
363
364 sc->sc_tick = ae_mii_tick;
365
366 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 sc->sc_if_flags = ifp->if_flags;
370 ifp->if_ioctl = ae_ioctl;
371 ifp->if_start = ae_start;
372 ifp->if_watchdog = ae_watchdog;
373 ifp->if_init = ae_init;
374 ifp->if_stop = ae_stop;
375 IFQ_SET_READY(&ifp->if_snd);
376
377 /*
378 * We can support 802.1Q VLAN-sized frames.
379 */
380 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
381
382 /*
383 * Attach the interface.
384 */
385 if_attach(ifp);
386 if_deferred_start_init(ifp, NULL);
387 ether_ifattach(ifp, enaddr);
388 ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
389
390 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
391 RND_TYPE_NET, RND_FLAG_DEFAULT);
392
393 /*
394 * Make sure the interface is shutdown during reboot.
395 */
396 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
397 if (sc->sc_sdhook == NULL)
398 printf("%s: WARNING: unable to establish shutdown hook\n",
399 device_xname(sc->sc_dev));
400
401 /*
402 * Add a suspend hook to make sure we come back up after a
403 * resume.
404 */
405 sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
406 ae_power, sc);
407 if (sc->sc_powerhook == NULL)
408 printf("%s: WARNING: unable to establish power hook\n",
409 device_xname(sc->sc_dev));
410 return;
411
412 /*
413 * Free any resources we've allocated during the failed attach
414 * attempt. Do this in reverse order and fall through.
415 */
416 fail_6:
417 for (i = 0; i < AE_NRXDESC; i++) {
418 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
419 bus_dmamap_destroy(sc->sc_dmat,
420 sc->sc_rxsoft[i].rxs_dmamap);
421 }
422 fail_5:
423 for (i = 0; i < AE_TXQUEUELEN; i++) {
424 if (sc->sc_txsoft[i].txs_dmamap != NULL)
425 bus_dmamap_destroy(sc->sc_dmat,
426 sc->sc_txsoft[i].txs_dmamap);
427 }
428 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
429 fail_4:
430 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
431 fail_3:
432 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
433 sizeof(struct ae_control_data));
434 fail_2:
435 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
436 fail_1:
437 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
438 fail_0:
439 return;
440 }
441
442 /*
443 * ae_activate:
444 *
445 * Handle device activation/deactivation requests.
446 */
447 int
448 ae_activate(device_t self, enum devact act)
449 {
450 struct ae_softc *sc = device_private(self);
451
452 switch (act) {
453 case DVACT_DEACTIVATE:
454 if_deactivate(&sc->sc_ethercom.ec_if);
455 return 0;
456 default:
457 return EOPNOTSUPP;
458 }
459 }
460
461 /*
462 * ae_detach:
463 *
464 * Detach a device interface.
465 */
466 int
467 ae_detach(device_t self, int flags)
468 {
469 struct ae_softc *sc = device_private(self);
470 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
471 struct ae_rxsoft *rxs;
472 struct ae_txsoft *txs;
473 int i;
474
475 /*
476 * Succeed now if there isn't any work to do.
477 */
478 if ((sc->sc_flags & AE_ATTACHED) == 0)
479 return (0);
480
481 /* Unhook our tick handler. */
482 if (sc->sc_tick)
483 callout_stop(&sc->sc_tick_callout);
484
485 /* Detach all PHYs */
486 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
487
488 rnd_detach_source(&sc->sc_rnd_source);
489 ether_ifdetach(ifp);
490 if_detach(ifp);
491
492 /* Delete all remaining media. */
493 ifmedia_fini(&sc->sc_mii.mii_media);
494
495 for (i = 0; i < AE_NRXDESC; i++) {
496 rxs = &sc->sc_rxsoft[i];
497 if (rxs->rxs_mbuf != NULL) {
498 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
499 m_freem(rxs->rxs_mbuf);
500 rxs->rxs_mbuf = NULL;
501 }
502 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
503 }
504 for (i = 0; i < AE_TXQUEUELEN; i++) {
505 txs = &sc->sc_txsoft[i];
506 if (txs->txs_mbuf != NULL) {
507 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
508 m_freem(txs->txs_mbuf);
509 txs->txs_mbuf = NULL;
510 }
511 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
512 }
513 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
514 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
515 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
516 sizeof(struct ae_control_data));
517 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
518
519 shutdownhook_disestablish(sc->sc_sdhook);
520 powerhook_disestablish(sc->sc_powerhook);
521
522 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
523
524
525 return (0);
526 }
527
528 /*
529 * ae_shutdown:
530 *
531 * Make sure the interface is stopped at reboot time.
532 */
533 static void
534 ae_shutdown(void *arg)
535 {
536 struct ae_softc *sc = arg;
537
538 ae_stop(&sc->sc_ethercom.ec_if, 1);
539 }
540
541 /*
542 * ae_start: [ifnet interface function]
543 *
544 * Start packet transmission on the interface.
545 */
546 static void
547 ae_start(struct ifnet *ifp)
548 {
549 struct ae_softc *sc = ifp->if_softc;
550 struct mbuf *m0, *m;
551 struct ae_txsoft *txs;
552 bus_dmamap_t dmamap;
553 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
554
555 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
556 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
557
558
559 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
560 return;
561
562 /*
563 * Remember the previous number of free descriptors and
564 * the first descriptor we'll use.
565 */
566 ofree = sc->sc_txfree;
567 firsttx = sc->sc_txnext;
568
569 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
570 device_xname(sc->sc_dev), ofree, firsttx));
571
572 /*
573 * Loop through the send queue, setting up transmit descriptors
574 * until we drain the queue, or use up all available transmit
575 * descriptors.
