if_ae.c revision 1.4 1 /* $Id: if_ae.c,v 1.4 2006/09/24 03:53:08 jmcneill Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. All advertising materials mentioning features or use of this software
59 * must display the following acknowledgement:
60 * This product includes software developed by the NetBSD
61 * Foundation, Inc. and its contributors.
62 * 4. Neither the name of The NetBSD Foundation nor the names of its
63 * contributors may be used to endorse or promote products derived
64 * from this software without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
67 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
68 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
69 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
70 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
71 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
72 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
73 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
74 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
75 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGE.
77 */
78
79 /*
80 * Device driver for the onboard ethernet MAC found on the AR5312
81 * chip's AHB bus.
82 *
83 * This device is very simliar to the tulip in most regards, and
84 * the code is directly derived from NetBSD's tulip.c. However, it
85 * is different enough that it did not seem to be a good idea to
86 * add further complexity to the tulip driver, so we have our own.
87 *
88 * Also tulip has a lot of complexity in it for various parts/options
89 * that we don't need, and on these little boxes with only ~8MB RAM, we
90 * don't want any extra bloat.
91 */
92
93 /*
94 * TODO:
95 *
96 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
97 * inbound packets on a half-word boundary, which would make life easier
98 * for TCP/IP. (Aligning IP headers on a word.)
99 *
100 * 2) There is stuff in original tulip to shut down the device when reacting
101 * to a a change in link status. Is that needed.
102 *
103 * 3) Test with variety of 10/100 HDX/FDX scenarios.
104 *
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.4 2006/09/24 03:53:08 jmcneill Exp $");
109
110 #include "bpfilter.h"
111
112 #include <sys/param.h>
113 #include <sys/systm.h>
114 #include <sys/callout.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/ioctl.h>
120 #include <sys/errno.h>
121 #include <sys/device.h>
122
123 #include <machine/endian.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #include <net/if.h>
128 #include <net/if_dl.h>
129 #include <net/if_media.h>
130 #include <net/if_ether.h>
131
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141 #include <dev/mii/mii_bitbang.h>
142
143 #include <mips/atheros/include/arbusvar.h>
144 #include <mips/atheros/dev/aereg.h>
145 #include <mips/atheros/dev/aevar.h>
146
147 static const struct {
148 u_int32_t txth_opmode; /* OPMODE bits */
149 const char *txth_name; /* name of mode */
150 } ae_txthresh[] = {
151 { OPMODE_TR_32, "32 words" },
152 { OPMODE_TR_64, "64 words" },
153 { OPMODE_TR_128, "128 words" },
154 { OPMODE_TR_256, "256 words" },
155 { OPMODE_SF, "store and forward mode" },
156 { 0, NULL },
157 };
158
159 static int ae_match(struct device *, struct cfdata *, void *);
160 static void ae_attach(struct device *, struct device *, void *);
161 static int ae_detach(struct device *, int);
162 static int ae_activate(struct device *, enum devact);
163
164 static void ae_reset(struct ae_softc *);
165 static void ae_idle(struct ae_softc *, u_int32_t);
166
167 static int ae_mediachange(struct ifnet *);
168 static void ae_mediastatus(struct ifnet *, struct ifmediareq *);
169
170 static void ae_start(struct ifnet *);
171 static void ae_watchdog(struct ifnet *);
172 static int ae_ioctl(struct ifnet *, u_long, caddr_t);
173 static int ae_init(struct ifnet *);
174 static void ae_stop(struct ifnet *, int);
175
176 static void ae_shutdown(void *);
177
178 static void ae_rxdrain(struct ae_softc *);
179 static int ae_add_rxbuf(struct ae_softc *, int);
180
181 static int ae_enable(struct ae_softc *);
182 static void ae_disable(struct ae_softc *);
183 static void ae_power(int, void *);
184
185 static void ae_filter_setup(struct ae_softc *);
186
187 static int ae_intr(void *);
188 static void ae_rxintr(struct ae_softc *);
189 static void ae_txintr(struct ae_softc *);
190
191 static void ae_mii_tick(void *);
192 static void ae_mii_statchg(struct device *);
193
194 static int ae_mii_readreg(struct device *, int, int);
195 static void ae_mii_writereg(struct device *, int, int, int);
196
197 #ifdef AE_DEBUG
198 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
199 printf x
200 #else
201 #define DPRINTF(sc, x) /* nothing */
202 #endif
203
204 #ifdef AE_STATS
205 static void ae_print_stats(struct ae_softc *);
206 #endif
207
208 CFATTACH_DECL(ae, sizeof(struct ae_softc),
209 ae_match, ae_attach, ae_detach, ae_activate);
210
211 /*
212 * ae_match:
213 *
214 * Check for a device match.
215 */
216 int
217 ae_match(struct device *parent, struct cfdata *cf, void *aux)
218 {
219 struct arbus_attach_args *aa = aux;
220
221 if (strcmp(aa->aa_name, cf->cf_name) == 0)
222 return 1;
223
224 return 0;
225
226 }
227
228 /*
229 * ae_attach:
230 *
231 * Attach an ae interface to the system.
232 */
233 void
234 ae_attach(struct device *parent, struct device *self, void *aux)
235 {
236 const uint8_t *enaddr;
237 prop_data_t ea;
238 struct ae_softc *sc = (void *)self;
239 struct arbus_attach_args *aa = aux;
240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
241 int i, error;
242
243 callout_init(&sc->sc_tick_callout);
244
245 printf(": Atheros AR531X 10/100 Ethernet\n");
246
247 /*
248 * Try to get MAC address.
249 */
250 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
251 if (ea == NULL) {
252 printf("%s: unable to get mac-addr property\n",
253 sc->sc_dev.dv_xname);
254 return;
255 }
256 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
257 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
258 enaddr = prop_data_data_nocopy(ea);
259
260 /* Announce ourselves. */
261 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
262 ether_sprintf(enaddr));
263
264 sc->sc_cirq = aa->aa_cirq;
265 sc->sc_mirq = aa->aa_mirq;
266 sc->sc_st = aa->aa_bst;
267 sc->sc_dmat = aa->aa_dmat;
268
269 SIMPLEQ_INIT(&sc->sc_txfreeq);
270 SIMPLEQ_INIT(&sc->sc_txdirtyq);
271
272 /*
273 * Map registers.
274 */
275 sc->sc_size = aa->aa_size;
276 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
277 &sc->sc_sh)) != 0) {
278 printf("%s: unable to map registers, error = %d\n",
279 sc->sc_dev.dv_xname, error);
280 goto fail_0;
281 }
282
283 /*
284 * Allocate the control data structures, and create and load the
285 * DMA map for it.