576 */
577 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
578 sc->sc_txfree != 0) {
579 /*
580 * Grab a packet off the queue.
581 */
582 IFQ_POLL(&ifp->if_snd, m0);
583 if (m0 == NULL)
584 break;
585 m = NULL;
586
587 dmamap = txs->txs_dmamap;
588
589 /*
590 * Load the DMA map. If this fails, the packet either
591 * didn't fit in the alloted number of segments, or we were
592 * short on resources. In this case, we'll copy and try
593 * again.
594 */
595 if (((mtod(m0, uintptr_t) & 3) != 0) ||
596 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
597 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
598 MGETHDR(m, M_DONTWAIT, MT_DATA);
599 if (m == NULL) {
600 printf("%s: unable to allocate Tx mbuf\n",
601 device_xname(sc->sc_dev));
602 break;
603 }
604 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
605 if (m0->m_pkthdr.len > MHLEN) {
606 MCLGET(m, M_DONTWAIT);
607 if ((m->m_flags & M_EXT) == 0) {
608 printf("%s: unable to allocate Tx "
609 "cluster\n", device_xname(sc->sc_dev));
610 m_freem(m);
611 break;
612 }
613 }
614 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
615 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
616 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
617 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
618 if (error) {
619 printf("%s: unable to load Tx buffer, "
620 "error = %d\n", device_xname(sc->sc_dev),
621 error);
622 break;
623 }
624 }
625
626 /*
627 * Ensure we have enough descriptors free to describe
628 * the packet.
629 */
630 if (dmamap->dm_nsegs > sc->sc_txfree) {
631 /*
632 * Not enough free descriptors to transmit this
633 * packet. We haven't committed to anything yet,
634 * so just unload the DMA map, put the packet
635 * back on the queue, and punt. Notify the upper
636 * layer that there are no more slots left.
637 *
638 * XXX We could allocate an mbuf and copy, but
639 * XXX it is worth it?
640 */
641 ifp->if_flags |= IFF_OACTIVE;
642 bus_dmamap_unload(sc->sc_dmat, dmamap);
643 if (m != NULL)
644 m_freem(m);
645 break;
646 }
647
648 IFQ_DEQUEUE(&ifp->if_snd, m0);
649 if (m != NULL) {
650 m_freem(m0);
651 m0 = m;
652 }
653
654 /*
655 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
656 */
657
658 /* Sync the DMA map. */
659 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
660 BUS_DMASYNC_PREWRITE);
661
662 /*
663 * Initialize the transmit descriptors.
664 */
665 for (nexttx = sc->sc_txnext, seg = 0;
666 seg < dmamap->dm_nsegs;
667 seg++, nexttx = AE_NEXTTX(nexttx)) {
668 /*
669 * If this is the first descriptor we're
670 * enqueueing, don't set the OWN bit just
671 * yet. That could cause a race condition.
672 * We'll do it below.
673 */
674 sc->sc_txdescs[nexttx].ad_status =
675 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
676 sc->sc_txdescs[nexttx].ad_bufaddr1 =
677 dmamap->dm_segs[seg].ds_addr;
678 sc->sc_txdescs[nexttx].ad_ctl =
679 (dmamap->dm_segs[seg].ds_len <<
680 ADCTL_SIZE1_SHIFT) |
681 (nexttx == (AE_NTXDESC - 1) ?
682 ADCTL_ER : 0);
683 lasttx = nexttx;
684 }
685
686 KASSERT(lasttx != -1);
687
688 /* Set `first segment' and `last segment' appropriately. */
689 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
690 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
691
692 #ifdef AE_DEBUG
693 if (ifp->if_flags & IFF_DEBUG) {
694 printf(" txsoft %p transmit chain:\n", txs);
695 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
696 printf(" descriptor %d:\n", seg);
697 printf(" ad_status: 0x%08x\n",
698 sc->sc_txdescs[seg].ad_status);
699 printf(" ad_ctl: 0x%08x\n",
700 sc->sc_txdescs[seg].ad_ctl);
701 printf(" ad_bufaddr1: 0x%08x\n",
702 sc->sc_txdescs[seg].ad_bufaddr1);
703 printf(" ad_bufaddr2: 0x%08x\n",
704 sc->sc_txdescs[seg].ad_bufaddr2);
705 if (seg == lasttx)
706 break;
707 }
708 }
709 #endif
710
711 /* Sync the descriptors we're using. */
712 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
713 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
714
715 /*
716 * Store a pointer to the packet so we can free it later,
717 * and remember what txdirty will be once the packet is
718 * done.
719 */
720 txs->txs_mbuf = m0;
721 txs->txs_firstdesc = sc->sc_txnext;
722 txs->txs_lastdesc = lasttx;
723 txs->txs_ndescs = dmamap->dm_nsegs;
724
725 /* Advance the tx pointer. */
726 sc->sc_txfree -= dmamap->dm_nsegs;
727 sc->sc_txnext = nexttx;
728
729 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
730 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
731
732 /*
733 * Pass the packet to any BPF listeners.
734 */
735 bpf_mtap(ifp, m0, BPF_D_OUT);
736 }
737
738 if (txs == NULL || sc->sc_txfree == 0) {
739 /* No more slots left; notify upper layer. */
740 ifp->if_flags |= IFF_OACTIVE;
741 }
742
743 if (sc->sc_txfree != ofree) {
744 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
745 device_xname(sc->sc_dev), lasttx, firsttx));
746 /*
747 * Cause a transmit interrupt to happen on the
748 * last packet we enqueued.
749 */
750 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
751 AE_CDTXSYNC(sc, lasttx, 1,
752 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
753
754 /*
755 * The entire packet chain is set up. Give the
756 * first descriptor to the chip now.