286 */
287 if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
289 1, &sc->sc_cdnseg, 0)) != 0) {
290 printf("%s: unable to allocate control data, error = %d\n",
291 sc->sc_dev.dv_xname, error);
292 goto fail_1;
293 }
294
295 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
296 sizeof(struct ae_control_data), (caddr_t *)&sc->sc_control_data,
297 BUS_DMA_COHERENT)) != 0) {
298 printf("%s: unable to map control data, error = %d\n",
299 sc->sc_dev.dv_xname, error);
300 goto fail_2;
301 }
302
303 if ((error = bus_dmamap_create(sc->sc_dmat,
304 sizeof(struct ae_control_data), 1,
305 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
306 printf("%s: unable to create control data DMA map, "
307 "error = %d\n", sc->sc_dev.dv_xname, error);
308 goto fail_3;
309 }
310
311 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
312 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
313 0)) != 0) {
314 printf("%s: unable to load control data DMA map, error = %d\n",
315 sc->sc_dev.dv_xname, error);
316 goto fail_4;
317 }
318
319 /*
320 * Create the transmit buffer DMA maps.
321 */
322 for (i = 0; i < AE_TXQUEUELEN; i++) {
323 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
324 AE_NTXSEGS, MCLBYTES, 0, 0,
325 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
326 printf("%s: unable to create tx DMA map %d, "
327 "error = %d\n", sc->sc_dev.dv_xname, i, error);
328 goto fail_5;
329 }
330 }
331
332 /*
333 * Create the receive buffer DMA maps.
334 */
335 for (i = 0; i < AE_NRXDESC; i++) {
336 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
337 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
338 printf("%s: unable to create rx DMA map %d, "
339 "error = %d\n", sc->sc_dev.dv_xname, i, error);
340 goto fail_6;
341 }
342 sc->sc_rxsoft[i].rxs_mbuf = NULL;
343 }
344
345 /*
346 * Reset the chip to a known state.
347 */
348 ae_reset(sc);
349
350 /*
351 * From this point forward, the attachment cannot fail. A failure
352 * before this point releases all resources that may have been
353 * allocated.
354 */
355 sc->sc_flags |= AE_ATTACHED;
356
357 /*
358 * Initialize our media structures. This may probe the MII, if
359 * present.
360 */
361 sc->sc_mii.mii_ifp = ifp;
362 sc->sc_mii.mii_readreg = ae_mii_readreg;
363 sc->sc_mii.mii_writereg = ae_mii_writereg;
364 sc->sc_mii.mii_statchg = ae_mii_statchg;
365 ifmedia_init(&sc->sc_mii.mii_media, 0, ae_mediachange,
366 ae_mediastatus);
367 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
368 MII_OFFSET_ANY, 0);
369
370 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
371 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
372 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
373 } else
374 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
375
376 sc->sc_tick = ae_mii_tick;
377
378 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
379 ifp->if_softc = sc;
380 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
381 sc->sc_if_flags = ifp->if_flags;
382 ifp->if_ioctl = ae_ioctl;
383 ifp->if_start = ae_start;
384 ifp->if_watchdog = ae_watchdog;
385 ifp->if_init = ae_init;
386 ifp->if_stop = ae_stop;
387 IFQ_SET_READY(&ifp->if_snd);
388
389 /*
390 * We can support 802.1Q VLAN-sized frames.
391 */
392 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
393
394 /*
395 * Attach the interface.
396 */
397 if_attach(ifp);
398 ether_ifattach(ifp, enaddr);
399
400 #if NRND > 0
401 rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
402 RND_TYPE_NET, 0);
403 #endif
404
405 /*
406 * Make sure the interface is shutdown during reboot.
407 */
408 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
409 if (sc->sc_sdhook == NULL)
410 printf("%s: WARNING: unable to establish shutdown hook\n",
411 sc->sc_dev.dv_xname);
412
413 /*
414 * Add a suspend hook to make sure we come back up after a
415 * resume.
416 */
417 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
418 ae_power, sc);
419 if (sc->sc_powerhook == NULL)
420 printf("%s: WARNING: unable to establish power hook\n",
421 sc->sc_dev.dv_xname);
422 return;
423
424 /*
425 * Free any resources we've allocated during the failed attach
426 * attempt. Do this in reverse order and fall through.
427 */
428 fail_6:
429 for (i = 0; i < AE_NRXDESC; i++) {
430 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
431 bus_dmamap_destroy(sc->sc_dmat,
432 sc->sc_rxsoft[i].rxs_dmamap);
433 }
434 fail_5:
435 for (i = 0; i < AE_TXQUEUELEN; i++) {
436 if (sc->sc_txsoft[i].txs_dmamap != NULL)
437 bus_dmamap_destroy(sc->sc_dmat,
438 sc->sc_txsoft[i].txs_dmamap);
439 }
440 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
441 fail_4:
442 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
443 fail_3:
444 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
445 sizeof(struct ae_control_data));
446 fail_2:
447 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
448 fail_1:
449 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
450 fail_0:
451 return;
452 }
453
454 /*
455 * ae_activate:
456 *
457 * Handle device activation/deactivation requests.
458 */
459 int
460 ae_activate(struct device *self, enum devact act)
461 {
462 struct ae_softc *sc = (void *) self;
463 int s, error = 0;
464
465 s = splnet();
466 switch (act) {
467 case DVACT_ACTIVATE:
468 error = EOPNOTSUPP;
469 break;
470
471 case DVACT_DEACTIVATE:
472 mii_activate(&sc->sc_mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
473 if_deactivate(&sc->sc_ethercom.ec_if);
474 break;
475 }
476 splx(s);
477
478 return (error);
479 }
480
481 /*
482 * ae_detach:
483 *
484 * Detach a device interface.
485 */
486 int
487 ae_detach(struct device *self, int flags)
488 {
489 struct ae_softc *sc = (void *)self;
490 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
491 struct ae_rxsoft *rxs;
492 struct ae_txsoft *txs;
493 int i;
494
495 /*
496 * Succeed now if there isn't any work to do.
497 */
498 if ((sc->sc_flags & AE_ATTACHED) == 0)
499 return (0);
500
501 /* Unhook our tick handler. */
502 if (sc->sc_tick)
503 callout_stop(&sc->sc_tick_callout);
504
505 /* Detach all PHYs */
506 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
507
508 /* Delete all remaining media. */
509 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
510
511 #if NRND > 0
512 rnd_detach_source(&sc->sc_rnd_source);
513 #endif
514 ether_ifdetach(ifp);
515 if_detach(ifp);
516
517 for (i = 0; i < AE_NRXDESC; i++) {
518 rxs = &sc->sc_rxsoft[i];
519 if (rxs->rxs_mbuf != NULL) {
520 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
521 m_freem(rxs->rxs_mbuf);
522 rxs->rxs_mbuf = NULL;
523 }
524 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
525 }
526 for (i = 0; i < AE_TXQUEUELEN; i++) {
527 txs = &sc->sc_txsoft[i];
528 if (txs->txs_mbuf != NULL) {
529 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
530 m_freem(txs->txs_mbuf);
531 txs->txs_mbuf = NULL;
532 }
533 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
534 }
535 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
536 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
537 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
538 sizeof(struct ae_control_data));
539 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
540
541 shutdownhook_disestablish(sc->sc_sdhook);
542 powerhook_disestablish(sc->sc_powerhook);
543
544 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
545
546
547 return (0);
548 }
549
550 /*
551 * ae_shutdown:
552 *
553 * Make sure the interface is stopped at reboot time.