757 */
758 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
759 AE_CDTXSYNC(sc, firsttx, 1,
760 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
761
762 /* Wake up the transmitter. */
763 /* XXX USE AUTOPOLLING? */
764 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
765 AE_BARRIER(sc);
766
767 /* Set a watchdog timer in case the chip flakes out. */
768 ifp->if_timer = 5;
769 }
770 }
771
772 /*
773 * ae_watchdog: [ifnet interface function]
774 *
775 * Watchdog timer handler.
776 */
777 static void
778 ae_watchdog(struct ifnet *ifp)
779 {
780 struct ae_softc *sc = ifp->if_softc;
781 int doing_transmit;
782
783 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
784
785 if (doing_transmit) {
786 printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
787 if_statinc(ifp, if_oerrors);
788 }
789 else
790 printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
791
792 (void) ae_init(ifp);
793
794 /* Try to get more packets going. */
795 ae_start(ifp);
796 }
797
798 /* If the interface is up and running, only modify the receive
799 * filter when changing to/from promiscuous mode. Otherwise return
800 * ENETRESET so that ether_ioctl will reset the chip.
801 */
802 static int
803 ae_ifflags_cb(struct ethercom *ec)
804 {
805 struct ifnet *ifp = &ec->ec_if;
806 struct ae_softc *sc = ifp->if_softc;
807 u_short change = ifp->if_flags ^ sc->sc_if_flags;
808
809 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
810 return ENETRESET;
811 else if ((change & IFF_PROMISC) != 0)
812 ae_filter_setup(sc);
813 return 0;
814 }
815
816 /*
817 * ae_ioctl: [ifnet interface function]
818 *
819 * Handle control requests from the operator.
820 */
821 static int
822 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
823 {
824 struct ae_softc *sc = ifp->if_softc;
825 int s, error;
826
827 s = splnet();
828
829 error = ether_ioctl(ifp, cmd, data);
830 if (error == ENETRESET) {
831 if (ifp->if_flags & IFF_RUNNING) {
832 /*
833 * Multicast list has changed. Set the
834 * hardware filter accordingly.
835 */
836 ae_filter_setup(sc);
837 }
838 error = 0;
839 }
840
841 /* Try to get more packets going. */
842 if (AE_IS_ENABLED(sc))
843 ae_start(ifp);
844
845 sc->sc_if_flags = ifp->if_flags;
846 splx(s);
847 return (error);
848 }
849
850 /*
851 * ae_intr:
852 *
853 * Interrupt service routine.
854 */
855 int
856 ae_intr(void *arg)
857 {
858 struct ae_softc *sc = arg;
859 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
860 uint32_t status, rxstatus, txstatus;
861 int handled = 0, txthresh;
862
863 DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
864
865 #ifdef DEBUG
866 if (AE_IS_ENABLED(sc) == 0)
867 panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
868 #endif
869
870 /*
871 * If the interface isn't running, the interrupt couldn't
872 * possibly have come from us.
873 */
874 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
875 !device_is_active(sc->sc_dev)) {
876 printf("spurious?!?\n");
877 return (0);
878 }
879
880 for (;;) {
881 status = AE_READ(sc, CSR_STATUS);
882 if (status) {
883 AE_WRITE(sc, CSR_STATUS, status);
884 AE_BARRIER(sc);
885 }
886
887 if ((status & sc->sc_inten) == 0)
888 break;
889
890 handled = 1;
891
892 rxstatus = status & sc->sc_rxint_mask;
893 txstatus = status & sc->sc_txint_mask;
894
895 if (rxstatus) {
896 /* Grab new any new packets. */
897 ae_rxintr(sc);
898
899 if (rxstatus & STATUS_RU) {
900 printf("%s: receive ring overrun\n",
901 device_xname(sc->sc_dev));
902 /* Get the receive process going again. */
903 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
904 AE_BARRIER(sc);
905 break;
906 }
907 }
908
909 if (txstatus) {
910 /* Sweep up transmit descriptors. */
911 ae_txintr(sc);
912
913 if (txstatus & STATUS_TJT)
914 printf("%s: transmit jabber timeout\n",
915 device_xname(sc->sc_dev));
916
917 if (txstatus & STATUS_UNF) {
918 /*
919 * Increase our transmit threshold if
920 * another is available.
921 */
922 txthresh = sc->sc_txthresh + 1;
923 if (ae_txthresh[txthresh].txth_name != NULL) {
924 uint32_t opmode;
925 /* Idle the transmit process. */
926 opmode = AE_READ(sc, CSR_OPMODE);
927 ae_idle(sc, OPMODE_ST);
928
929 sc->sc_txthresh = txthresh;
930 opmode &= ~(OPMODE_TR | OPMODE_SF);
931 opmode |=
932 ae_txthresh[txthresh].txth_opmode;
933 printf("%s: transmit underrun; new "
934 "threshold: %s\n",
935 device_xname(sc->sc_dev),
936 ae_txthresh[txthresh].txth_name);
937
938 /*
939 * Set the new threshold and restart
940 * the transmit process.
941 */
942 AE_WRITE(sc, CSR_OPMODE, opmode);
943 AE_BARRIER(sc);
944 }
945 /*
946 * XXX Log every Nth underrun from
947 * XXX now on?
948 */
949 }
950 }
951
952 if (status & (STATUS_TPS | STATUS_RPS)) {
953 if (status & STATUS_TPS)
954 printf("%s: transmit process stopped\n",
955 device_xname(sc->sc_dev));
956 if (status & STATUS_RPS)
957 printf("%s: receive process stopped\n",
958 device_xname(sc->sc_dev));
959 (void) ae_init(ifp);
960 break;
961 }
962
963 if (status & STATUS_SE) {
964 const char *str;
965
966 if (status & STATUS_TX_ABORT)
967 str = "tx abort";
968 else if (status & STATUS_RX_ABORT)
969 str = "rx abort";
970 else
971 str = "unknown error";
972
973 printf("%s: fatal system error: %s\n",
974 device_xname(sc->sc_dev), str);
975 (void) ae_init(ifp);
976 break;
977 }
978
979 /*
980 * Not handled:
981 *
982 * Transmit buffer unavailable -- normal
983 * condition, nothing to do, really.
984 *
985 * General purpose timer experied -- we don't
986 * use the general purpose timer.
987 *
988 * Early receive interrupt -- not available on
989 * all chips, we just use RI. We also only
990 * use single-segment receive DMA, so this
991 * is mostly useless.
992 */
993 }
994
995 /* Try to get more packets going. */
996 if_schedule_deferred_start(ifp);
997
998 if (handled)
999 rnd_add_uint32(&sc->sc_rnd_source, status);
1000 return (handled);
1001 }
1002
1003 /*
1004 * ae_rxintr:
1005 *
1006 * Helper; handle receive interrupts.
1007 */
1008 static void
1009 ae_rxintr(struct ae_softc *sc)
1010 {
1011 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1012 struct ae_rxsoft *rxs;
1013 struct mbuf *m;
1014 uint32_t rxstat;
1015 int i, len;
1016
1017 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1018 rxs = &sc->sc_rxsoft[i];
1019
1020 AE_CDRXSYNC(sc, i,
1021 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1022
1023 rxstat = sc->sc_rxdescs[i].ad_status;
1024
1025 if (rxstat & ADSTAT_OWN) {
1026 /*
1027 * We have processed all of the receive buffers.
1028 */
1029 break;
1030 }
1031
1032 /*
1033 * If any collisions were seen on the wire, count one.
1034 */
1035 if (rxstat & ADSTAT_Rx_CS)
1036 if_statinc(ifp, if_collisions);
1037
1038 /*
1039 * If an error occurred, update stats, clear the status
1040 * word, and leave the packet buffer in place. It will
1041 * simply be reused the next time the ring comes around.
1042 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1043 * error.
1044 */
1045 if (rxstat & ADSTAT_ES &&
1046 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1047 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1048 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1049 #define PRINTERR(bit, str) \
1050 if (rxstat & (bit)) \
1051 printf("%s: receive error: %s\n", \
1052 device_xname(sc->sc_dev), str)
1053 if_statinc(ifp, if_ierrors);
1054 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1055 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1056 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1057 PRINTERR(ADSTAT_Rx_RE, "MII error");
1058 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1059 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1060 #undef PRINTERR
1061 AE_INIT_RXDESC(sc, i);
1062 continue;
1063 }
1064
1065 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1066 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1067
1068 /*
1069 * No errors; receive the packet. Note the chip
1070 * includes the CRC with every packet.
1071 */
1072 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1073
1074 /*
1075 * XXX: the Atheros part can align on half words. what
1076 * is the performance implication of this? Probably
1077 * minimal, and we should use it...
1078 */
1079 #ifdef __NO_STRICT_ALIGNMENT
1080 /*
1081 * Allocate a new mbuf cluster. If that fails, we are
1082 * out of memory, and must drop the packet and recycle
1083 * the buffer that's already attached to this descriptor.
1084 */
1085 m = rxs->rxs_mbuf;
1086 if (ae_add_rxbuf(sc, i) != 0) {
1087 if_statinc(ifp, if_ierrors);
1088 AE_INIT_RXDESC(sc, i);
1089 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1090 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1091 continue;
1092 }
1093 #else
1094 /*
1095 * The chip's receive buffers must be 4-byte aligned.
1096 * But this means that the data after the Ethernet header
1097 * is misaligned. We must allocate a new buffer and
1098 * copy the data, shifted forward 2 bytes.
1099 */
1100 MGETHDR(m, M_DONTWAIT, MT_DATA);
1101 if (m == NULL) {
1102 dropit:
1103 if_statinc(ifp, if_ierrors);
1104 AE_INIT_RXDESC(sc, i);
1105 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1106 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1107 continue;
1108 }
1109 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1110 if (len > (MHLEN - 2)) {
1111 MCLGET(m, M_DONTWAIT);
1112 if ((m->m_flags & M_EXT) == 0) {
1113 m_freem(m);
1114 goto dropit;
1115 }
1116 }
1117 m->m_data += 2;
1118
1119 /*
1120 * Note that we use clusters for incoming frames, so the
1121 * buffer is virtually contiguous.
1122 */
1123 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1124
1125 /* Allow the receive descriptor to continue using its mbuf. */
1126 AE_INIT_RXDESC(sc, i);
1127 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1128 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1129 #endif /* __NO_STRICT_ALIGNMENT */
1130
1131 m_set_rcvif(m, ifp);
1132 m->m_pkthdr.len = m->m_len = len;
1133
1134 /* Pass it on. */
1135 if_percpuq_enqueue(ifp->if_percpuq, m);
1136 }
1137
1138 /* Update the receive pointer. */
1139 sc->sc_rxptr = i;
1140 }
1141
1142 /*
1143 * ae_txintr:
1144 *
1145 * Helper; handle transmit interrupts.
1146 */
1147 static void
1148 ae_txintr(struct ae_softc *sc)
1149 {
1150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1151 struct ae_txsoft *txs;
1152 uint32_t txstat;
1153
1154 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1155 device_xname(sc->sc_dev), sc->sc_flags));
1156
1157 ifp->if_flags &= ~IFF_OACTIVE;
1158
1159 /*
1160 * Go through our Tx list and free mbufs for those
1161 * frames that have been transmitted.