554 */
555 static void
556 ae_shutdown(void *arg)
557 {
558 struct ae_softc *sc = arg;
559
560 ae_stop(&sc->sc_ethercom.ec_if, 1);
561 }
562
563 /*
564 * ae_start: [ifnet interface function]
565 *
566 * Start packet transmission on the interface.
567 */
568 static void
569 ae_start(struct ifnet *ifp)
570 {
571 struct ae_softc *sc = ifp->if_softc;
572 struct mbuf *m0, *m;
573 struct ae_txsoft *txs, *last_txs = NULL;
574 bus_dmamap_t dmamap;
575 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
576
577 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
578 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
579
580
581 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
582 return;
583
584 /*
585 * Remember the previous number of free descriptors and
586 * the first descriptor we'll use.
587 */
588 ofree = sc->sc_txfree;
589 firsttx = sc->sc_txnext;
590
591 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
592 sc->sc_dev.dv_xname, ofree, firsttx));
593
594 /*
595 * Loop through the send queue, setting up transmit descriptors
596 * until we drain the queue, or use up all available transmit
597 * descriptors.
598 */
599 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
600 sc->sc_txfree != 0) {
601 /*
602 * Grab a packet off the queue.
603 */
604 IFQ_POLL(&ifp->if_snd, m0);
605 if (m0 == NULL)
606 break;
607 m = NULL;
608
609 dmamap = txs->txs_dmamap;
610
611 /*
612 * Load the DMA map. If this fails, the packet either
613 * didn't fit in the alloted number of segments, or we were
614 * short on resources. In this case, we'll copy and try
615 * again.
616 */
617 if (((mtod(m0, uintptr_t) & 3) != 0) ||
618 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
619 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
620 MGETHDR(m, M_DONTWAIT, MT_DATA);
621 if (m == NULL) {
622 printf("%s: unable to allocate Tx mbuf\n",
623 sc->sc_dev.dv_xname);
624 break;
625 }
626 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
627 if (m0->m_pkthdr.len > MHLEN) {
628 MCLGET(m, M_DONTWAIT);
629 if ((m->m_flags & M_EXT) == 0) {
630 printf("%s: unable to allocate Tx "
631 "cluster\n", sc->sc_dev.dv_xname);
632 m_freem(m);
633 break;
634 }
635 }
636 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
637 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
638 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
639 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
640 if (error) {
641 printf("%s: unable to load Tx buffer, "
642 "error = %d\n", sc->sc_dev.dv_xname,
643 error);
644 break;
645 }
646 }
647
648 /*
649 * Ensure we have enough descriptors free to describe
650 * the packet.
651 */
652 if (dmamap->dm_nsegs > sc->sc_txfree) {
653 /*
654 * Not enough free descriptors to transmit this
655 * packet. We haven't committed to anything yet,
656 * so just unload the DMA map, put the packet
657 * back on the queue, and punt. Notify the upper
658 * layer that there are no more slots left.
659 *
660 * XXX We could allocate an mbuf and copy, but
661 * XXX it is worth it?
662 */
663 ifp->if_flags |= IFF_OACTIVE;
664 bus_dmamap_unload(sc->sc_dmat, dmamap);
665 if (m != NULL)
666 m_freem(m);
667 break;
668 }
669
670 IFQ_DEQUEUE(&ifp->if_snd, m0);
671 if (m != NULL) {
672 m_freem(m0);
673 m0 = m;
674 }
675
676 /*
677 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
678 */
679
680 /* Sync the DMA map. */
681 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
682 BUS_DMASYNC_PREWRITE);
683
684 /*
685 * Initialize the transmit descriptors.
686 */
687 for (nexttx = sc->sc_txnext, seg = 0;
688 seg < dmamap->dm_nsegs;
689 seg++, nexttx = AE_NEXTTX(nexttx)) {
690 /*
691 * If this is the first descriptor we're
692 * enqueueing, don't set the OWN bit just
693 * yet. That could cause a race condition.
694 * We'll do it below.
695 */
696 sc->sc_txdescs[nexttx].ad_status =
697 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
698 sc->sc_txdescs[nexttx].ad_bufaddr1 =
699 dmamap->dm_segs[seg].ds_addr;
700 sc->sc_txdescs[nexttx].ad_ctl =
701 (dmamap->dm_segs[seg].ds_len <<
702 ADCTL_SIZE1_SHIFT) |
703 (nexttx == (AE_NTXDESC - 1) ?
704 ADCTL_ER : 0);
705 lasttx = nexttx;
706 }
707
708 KASSERT(lasttx != -1);
709
710 /* Set `first segment' and `last segment' appropriately. */
711 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
712 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
713
714 #ifdef AE_DEBUG
715 if (ifp->if_flags & IFF_DEBUG) {
716 printf(" txsoft %p transmit chain:\n", txs);
717 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
718 printf(" descriptor %d:\n", seg);
719 printf(" ad_status: 0x%08x\n",
720 sc->sc_txdescs[seg].ad_status);
721 printf(" ad_ctl: 0x%08x\n",
722 sc->sc_txdescs[seg].ad_ctl);
723 printf(" ad_bufaddr1: 0x%08x\n",
724 sc->sc_txdescs[seg].ad_bufaddr1);
725 printf(" ad_bufaddr2: 0x%08x\n",
726 sc->sc_txdescs[seg].ad_bufaddr2);
727 if (seg == lasttx)
728 break;
729 }
730 }
731 #endif
732
733 /* Sync the descriptors we're using. */
734 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
735 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
736
737 /*
738 * Store a pointer to the packet so we can free it later,
739 * and remember what txdirty will be once the packet is
740 * done.
741 */
742 txs->txs_mbuf = m0;
743 txs->txs_firstdesc = sc->sc_txnext;
744 txs->txs_lastdesc = lasttx;
745 txs->txs_ndescs = dmamap->dm_nsegs;
746
747 /* Advance the tx pointer. */
748 sc->sc_txfree -= dmamap->dm_nsegs;
749 sc->sc_txnext = nexttx;
750
751 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
752 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
753
754 last_txs = txs;
755
756 #if NBPFILTER > 0
757 /*
758 * Pass the packet to any BPF listeners.
759 */
760 if (ifp->if_bpf)
761 bpf_mtap(ifp->if_bpf, m0);
762 #endif /* NBPFILTER > 0 */
763 }
764
765 if (txs == NULL || sc->sc_txfree == 0) {
766 /* No more slots left; notify upper layer. */
767 ifp->if_flags |= IFF_OACTIVE;
768 }
769
770 if (sc->sc_txfree != ofree) {
771 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
772 sc->sc_dev.dv_xname, lasttx, firsttx));
773 /*
774 * Cause a transmit interrupt to happen on the
775 * last packet we enqueued.
776 */
777 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
778 AE_CDTXSYNC(sc, lasttx, 1,
779 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
780
781 /*
782 * The entire packet chain is set up. Give the
783 * first descriptor to the chip now.
784 */
785 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
786 AE_CDTXSYNC(sc, firsttx, 1,
787 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
788
789 /* Wake up the transmitter. */
790 /* XXX USE AUTOPOLLING? */
791 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
792 AE_BARRIER(sc);
793
794 /* Set a watchdog timer in case the chip flakes out. */
795 ifp->if_timer = 5;
796 }
797 }
798
799 /*
800 * ae_watchdog: [ifnet interface function]
801 *
802 * Watchdog timer handler.
803 */
804 static void
805 ae_watchdog(struct ifnet *ifp)
806 {
807 struct ae_softc *sc = ifp->if_softc;
808 int doing_transmit;
809
810 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
811
812 if (doing_transmit) {
813 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
814 ifp->if_oerrors++;
815 }
816 else
817 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
818
819 (void) ae_init(ifp);
820
821 /* Try to get more packets going. */
822 ae_start(ifp);
823 }
824
825 /*
826 * ae_ioctl: [ifnet interface function]
827 *
828 * Handle control requests from the operator.
829 */
830 static int
831 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
832 {
833 struct ae_softc *sc = ifp->if_softc;
834 struct ifreq *ifr = (struct ifreq *)data;
835 int s, error;
836
837 s = splnet();
838
839 switch (cmd) {
840 case SIOCSIFMEDIA:
841 case SIOCGIFMEDIA:
842 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
843 break;
844 case SIOCSIFFLAGS:
845 /* If the interface is up and running, only modify the receive
846 * filter when setting promiscuous or debug mode. Otherwise
847 * fall through to ether_ioctl, which will reset the chip.
848 */
849 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
850 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
851 == (IFF_UP|IFF_RUNNING))
852 && ((ifp->if_flags & (~RESETIGN))
853 == (sc->sc_if_flags & (~RESETIGN)))) {
854 /* Set up the receive filter. */
855 ae_filter_setup(sc);
856 error = 0;
857 break;
858 #undef RESETIGN
859 }
860 /* FALLTHROUGH */
861 default:
862 error = ether_ioctl(ifp, cmd, data);
863 if (error == ENETRESET) {
864 if (ifp->if_flags & IFF_RUNNING) {
865 /*
866 * Multicast list has changed. Set the
867 * hardware filter accordingly.
868 */
869 ae_filter_setup(sc);
870 }
871 error = 0;
872 }
873 break;
874 }
875
876 /* Try to get more packets going. */
877 if (AE_IS_ENABLED(sc))
878 ae_start(ifp);
879
880 sc->sc_if_flags = ifp->if_flags;
881 splx(s);
882 return (error);
883 }
884
885 /*
886 * ae_intr:
887 *
888 * Interrupt service routine.
889 */
890 int
891 ae_intr(void *arg)
892 {
893 struct ae_softc *sc = arg;
894 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
895 u_int32_t status, rxstatus, txstatus;
896 int handled = 0, txthresh;
897
898 DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
899
900 #ifdef DEBUG
901 if (AE_IS_ENABLED(sc) == 0)
902 panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
903 #endif
904
905 /*
906 * If the interface isn't running, the interrupt couldn't
907 * possibly have come from us.
908 */
909 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
910 !device_is_active(&sc->sc_dev)) {
911 printf("spurious?!?\n");
912 return (0);
913 }
914
915 for (;;) {
916 status = AE_READ(sc, CSR_STATUS);
917 if (status) {
918 AE_WRITE(sc, CSR_STATUS, status);
919 AE_BARRIER(sc);
920 }
921
922 if ((status & sc->sc_inten) == 0)
923 break;
924
925 handled = 1;
926
927 rxstatus = status & sc->sc_rxint_mask;
928 txstatus = status & sc->sc_txint_mask;
929
930 if (rxstatus) {
931 /* Grab new any new packets. */
932 ae_rxintr(sc);
933
934 if (rxstatus & STATUS_RU) {
935 printf("%s: receive ring overrun\n",
936 sc->sc_dev.dv_xname);
937 /* Get the receive process going again. */
938 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
939 AE_BARRIER(sc);
940 break;
941 }
942 }
943
944 if (txstatus) {
945 /* Sweep up transmit descriptors. */
946 ae_txintr(sc);
947
948 if (txstatus & STATUS_TJT)
949 printf("%s: transmit jabber timeout\n",
950 sc->sc_dev.dv_xname);
951
952 if (txstatus & STATUS_UNF) {
953 /*
954 * Increase our transmit threshold if
955 * another is available.
956 */
957 txthresh = sc->sc_txthresh + 1;
958 if (ae_txthresh[txthresh].txth_name != NULL) {
959 uint32_t opmode;
960 /* Idle the transmit process. */
961 opmode = AE_READ(sc, CSR_OPMODE);
962 ae_idle(sc, OPMODE_ST);
963
964 sc->sc_txthresh = txthresh;
965 opmode &=
966 ~(OPMODE_TR|OPMODE_SF);
967 opmode |=
968 ae_txthresh[txthresh].txth_opmode;
969 printf("%s: transmit underrun; new "
970 "threshold: %s\n",
971 sc->sc_dev.dv_xname,
972 ae_txthresh[txthresh].txth_name);
973
974 /*
975 * Set the new threshold and restart
976 * the transmit process.
977 */
978 AE_WRITE(sc, CSR_OPMODE, opmode);
979 AE_BARRIER(sc);
980 }
981 /*
982 * XXX Log every Nth underrun from
983 * XXX now on?
984 */
985 }
986 }
987
988 if (status & (STATUS_TPS|STATUS_RPS)) {
989 if (status & STATUS_TPS)
990 printf("%s: transmit process stopped\n",
991 sc->sc_dev.dv_xname);
992 if (status & STATUS_RPS)
993 printf("%s: receive process stopped\n",
994 sc->sc_dev.dv_xname);
995 (void) ae_init(ifp);
996 break;
997 }
998
999 if (status & STATUS_SE) {
1000 const char *str;
1001
1002 if (status & STATUS_TX_ABORT)
1003 str = "tx abort";
1004 else if (status & STATUS_RX_ABORT)
1005 str = "rx abort";
1006 else
1007 str = "unknown error";
1008
1009 printf("%s: fatal system error: %s\n",
1010 sc->sc_dev.dv_xname, str);
1011 (void) ae_init(ifp);
1012 break;
1013 }
1014
1015 /*
1016 * Not handled:
1017 *
1018 * Transmit buffer unavailable -- normal
1019 * condition, nothing to do, really.
1020 *
1021 * General purpose timer experied -- we don't
1022 * use the general purpose timer.
1023 *
1024 * Early receive interrupt -- not available on
1025 * all chips, we just use RI. We also only
1026 * use single-segment receive DMA, so this
1027 * is mostly useless.