1162 */
1163 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1164 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1165 txs->txs_ndescs,
1166 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1167
1168 #ifdef AE_DEBUG
1169 if (ifp->if_flags & IFF_DEBUG) {
1170 int i;
1171 printf(" txsoft %p transmit chain:\n", txs);
1172 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1173 printf(" descriptor %d:\n", i);
1174 printf(" ad_status: 0x%08x\n",
1175 sc->sc_txdescs[i].ad_status);
1176 printf(" ad_ctl: 0x%08x\n",
1177 sc->sc_txdescs[i].ad_ctl);
1178 printf(" ad_bufaddr1: 0x%08x\n",
1179 sc->sc_txdescs[i].ad_bufaddr1);
1180 printf(" ad_bufaddr2: 0x%08x\n",
1181 sc->sc_txdescs[i].ad_bufaddr2);
1182 if (i == txs->txs_lastdesc)
1183 break;
1184 }
1185 }
1186 #endif
1187
1188 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1189 if (txstat & ADSTAT_OWN)
1190 break;
1191
1192 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1193
1194 sc->sc_txfree += txs->txs_ndescs;
1195
1196 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1197 0, txs->txs_dmamap->dm_mapsize,
1198 BUS_DMASYNC_POSTWRITE);
1199 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1200 m_freem(txs->txs_mbuf);
1201 txs->txs_mbuf = NULL;
1202
1203 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1204
1205 /*
1206 * Check for errors and collisions.
1207 */
1208 #ifdef AE_STATS
1209 if (txstat & ADSTAT_Tx_UF)
1210 sc->sc_stats.ts_tx_uf++;
1211 if (txstat & ADSTAT_Tx_TO)
1212 sc->sc_stats.ts_tx_to++;
1213 if (txstat & ADSTAT_Tx_EC)
1214 sc->sc_stats.ts_tx_ec++;
1215 if (txstat & ADSTAT_Tx_LC)
1216 sc->sc_stats.ts_tx_lc++;
1217 #endif
1218
1219 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1220 if (txstat & (ADSTAT_Tx_UF | ADSTAT_Tx_TO))
1221 if_statinc_ref(nsr, if_oerrors);
1222
1223 if (txstat & ADSTAT_Tx_EC)
1224 if_statadd_ref(nsr, if_collisions, 16);
1225 else if (ADSTAT_Tx_COLLISIONS(txstat))
1226 if_statadd_ref(nsr, if_collisions,
1227 ADSTAT_Tx_COLLISIONS(txstat));
1228 if (txstat & ADSTAT_Tx_LC)
1229 if_statinc_ref(nsr, if_collisions);
1230
1231 if_statinc_ref(nsr, if_opackets);
1232 IF_STAT_PUTREF(ifp);
1233 }
1234
1235 /*
1236 * If there are no more pending transmissions, cancel the watchdog
1237 * timer.
1238 */
1239 if (txs == NULL)
1240 ifp->if_timer = 0;
1241 }
1242
1243 #ifdef AE_STATS
1244 void
1245 ae_print_stats(struct ae_softc *sc)
1246 {
1247
1248 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1249 device_xname(sc->sc_dev),
1250 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1251 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1252 }
1253 #endif
1254
1255 /*
1256 * ae_reset:
1257 *
1258 * Perform a soft reset on the chip.
1259 */
1260 void
1261 ae_reset(struct ae_softc *sc)
1262 {
1263 int i;
1264
1265 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1266 AE_BARRIER(sc);
1267
1268 /*
1269 * The chip doesn't take itself out of reset automatically.
1270 * We need to do so after 2us.
1271 */
1272 delay(10);
1273 AE_WRITE(sc, CSR_BUSMODE, 0);
1274 AE_BARRIER(sc);
1275
1276 for (i = 0; i < 1000; i++) {
1277 /*
1278 * Wait a bit for the reset to complete before peeking
1279 * at the chip again.
1280 */
1281 delay(10);
1282 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1283 break;
1284 }
1285
1286 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1287 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1288
1289 delay(1000);
1290 }
1291
1292 /*
1293 * ae_init: [ ifnet interface function ]
1294 *
1295 * Initialize the interface. Must be called at splnet().
1296 */
1297 static int
1298 ae_init(struct ifnet *ifp)
1299 {
1300 struct ae_softc *sc = ifp->if_softc;
1301 struct ae_txsoft *txs;
1302 struct ae_rxsoft *rxs;
1303 const uint8_t *enaddr;
1304 int i, error = 0;
1305
1306 if ((error = ae_enable(sc)) != 0)
1307 goto out;
1308
1309 /*
1310 * Cancel any pending I/O.
1311 */
1312 ae_stop(ifp, 0);
1313
1314 /*
1315 * Reset the chip to a known state.
1316 */
1317 ae_reset(sc);
1318
1319 /*
1320 * Initialize the BUSMODE register.
1321 */
1322 AE_WRITE(sc, CSR_BUSMODE,
1323 /* XXX: not sure if this is a good thing or not... */
1324 //BUSMODE_ALIGN_16B |
1325 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1326 AE_BARRIER(sc);
1327
1328 /*
1329 * Initialize the transmit descriptor ring.
1330 */
1331 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1332 for (i = 0; i < AE_NTXDESC; i++) {
1333 sc->sc_txdescs[i].ad_ctl = 0;
1334 sc->sc_txdescs[i].ad_bufaddr2 =
1335 AE_CDTXADDR(sc, AE_NEXTTX(i));
1336 }
1337 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1338 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1339 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1340 sc->sc_txfree = AE_NTXDESC;
1341 sc->sc_txnext = 0;
1342
1343 /*
1344 * Initialize the transmit job descriptors.