1028 */
1029 }
1030
1031 /* Try to get more packets going. */
1032 ae_start(ifp);
1033
1034 #if NRND > 0
1035 if (handled)
1036 rnd_add_uint32(&sc->sc_rnd_source, status);
1037 #endif
1038 return (handled);
1039 }
1040
1041 /*
1042 * ae_rxintr:
1043 *
1044 * Helper; handle receive interrupts.
1045 */
1046 static void
1047 ae_rxintr(struct ae_softc *sc)
1048 {
1049 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1050 struct ether_header *eh;
1051 struct ae_rxsoft *rxs;
1052 struct mbuf *m;
1053 u_int32_t rxstat;
1054 int i, len;
1055
1056 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1057 rxs = &sc->sc_rxsoft[i];
1058
1059 AE_CDRXSYNC(sc, i,
1060 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1061
1062 rxstat = sc->sc_rxdescs[i].ad_status;
1063
1064 if (rxstat & ADSTAT_OWN) {
1065 /*
1066 * We have processed all of the receive buffers.
1067 */
1068 break;
1069 }
1070
1071 /*
1072 * If any collisions were seen on the wire, count one.
1073 */
1074 if (rxstat & ADSTAT_Rx_CS)
1075 ifp->if_collisions++;
1076
1077 /*
1078 * If an error occurred, update stats, clear the status
1079 * word, and leave the packet buffer in place. It will
1080 * simply be reused the next time the ring comes around.
1081 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1082 * error.
1083 */
1084 if (rxstat & ADSTAT_ES &&
1085 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1086 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1087 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1088 #define PRINTERR(bit, str) \
1089 if (rxstat & (bit)) \
1090 printf("%s: receive error: %s\n", \
1091 sc->sc_dev.dv_xname, str)
1092 ifp->if_ierrors++;
1093 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1094 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1095 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1096 PRINTERR(ADSTAT_Rx_RE, "MII error");
1097 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1098 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1099 #undef PRINTERR
1100 AE_INIT_RXDESC(sc, i);
1101 continue;
1102 }
1103
1104 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1105 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1106
1107 /*
1108 * No errors; receive the packet. Note the chip
1109 * includes the CRC with every packet.
1110 */
1111 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1112
1113 /*
1114 * XXX: the Atheros part can align on half words. what
1115 * is the performance implication of this? Probably
1116 * minimal, and we should use it...
1117 */
1118 #ifdef __NO_STRICT_ALIGNMENT
1119 /*
1120 * Allocate a new mbuf cluster. If that fails, we are
1121 * out of memory, and must drop the packet and recycle
1122 * the buffer that's already attached to this descriptor.
1123 */
1124 m = rxs->rxs_mbuf;
1125 if (ae_add_rxbuf(sc, i) != 0) {
1126 ifp->if_ierrors++;
1127 AE_INIT_RXDESC(sc, i);
1128 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1129 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1130 continue;
1131 }
1132 #else
1133 /*
1134 * The chip's receive buffers must be 4-byte aligned.
1135 * But this means that the data after the Ethernet header
1136 * is misaligned. We must allocate a new buffer and
1137 * copy the data, shifted forward 2 bytes.
1138 */
1139 MGETHDR(m, M_DONTWAIT, MT_DATA);
1140 if (m == NULL) {
1141 dropit:
1142 ifp->if_ierrors++;
1143 AE_INIT_RXDESC(sc, i);
1144 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1145 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1146 continue;
1147 }
1148 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1149 if (len > (MHLEN - 2)) {
1150 MCLGET(m, M_DONTWAIT);
1151 if ((m->m_flags & M_EXT) == 0) {
1152 m_freem(m);
1153 goto dropit;
1154 }
1155 }
1156 m->m_data += 2;
1157
1158 /*
1159 * Note that we use clusters for incoming frames, so the
1160 * buffer is virtually contiguous.
1161 */
1162 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1163
1164 /* Allow the receive descriptor to continue using its mbuf. */
1165 AE_INIT_RXDESC(sc, i);
1166 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1167 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1168 #endif /* __NO_STRICT_ALIGNMENT */
1169
1170 ifp->if_ipackets++;
1171 eh = mtod(m, struct ether_header *);
1172 m->m_pkthdr.rcvif = ifp;
1173 m->m_pkthdr.len = m->m_len = len;
1174
1175 #if NBPFILTER > 0
1176 /*
1177 * Pass this up to any BPF listeners, but only
1178 * pass it up the stack if its for us.
1179 */
1180 if (ifp->if_bpf)
1181 bpf_mtap(ifp->if_bpf, m);
1182 #endif /* NPBFILTER > 0 */
1183
1184 /* Pass it on. */
1185 (*ifp->if_input)(ifp, m);
1186 }
1187
1188 /* Update the receive pointer. */
1189 sc->sc_rxptr = i;
1190 }
1191
1192 /*
1193 * ae_txintr:
1194 *
1195 * Helper; handle transmit interrupts.
1196 */
1197 static void
1198 ae_txintr(struct ae_softc *sc)
1199 {
1200 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1201 struct ae_txsoft *txs;
1202 u_int32_t txstat;
1203
1204 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1205 sc->sc_dev.dv_xname, sc->sc_flags));
1206
1207 ifp->if_flags &= ~IFF_OACTIVE;
1208
1209 /*
1210 * Go through our Tx list and free mbufs for those
1211 * frames that have been transmitted.
1212 */
1213 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1214 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1215 txs->txs_ndescs,
1216 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1217
1218 #ifdef AE_DEBUG
1219 if (ifp->if_flags & IFF_DEBUG) {
1220 int i;
1221 printf(" txsoft %p transmit chain:\n", txs);
1222 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1223 printf(" descriptor %d:\n", i);
1224 printf(" ad_status: 0x%08x\n",
1225 sc->sc_txdescs[i].ad_status);
1226 printf(" ad_ctl: 0x%08x\n",
1227 sc->sc_txdescs[i].ad_ctl);
1228 printf(" ad_bufaddr1: 0x%08x\n",
1229 sc->sc_txdescs[i].ad_bufaddr1);
1230 printf(" ad_bufaddr2: 0x%08x\n",
1231 sc->sc_txdescs[i].ad_bufaddr2);
1232 if (i == txs->txs_lastdesc)
1233 break;
1234 }
1235 }
1236 #endif
1237
1238 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1239 if (txstat & ADSTAT_OWN)
1240 break;
1241
1242 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1243
1244 sc->sc_txfree += txs->txs_ndescs;
1245
1246 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1247 0, txs->txs_dmamap->dm_mapsize,
1248 BUS_DMASYNC_POSTWRITE);
1249 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1250 m_freem(txs->txs_mbuf);
1251 txs->txs_mbuf = NULL;
1252
1253 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1254
1255 /*
1256 * Check for errors and collisions.
1257 */
1258 #ifdef AE_STATS
1259 if (txstat & ADSTAT_Tx_UF)
1260 sc->sc_stats.ts_tx_uf++;
1261 if (txstat & ADSTAT_Tx_TO)
1262 sc->sc_stats.ts_tx_to++;
1263 if (txstat & ADSTAT_Tx_EC)
1264 sc->sc_stats.ts_tx_ec++;
1265 if (txstat & ADSTAT_Tx_LC)
1266 sc->sc_stats.ts_tx_lc++;
1267 #endif
1268
1269 if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1270 ifp->if_oerrors++;
1271
1272 if (txstat & ADSTAT_Tx_EC)
1273 ifp->if_collisions += 16;
1274 else
1275 ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1276 if (txstat & ADSTAT_Tx_LC)
1277 ifp->if_collisions++;
1278
1279 ifp->if_opackets++;
1280 }
1281
1282 /*
1283 * If there are no more pending transmissions, cancel the watchdog
1284 * timer.
1285 */
1286 if (txs == NULL)
1287 ifp->if_timer = 0;
1288 }
1289
1290 #ifdef AE_STATS
1291 void
1292 ae_print_stats(struct ae_softc *sc)
1293 {
1294
1295 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1296 sc->sc_dev.dv_xname,
1297 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1298 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1299 }
1300 #endif
1301
1302 /*
1303 * ae_reset:
1304 *
1305 * Perform a soft reset on the chip.
1306 */
1307 void
1308 ae_reset(struct ae_softc *sc)
1309 {
1310 int i;
1311
1312 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1313 AE_BARRIER(sc);
1314
1315 /*
1316 * The chip doesn't take itself out of reset automatically.
1317 * We need to do so after 2us.
1318 */
1319 delay(10);
1320 AE_WRITE(sc, CSR_BUSMODE, 0);
1321 AE_BARRIER(sc);
1322
1323 for (i = 0; i < 1000; i++) {
1324 /*
1325 * Wait a bit for the reset to complete before peeking
1326 * at the chip again.
1327 */
1328 delay(10);
1329 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1330 break;
1331 }
1332
1333 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1334 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1335
1336 delay(1000);
1337 }
1338
1339 /*
1340 * ae_init: [ ifnet interface function ]
1341 *
1342 * Initialize the interface. Must be called at splnet().
1343 */
1344 static int
1345 ae_init(struct ifnet *ifp)
1346 {
1347 struct ae_softc *sc = ifp->if_softc;
1348 struct ae_txsoft *txs;
1349 struct ae_rxsoft *rxs;
1350 uint8_t *enaddr;
1351 int i, error = 0;
1352
1353 if ((error = ae_enable(sc)) != 0)
1354 goto out;
1355
1356 /*
1357 * Cancel any pending I/O.
1358 */
1359 ae_stop(ifp, 0);
1360
1361 /*
1362 * Reset the chip to a known state.
1363 */
1364 ae_reset(sc);
1365
1366 /*
1367 * Initialize the BUSMODE register.
1368 */
1369 AE_WRITE(sc, CSR_BUSMODE,
1370 /* XXX: not sure if this is a good thing or not... */
1371 //BUSMODE_ALIGN_16B |
1372 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1373 AE_BARRIER(sc);
1374
1375 /*
1376 * Initialize the transmit descriptor ring.
1377 */
1378 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1379 for (i = 0; i < AE_NTXDESC; i++) {
1380 sc->sc_txdescs[i].ad_ctl = 0;
1381 sc->sc_txdescs[i].ad_bufaddr2 =
1382 AE_CDTXADDR(sc, AE_NEXTTX(i));
1383 }
1384 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1385 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1386 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1387 sc->sc_txfree = AE_NTXDESC;
1388 sc->sc_txnext = 0;
1389
1390 /*
1391 * Initialize the transmit job descriptors.
1392 */
1393 SIMPLEQ_INIT(&sc->sc_txfreeq);
1394 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1395 for (i = 0; i < AE_TXQUEUELEN; i++) {
1396 txs = &sc->sc_txsoft[i];
1397 txs->txs_mbuf = NULL;
1398 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1399 }
1400
1401 /*
1402 * Initialize the receive descriptor and receive job
1403 * descriptor rings.
1404 */
1405 for (i = 0; i < AE_NRXDESC; i++) {
1406 rxs = &sc->sc_rxsoft[i];
1407 if (rxs->rxs_mbuf == NULL) {
1408 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1409 printf("%s: unable to allocate or map rx "
1410 "buffer %d, error = %d\n",
1411 sc->sc_dev.dv_xname, i, error);
1412 /*
1413 * XXX Should attempt to run with fewer receive
1414 * XXX buffers instead of just failing.
1415 */
1416 ae_rxdrain(sc);
1417 goto out;
1418 }
1419 } else
1420 AE_INIT_RXDESC(sc, i);
1421 }
1422 sc->sc_rxptr = 0;
1423
1424 /*
1425 * Initialize the interrupt mask and enable interrupts.
1426 */
1427 /* normal interrupts */
1428 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1429
1430 /* abnormal interrupts */
1431 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1432 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1433
1434 sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1435 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1436
1437 sc->sc_rxint_mask &= sc->sc_inten;
1438 sc->sc_txint_mask &= sc->sc_inten;
1439
1440 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1441 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1442
1443 /*
1444 * Give the transmit and receive rings to the chip.
1445 */
1446 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1447 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1448 AE_BARRIER(sc);
1449
1450 /*
1451 * Set the station address.
1452 */
1453 enaddr = LLADDR(ifp->if_sadl);
1454 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1455 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1456 enaddr[1] << 8 | enaddr[0]);
1457 AE_BARRIER(sc);
1458
1459 /*
1460 * Set the receive filter. This will start the transmit and
1461 * receive processes.
1462 */
1463 ae_filter_setup(sc);
1464
1465 /*
1466 * Set the current media.
1467 */
1468 ae_mediachange(ifp);
1469
1470 /*
1471 * Start the mac.
1472 */
1473 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1474 AE_BARRIER(sc);
1475
1476 /*
1477 * Write out the opmode.
1478 */
1479 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1480 ae_txthresh[sc->sc_txthresh].txth_opmode);
1481 /*
1482 * Start the receive process.
1483 */
1484 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1485 AE_BARRIER(sc);
1486
1487 if (sc->sc_tick != NULL) {
1488 /* Start the one second clock. */
1489 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1490 }
1491
1492 /*
1493 * Note that the interface is now running.
1494 */
1495 ifp->if_flags |= IFF_RUNNING;
1496 ifp->if_flags &= ~IFF_OACTIVE;
1497 sc->sc_if_flags = ifp->if_flags;
1498
1499 out:
1500 if (error) {
1501 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1502 ifp->if_timer = 0;
1503 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1504 }
1505 return (error);
1506 }
1507
1508 /*
1509 * ae_enable:
1510 *
1511 * Enable the chip.
1512 */
1513 static int
1514 ae_enable(struct ae_softc *sc)
1515 {
1516
1517 if (AE_IS_ENABLED(sc) == 0) {
1518 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1519 ae_intr, sc);
1520 if (sc->sc_ih == NULL) {
1521 printf("%s: unable to establish interrupt\n",
1522 sc->sc_dev.dv_xname);
1523 return (EIO);
1524 }
1525 sc->sc_flags |= AE_ENABLED;
1526 }
1527 return (0);
1528 }
1529
1530 /*
1531 * ae_disable:
1532 *
1533 * Disable the chip.