1345 */
1346 SIMPLEQ_INIT(&sc->sc_txfreeq);
1347 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1348 for (i = 0; i < AE_TXQUEUELEN; i++) {
1349 txs = &sc->sc_txsoft[i];
1350 txs->txs_mbuf = NULL;
1351 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1352 }
1353
1354 /*
1355 * Initialize the receive descriptor and receive job
1356 * descriptor rings.
1357 */
1358 for (i = 0; i < AE_NRXDESC; i++) {
1359 rxs = &sc->sc_rxsoft[i];
1360 if (rxs->rxs_mbuf == NULL) {
1361 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1362 printf("%s: unable to allocate or map rx "
1363 "buffer %d, error = %d\n",
1364 device_xname(sc->sc_dev), i, error);
1365 /*
1366 * XXX Should attempt to run with fewer receive
1367 * XXX buffers instead of just failing.
1368 */
1369 ae_rxdrain(sc);
1370 goto out;
1371 }
1372 } else
1373 AE_INIT_RXDESC(sc, i);
1374 }
1375 sc->sc_rxptr = 0;
1376
1377 /*
1378 * Initialize the interrupt mask and enable interrupts.
1379 */
1380 /* normal interrupts */
1381 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1382
1383 /* abnormal interrupts */
1384 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1385 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1386
1387 sc->sc_rxint_mask = STATUS_RI | STATUS_RU;
1388 sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT;
1389
1390 sc->sc_rxint_mask &= sc->sc_inten;
1391 sc->sc_txint_mask &= sc->sc_inten;
1392
1393 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1394 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1395
1396 /*
1397 * Give the transmit and receive rings to the chip.
1398 */
1399 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1400 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1401 AE_BARRIER(sc);
1402
1403 /*
1404 * Set the station address.
1405 */
1406 enaddr = CLLADDR(ifp->if_sadl);
1407 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1408 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1409 enaddr[1] << 8 | enaddr[0]);
1410 AE_BARRIER(sc);
1411
1412 /*
1413 * Set the receive filter. This will start the transmit and
1414 * receive processes.
1415 */
1416 ae_filter_setup(sc);
1417
1418 /*
1419 * Set the current media.
1420 */
1421 if ((error = ether_mediachange(ifp)) != 0)
1422 goto out;
1423
1424 /*
1425 * Start the mac.
1426 */
1427 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1428 AE_BARRIER(sc);
1429
1430 /*
1431 * Write out the opmode.
1432 */
1433 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1434 ae_txthresh[sc->sc_txthresh].txth_opmode);
1435 /*
1436 * Start the receive process.
1437 */
1438 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1439 AE_BARRIER(sc);
1440
1441 if (sc->sc_tick != NULL) {
1442 /* Start the one second clock. */
1443 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1444 }
1445
1446 /*
1447 * Note that the interface is now running.
1448 */
1449 ifp->if_flags |= IFF_RUNNING;
1450 ifp->if_flags &= ~IFF_OACTIVE;
1451 sc->sc_if_flags = ifp->if_flags;
1452
1453 out:
1454 if (error) {
1455 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1456 ifp->if_timer = 0;
1457 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1458 }
1459 return (error);
1460 }
1461
1462 /*
1463 * ae_enable:
1464 *
1465 * Enable the chip.
1466 */
1467 static int
1468 ae_enable(struct ae_softc *sc)
1469 {
1470
1471 if (AE_IS_ENABLED(sc) == 0) {
1472 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1473 ae_intr, sc);
1474 if (sc->sc_ih == NULL) {
1475 printf("%s: unable to establish interrupt\n",
1476 device_xname(sc->sc_dev));
1477 return (EIO);
1478 }
1479 sc->sc_flags |= AE_ENABLED;
1480 }
1481 return (0);
1482 }
1483
1484 /*
1485 * ae_disable:
1486 *
1487 * Disable the chip.
1488 */
1489 static void
1490 ae_disable(struct ae_softc *sc)
1491 {
1492
1493 if (AE_IS_ENABLED(sc)) {
1494 arbus_intr_disestablish(sc->sc_ih);
1495 sc->sc_flags &= ~AE_ENABLED;
1496 }
1497 }
1498
1499 /*
1500 * ae_power:
1501 *
1502 * Power management (suspend/resume) hook.
1503 */
1504 static void
1505 ae_power(int why, void *arg)
1506 {
1507 struct ae_softc *sc = arg;
1508 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1509 int s;
1510
1511 printf("power called: %d, %x\n", why, (uint32_t)arg);
1512 s = splnet();
1513 switch (why) {
1514 case PWR_STANDBY:
1515 /* do nothing! */
1516 break;
1517 case PWR_SUSPEND:
1518 ae_stop(ifp, 0);
1519 ae_disable(sc);
1520 break;
1521 case PWR_RESUME:
1522 if (ifp->if_flags & IFF_UP) {
1523 ae_enable(sc);
1524 ae_init(ifp);
1525 }
1526 break;
1527 case PWR_SOFTSUSPEND:
1528 case PWR_SOFTSTANDBY:
1529 case PWR_SOFTRESUME:
1530 break;
1531 }
1532 splx(s);
1533 }
1534
1535 /*
1536 * ae_rxdrain:
1537 *
1538 * Drain the receive queue.
1539 */
1540 static void
1541 ae_rxdrain(struct ae_softc *sc)
1542 {
1543 struct ae_rxsoft *rxs;
1544 int i;
1545
1546 for (i = 0; i < AE_NRXDESC; i++) {
1547 rxs = &sc->sc_rxsoft[i];
1548 if (rxs->rxs_mbuf != NULL) {
1549 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1550 m_freem(rxs->rxs_mbuf);
1551 rxs->rxs_mbuf = NULL;
1552 }
1553 }
1554 }
1555
1556 /*
1557 * ae_stop: [ ifnet interface function ]
1558 *
1559 * Stop transmission on the interface.
1560 */
1561 static void
1562 ae_stop(struct ifnet *ifp, int disable)
1563 {
1564 struct ae_softc *sc = ifp->if_softc;
1565 struct ae_txsoft *txs;
1566
1567 if (sc->sc_tick != NULL) {
1568 /* Stop the one second clock. */
1569 callout_stop(&sc->sc_tick_callout);
1570 }
1571
1572 /* Down the MII. */
1573 mii_down(&sc->sc_mii);
1574
1575 /* Disable interrupts. */
1576 AE_WRITE(sc, CSR_INTEN, 0);
1577
1578 /* Stop the transmit and receive processes. */
1579 AE_WRITE(sc, CSR_OPMODE, 0);
1580 AE_WRITE(sc, CSR_RXLIST, 0);
1581 AE_WRITE(sc, CSR_TXLIST, 0);
1582 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1583 AE_BARRIER(sc);
1584
1585 /*
1586 * Release any queued transmit buffers.
1587 */
1588 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1589 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1590 if (txs->txs_mbuf != NULL) {
1591 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1592 m_freem(txs->txs_mbuf);
1593 txs->txs_mbuf = NULL;
1594 }
1595 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1596 }
1597
1598 /*
1599 * Mark the interface down and cancel the watchdog timer.
1600 */
1601 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1602 sc->sc_if_flags = ifp->if_flags;
1603 ifp->if_timer = 0;
1604
1605 if (disable) {
1606 ae_rxdrain(sc);
1607 ae_disable(sc);
1608 }
1609
1610 /*
1611 * Reset the chip (needed on some flavors to actually disable it).
1612 */
1613 ae_reset(sc);
1614 }
1615
1616 /*
1617 * ae_add_rxbuf:
1618 *
1619 * Add a receive buffer to the indicated descriptor.
1620 */
1621 static int
1622 ae_add_rxbuf(struct ae_softc *sc, int idx)
1623 {
1624 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1625 struct mbuf *m;
1626 int error;
1627
1628 MGETHDR(m, M_DONTWAIT, MT_DATA);
1629 if (m == NULL)
1630 return (ENOBUFS);
1631
1632 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1633 MCLGET(m, M_DONTWAIT);
1634 if ((m->m_flags & M_EXT) == 0) {
1635 m_freem(m);
1636 return (ENOBUFS);
1637 }
1638
1639 if (rxs->rxs_mbuf != NULL)
1640 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1641
1642 rxs->rxs_mbuf = m;
1643
1644 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1645 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1646 BUS_DMA_READ | BUS_DMA_NOWAIT);
1647 if (error) {
1648 printf("%s: can't load rx DMA map %d, error = %d\n",
1649 device_xname(sc->sc_dev), idx, error);
1650 panic("ae_add_rxbuf"); /* XXX */
1651 }
1652
1653 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1654 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1655
1656 AE_INIT_RXDESC(sc, idx);
1657
1658 return (0);
1659 }
1660
1661 /*
1662 * ae_filter_setup:
1663 *
1664 * Set the chip's receive filter.
1665 */
1666 static void
1667 ae_filter_setup(struct ae_softc *sc)
1668 {
1669 struct ethercom *ec = &sc->sc_ethercom;
1670 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1671 struct ether_multi *enm;
1672 struct ether_multistep step;
1673 uint32_t hash, mchash[2];
1674 uint32_t macctl = 0;
1675
1676 /*
1677 * If the chip is running, we need to reset the interface,
1678 * and will revisit here (with IFF_RUNNING) clear. The
1679 * chip seems to really not like to have its multicast
1680 * filter programmed without a reset.
1681 */
1682 if (ifp->if_flags & IFF_RUNNING) {
1683 (void) ae_init(ifp);
1684 return;
1685 }
1686
1687 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1688 device_xname(sc->sc_dev), sc->sc_flags));
1689
1690 macctl = AE_READ(sc, CSR_MACCTL);
1691 macctl &= ~(MACCTL_PR | MACCTL_PM);
1692 macctl |= MACCTL_HASH;
1693 macctl |= MACCTL_HBD;
1694 macctl |= MACCTL_PR;
1695
1696 if (ifp->if_flags & IFF_PROMISC) {
1697 macctl |= MACCTL_PR;
1698 goto allmulti;
1699 }
1700
1701 mchash[0] = mchash[1] = 0;
1702
1703 ETHER_LOCK(ec);
1704 ETHER_FIRST_MULTI(step, ec, enm);
1705 while (enm != NULL) {
1706 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1707 /*
1708 * We must listen to a range of multicast addresses.
1709 * For now, just accept all multicasts, rather than
1710 * trying to set only those filter bits needed to match
1711 * the range. (At this time, the only use of address
1712 * ranges is for IP multicast routing, for which the
1713 * range is big enough to require all bits set.)
1714 */
1715 ETHER_UNLOCK(ec);
1716 goto allmulti;
1717 }
1718
1719 /* Verify whether we use big or little endian hashes */
1720 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1721 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1722 ETHER_NEXT_MULTI(step, enm);
1723 }
1724 ETHER_UNLOCK(ec);
1725 ifp->if_flags &= ~IFF_ALLMULTI;
1726 goto setit;
1727
1728 allmulti:
1729 ifp->if_flags |= IFF_ALLMULTI;
1730 mchash[0] = mchash[1] = 0xffffffff;
1731 macctl |= MACCTL_PM;
1732
1733 setit:
1734 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1735 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1736
1737 AE_WRITE(sc, CSR_MACCTL, macctl);
1738 AE_BARRIER(sc);
1739
1740 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1741 device_xname(sc->sc_dev), macctl));
1742 }
1743
1744 /*
1745 * ae_idle:
1746 *
1747 * Cause the transmit and/or receive processes to go idle.