1534 */
1535 static void
1536 ae_disable(struct ae_softc *sc)
1537 {
1538
1539 if (AE_IS_ENABLED(sc)) {
1540 arbus_intr_disestablish(sc->sc_ih);
1541 sc->sc_flags &= ~AE_ENABLED;
1542 }
1543 }
1544
1545 /*
1546 * ae_power:
1547 *
1548 * Power management (suspend/resume) hook.
1549 */
1550 static void
1551 ae_power(int why, void *arg)
1552 {
1553 struct ae_softc *sc = arg;
1554 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1555 int s;
1556
1557 printf("power called: %d, %x\n", why, (uint32_t)arg);
1558 s = splnet();
1559 switch (why) {
1560 case PWR_STANDBY:
1561 /* do nothing! */
1562 break;
1563 case PWR_SUSPEND:
1564 ae_stop(ifp, 0);
1565 ae_disable(sc);
1566 break;
1567 case PWR_RESUME:
1568 if (ifp->if_flags & IFF_UP) {
1569 ae_enable(sc);
1570 ae_init(ifp);
1571 }
1572 break;
1573 case PWR_SOFTSUSPEND:
1574 case PWR_SOFTSTANDBY:
1575 case PWR_SOFTRESUME:
1576 break;
1577 }
1578 splx(s);
1579 }
1580
1581 /*
1582 * ae_rxdrain:
1583 *
1584 * Drain the receive queue.
1585 */
1586 static void
1587 ae_rxdrain(struct ae_softc *sc)
1588 {
1589 struct ae_rxsoft *rxs;
1590 int i;
1591
1592 for (i = 0; i < AE_NRXDESC; i++) {
1593 rxs = &sc->sc_rxsoft[i];
1594 if (rxs->rxs_mbuf != NULL) {
1595 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1596 m_freem(rxs->rxs_mbuf);
1597 rxs->rxs_mbuf = NULL;
1598 }
1599 }
1600 }
1601
1602 /*
1603 * ae_stop: [ ifnet interface function ]
1604 *
1605 * Stop transmission on the interface.
1606 */
1607 static void
1608 ae_stop(struct ifnet *ifp, int disable)
1609 {
1610 struct ae_softc *sc = ifp->if_softc;
1611 struct ae_txsoft *txs;
1612
1613 if (sc->sc_tick != NULL) {
1614 /* Stop the one second clock. */
1615 callout_stop(&sc->sc_tick_callout);
1616 }
1617
1618 /* Down the MII. */
1619 mii_down(&sc->sc_mii);
1620
1621 /* Disable interrupts. */
1622 AE_WRITE(sc, CSR_INTEN, 0);
1623
1624 /* Stop the transmit and receive processes. */
1625 AE_WRITE(sc, CSR_OPMODE, 0);
1626 AE_WRITE(sc, CSR_RXLIST, 0);
1627 AE_WRITE(sc, CSR_TXLIST, 0);
1628 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1629 AE_BARRIER(sc);
1630
1631 /*
1632 * Release any queued transmit buffers.
1633 */
1634 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1635 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1636 if (txs->txs_mbuf != NULL) {
1637 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1638 m_freem(txs->txs_mbuf);
1639 txs->txs_mbuf = NULL;
1640 }
1641 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1642 }
1643
1644 if (disable) {
1645 ae_rxdrain(sc);
1646 ae_disable(sc);
1647 }
1648
1649 /*
1650 * Mark the interface down and cancel the watchdog timer.
1651 */
1652 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1653 sc->sc_if_flags = ifp->if_flags;
1654 ifp->if_timer = 0;
1655
1656 /*
1657 * Reset the chip (needed on some flavors to actually disable it).
1658 */
1659 ae_reset(sc);
1660 }
1661
1662 /*
1663 * ae_add_rxbuf:
1664 *
1665 * Add a receive buffer to the indicated descriptor.
1666 */
1667 static int
1668 ae_add_rxbuf(struct ae_softc *sc, int idx)
1669 {
1670 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1671 struct mbuf *m;
1672 int error;
1673
1674 MGETHDR(m, M_DONTWAIT, MT_DATA);
1675 if (m == NULL)
1676 return (ENOBUFS);
1677
1678 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1679 MCLGET(m, M_DONTWAIT);
1680 if ((m->m_flags & M_EXT) == 0) {
1681 m_freem(m);
1682 return (ENOBUFS);
1683 }
1684
1685 if (rxs->rxs_mbuf != NULL)
1686 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1687
1688 rxs->rxs_mbuf = m;
1689
1690 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1691 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1692 BUS_DMA_READ|BUS_DMA_NOWAIT);
1693 if (error) {
1694 printf("%s: can't load rx DMA map %d, error = %d\n",
1695 sc->sc_dev.dv_xname, idx, error);
1696 panic("ae_add_rxbuf"); /* XXX */
1697 }
1698
1699 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1700 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1701
1702 AE_INIT_RXDESC(sc, idx);
1703
1704 return (0);
1705 }
1706
1707 /*
1708 * ae_filter_setup:
1709 *
1710 * Set the chip's receive filter.
1711 */
1712 static void
1713 ae_filter_setup(struct ae_softc *sc)
1714 {
1715 struct ethercom *ec = &sc->sc_ethercom;
1716 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1717 struct ether_multi *enm;
1718 struct ether_multistep step;
1719 uint32_t hash, mchash[2];
1720 uint32_t macctl = 0;
1721
1722 /*
1723 * If the chip is running, we need to reset the interface,
1724 * and will revisit here (with IFF_RUNNING) clear. The
1725 * chip seems to really not like to have its multicast
1726 * filter programmed without a reset.
1727 */
1728 if (ifp->if_flags & IFF_RUNNING) {
1729 (void) ae_init(ifp);
1730 return;
1731 }
1732
1733 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1734 sc->sc_dev.dv_xname, sc->sc_flags));
1735
1736 macctl = AE_READ(sc, CSR_MACCTL);
1737 macctl &= ~(MACCTL_PR | MACCTL_PM);
1738 macctl |= MACCTL_HASH;
1739 macctl |= MACCTL_HBD;
1740 macctl |= MACCTL_PR;
1741
1742 if (ifp->if_flags & IFF_PROMISC) {
1743 macctl |= MACCTL_PR;
1744 goto allmulti;
1745 }
1746
1747 mchash[0] = mchash[1] = 0;
1748
1749 ETHER_FIRST_MULTI(step, ec, enm);
1750 while (enm != NULL) {
1751 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1752 /*
1753 * We must listen to a range of multicast addresses.
1754 * For now, just accept all multicasts, rather than
1755 * trying to set only those filter bits needed to match
1756 * the range. (At this time, the only use of address
1757 * ranges is for IP multicast routing, for which the
1758 * range is big enough to require all bits set.)