1748 */
1749 void
1750 ae_idle(struct ae_softc *sc, uint32_t bits)
1751 {
1752 static const char * const txstate_names[] = {
1753 "STOPPED",
1754 "RUNNING - FETCH",
1755 "RUNNING - WAIT",
1756 "RUNNING - READING",
1757 "-- RESERVED --",
1758 "RUNNING - SETUP",
1759 "SUSPENDED",
1760 "RUNNING - CLOSE",
1761 };
1762 static const char * const rxstate_names[] = {
1763 "STOPPED",
1764 "RUNNING - FETCH",
1765 "RUNNING - CHECK",
1766 "RUNNING - WAIT",
1767 "SUSPENDED",
1768 "RUNNING - CLOSE",
1769 "RUNNING - FLUSH",
1770 "RUNNING - QUEUE",
1771 };
1772
1773 uint32_t csr, ackmask = 0;
1774 int i;
1775
1776 if (bits & OPMODE_ST)
1777 ackmask |= STATUS_TPS;
1778
1779 if (bits & OPMODE_SR)
1780 ackmask |= STATUS_RPS;
1781
1782 AE_CLR(sc, CSR_OPMODE, bits);
1783
1784 for (i = 0; i < 1000; i++) {
1785 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1786 break;
1787 delay(10);
1788 }
1789
1790 csr = AE_READ(sc, CSR_STATUS);
1791 if ((csr & ackmask) != ackmask) {
1792 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1793 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1794 printf("%s: transmit process failed to idle: "
1795 "state %s\n", device_xname(sc->sc_dev),
1796 txstate_names[(csr & STATUS_TS) >> 20]);
1797 }
1798 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1799 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1800 printf("%s: receive process failed to idle: "
1801 "state %s\n", device_xname(sc->sc_dev),
1802 rxstate_names[(csr & STATUS_RS) >> 17]);
1803 }
1804 }
1805 }
1806
1807 /*****************************************************************************
1808 * Support functions for MII-attached media.
1809 *****************************************************************************/
1810
1811 /*
1812 * ae_mii_tick:
1813 *
1814 * One second timer, used to tick the MII.
1815 */
1816 static void
1817 ae_mii_tick(void *arg)
1818 {
1819 struct ae_softc *sc = arg;
1820 int s;
1821
1822 if (!device_is_active(sc->sc_dev))
1823 return;
1824
1825 s = splnet();
1826 mii_tick(&sc->sc_mii);
1827 splx(s);
1828
1829 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1830 }
1831
1832 /*
1833 * ae_mii_statchg: [mii interface function]
1834 *
1835 * Callback from PHY when media changes.
1836 */
1837 static void
1838 ae_mii_statchg(struct ifnet *ifp)
1839 {
1840 struct ae_softc *sc = ifp->if_softc;
1841 uint32_t macctl, flowc;
1842
1843 //opmode = AE_READ(sc, CSR_OPMODE);
1844 macctl = AE_READ(sc, CSR_MACCTL);
1845
1846 /* XXX: do we need to do this? */
1847 /* Idle the transmit and receive processes. */
1848 //ae_idle(sc, OPMODE_ST | OPMODE_SR);
1849
1850 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1851 flowc = FLOWC_FCE;
1852 macctl &= ~MACCTL_DRO;
1853 macctl |= MACCTL_FDX;
1854 } else {
1855 flowc = 0; /* cannot do flow control in HDX */
1856 macctl |= MACCTL_DRO;
1857 macctl &= ~MACCTL_FDX;
1858 }
1859
1860 AE_WRITE(sc, CSR_FLOWC, flowc);
1861 AE_WRITE(sc, CSR_MACCTL, macctl);
1862
1863 /* restore operational mode */
1864 //AE_WRITE(sc, CSR_OPMODE, opmode);
1865 AE_BARRIER(sc);
1866 }
1867
1868 /*
1869 * ae_mii_readreg:
1870 *
1871 * Read a PHY register.
1872 */
1873 static int
1874 ae_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1875 {
1876 struct ae_softc *sc = device_private(self);
1877 uint32_t addr;
1878 int i;
1879
1880 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1881 AE_WRITE(sc, CSR_MIIADDR, addr);
1882 AE_BARRIER(sc);
1883 for (i = 0; i < 100000000; i++) {
1884 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1885 break;
1886 }
1887
1888 if (i >= 100000000)
1889 return ETIMEDOUT;
1890
1891 *val = AE_READ(sc, CSR_MIIDATA) & 0xffff;
1892 return 0;
1893 }
1894
1895 /*
1896 * ae_mii_writereg:
1897 *
1898 * Write a PHY register.
1899 */
1900 static int
1901 ae_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1902 {
1903 struct ae_softc *sc = device_private(self);
1904 uint32_t addr;
1905 int i;
1906
1907 /* write the data register */
1908 AE_WRITE(sc, CSR_MIIDATA, val);
1909
1910 /* write the address to latch it in */
1911 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1912 MIIADDR_WRITE;
1913 AE_WRITE(sc, CSR_MIIADDR, addr);
1914 AE_BARRIER(sc);
1915
1916 for (i = 0; i < 100000000; i++) {
1917 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1918 break;
1919 }
1920
1921 if (i >= 100000000)
1922 return ETIMEDOUT;
1923
1924 return 0;
1925 }
1926