1759 */
1760 goto allmulti;
1761 }
1762
1763 /* Verify whether we use big or little endian hashes */
1764 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1765 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1766 ETHER_NEXT_MULTI(step, enm);
1767 }
1768 ifp->if_flags &= ~IFF_ALLMULTI;
1769 goto setit;
1770
1771 allmulti:
1772 ifp->if_flags |= IFF_ALLMULTI;
1773 mchash[0] = mchash[1] = 0xffffffff;
1774 macctl |= MACCTL_PM;
1775
1776 setit:
1777 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1778 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1779
1780 AE_WRITE(sc, CSR_MACCTL, macctl);
1781 AE_BARRIER(sc);
1782
1783 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1784 sc->sc_dev.dv_xname, macctl));
1785 }
1786
1787 /*
1788 * ae_idle:
1789 *
1790 * Cause the transmit and/or receive processes to go idle.
1791 */
1792 void
1793 ae_idle(struct ae_softc *sc, u_int32_t bits)
1794 {
1795 static const char * const txstate_names[] = {
1796 "STOPPED",
1797 "RUNNING - FETCH",
1798 "RUNNING - WAIT",
1799 "RUNNING - READING",
1800 "-- RESERVED --",
1801 "RUNNING - SETUP",
1802 "SUSPENDED",
1803 "RUNNING - CLOSE",
1804 };
1805 static const char * const rxstate_names[] = {
1806 "STOPPED",
1807 "RUNNING - FETCH",
1808 "RUNNING - CHECK",
1809 "RUNNING - WAIT",
1810 "SUSPENDED",
1811 "RUNNING - CLOSE",
1812 "RUNNING - FLUSH",
1813 "RUNNING - QUEUE",
1814 };
1815
1816 u_int32_t csr, ackmask = 0;
1817 int i;
1818
1819 if (bits & OPMODE_ST)
1820 ackmask |= STATUS_TPS;
1821
1822 if (bits & OPMODE_SR)
1823 ackmask |= STATUS_RPS;
1824
1825 AE_CLR(sc, CSR_OPMODE, bits);
1826
1827 for (i = 0; i < 1000; i++) {
1828 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1829 break;
1830 delay(10);
1831 }
1832
1833 csr = AE_READ(sc, CSR_STATUS);
1834 if ((csr & ackmask) != ackmask) {
1835 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1836 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1837 printf("%s: transmit process failed to idle: "
1838 "state %s\n", sc->sc_dev.dv_xname,
1839 txstate_names[(csr & STATUS_TS) >> 20]);
1840 }
1841 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1842 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1843 printf("%s: receive process failed to idle: "
1844 "state %s\n", sc->sc_dev.dv_xname,
1845 rxstate_names[(csr & STATUS_RS) >> 17]);
1846 }
1847 }
1848 }
1849
1850 /*****************************************************************************
1851 * Generic media support functions.
1852 *****************************************************************************/
1853
1854 /*
1855 * ae_mediastatus: [ifmedia interface function]
1856 *
1857 * Query the current media.
1858 */
1859 void
1860 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1861 {
1862 struct ae_softc *sc = ifp->if_softc;
1863
1864 if (AE_IS_ENABLED(sc) == 0) {
1865 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1866 ifmr->ifm_status = 0;
1867 return;
1868 }
1869
1870 mii_pollstat(&sc->sc_mii);
1871 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1872 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1873 }
1874
1875 /*
1876 * ae_mediachange: [ifmedia interface function]
1877 *
1878 * Update the current media.
1879 */
1880 int
1881 ae_mediachange(struct ifnet *ifp)
1882 {
1883 struct ae_softc *sc = ifp->if_softc;
1884
1885 if ((ifp->if_flags & IFF_UP) == 0)
1886 return (0);
1887
1888 mii_mediachg(&sc->sc_mii);
1889 return (0);
1890 }
1891
1892 /*****************************************************************************
1893 * Support functions for MII-attached media.
1894 *****************************************************************************/
1895
1896 /*
1897 * ae_mii_tick:
1898 *
1899 * One second timer, used to tick the MII.
1900 */
1901 static void
1902 ae_mii_tick(void *arg)
1903 {
1904 struct ae_softc *sc = arg;
1905 int s;
1906
1907 if (!device_is_active(&sc->sc_dev))
1908 return;
1909
1910 s = splnet();
1911 mii_tick(&sc->sc_mii);
1912 splx(s);
1913
1914 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1915 }
1916
1917 /*
1918 * ae_mii_statchg: [mii interface function]
1919 *
1920 * Callback from PHY when media changes.
1921 */
1922 static void
1923 ae_mii_statchg(struct device *self)
1924 {
1925 struct ae_softc *sc = (struct ae_softc *)self;
1926 uint32_t macctl, flowc;
1927
1928 //opmode = AE_READ(sc, CSR_OPMODE);
1929 macctl = AE_READ(sc, CSR_MACCTL);
1930
1931 /* XXX: do we need to do this? */
1932 /* Idle the transmit and receive processes. */
1933 //ae_idle(sc, OPMODE_ST|OPMODE_SR);
1934
1935 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1936 flowc = FLOWC_FCE;
1937 macctl &= ~MACCTL_DRO;
1938 macctl |= MACCTL_FDX;
1939 } else {
1940 flowc = 0; /* cannot do flow control in HDX */
1941 macctl |= MACCTL_DRO;
1942 macctl &= ~MACCTL_FDX;
1943 }
1944
1945 AE_WRITE(sc, CSR_FLOWC, flowc);
1946 AE_WRITE(sc, CSR_MACCTL, macctl);
1947
1948 /* restore operational mode */
1949 //AE_WRITE(sc, CSR_OPMODE, opmode);
1950 AE_BARRIER(sc);
1951 }
1952
1953 /*
1954 * ae_mii_readreg:
1955 *
1956 * Read a PHY register.
1957 */
1958 static int
1959 ae_mii_readreg(struct device *self, int phy, int reg)
1960 {
1961 struct ae_softc *sc = (struct ae_softc *)self;
1962 uint32_t addr;
1963 int i;
1964
1965 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1966 AE_WRITE(sc, CSR_MIIADDR, addr);
1967 AE_BARRIER(sc);
1968 for (i = 0; i < 100000000; i++) {
1969 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1970 break;
1971 }
1972
1973 return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1974 }
1975
1976 /*
1977 * ae_mii_writereg:
1978 *
1979 * Write a PHY register.
1980 */
1981 static void
1982 ae_mii_writereg(struct device *self, int phy, int reg, int val)
1983 {
1984 struct ae_softc *sc = (struct ae_softc *)self;
1985 uint32_t addr;
1986 int i;
1987
1988 /* write the data register */
1989 AE_WRITE(sc, CSR_MIIDATA, val);
1990
1991 /* write the address to latch it in */
1992 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1993 MIIADDR_WRITE;
1994 AE_WRITE(sc, CSR_MIIADDR, addr);
1995 AE_BARRIER(sc);
1996
1997 for (i = 0; i < 100000000; i++) {
1998 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1999 break;
2000 }
2001 }
2002